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Abstract
This paper describes a labelled corpus intended for training learning algorithms to attach prepositional phrases (PPs). Taken from
the PTB2, we believe it is the largest available resource for this purpose, especially as it contains many patterns in which PPs occur
ambiguously (nearly all previous research has focused on just one pattern) and we present some results for the five most common
patterns. Moreover, the corpus contains some features that, to our knowledge, have not been used before for attaching PPs.

1. Introduction
This paper describes the format of a labelled corpus

suitable for training machine learning algorithms (MLAs)
to perform prepositional phrase (PP) attachment. We be-
lieve it is the largest available resource for this purpose. The
paper also describes the conversion of the Penn Treebank II
(Marcus et al., 1994) to this format. The PTB2 contains,
implicitly and explicitly, the information needed for PP at-
tachment (including some features that, to our knowledge,
have not yet been tried for PP attachment) but the distilled
form of the information is not yet widely available to the
NLP community. This papers reports the results of some
experiments carried out on the PP corpus.

To be able to create a genuinely useful resource for
training MLAs to disambiguate prepositional attachments
accurately, we must first understand PP attachment itself
and why it is problematic for computers. Changing the at-
tachment of a prepositional phrase can (dramatically) alter
a sentence’s meaning, so attaching PPs correctly is essen-
tial. Whilst people generally have no problem doing this
— headlines such as “miners refuse to work after death”
may cause us amusement but rarely any difficulty — the
best scoring computer models, such as those by Collins and
Brooks (1995) and Zavrel et al. (1997), only manage up
to 85% accuracy, some way short of the 93�2% accuracy
expected of people (Ratnaparkhi et al., 1994). Moreover,
all these figures are only for a single pattern of ambiguity,
known here as the canonical form: a binary choice between
attachment to a verb or to a noun. Whilst it is the most
common pattern of prepositional ambiguity, other patterns
do exist in significant numbers (Table 1) and should be in-
cluded in a training corpus. Since there is no single (or
simple) piece of information that we know of which always
identifies the correct prepositional attachment, training data
must include a variety of features in the hope that these
compensate for the computer’s lack of world knowledge.

2. Potentially Useful Data Features
2.1. Data Features Used Previously

Much of the regularly cited work on corpus-based PP
attachment has used the bare minimum feature set (and
mostly only considered the canonical form of ambiguity).
Hindle and Rooth (1993) used just the attachment candidate
words (a verb and a noun) plus the preposition. Collins

and Brooks (1995) also included the head noun from the
prepositional complement, following the lead from Brill
and Resnik (1994) and Ratnaparkhi et al. (1994), and both
these sets of researchers had further systems that utilised
semantic hierarchies: WordNet noun synset classes in the
former case, an automatically derived hierarchy in the lat-
ter. Merlo et al. (1997) used the same triple as Hindle and
Rooth for the canonical form but included the noun at the
head of a preceding PP’s complement when extending this
pattern to two and three consecutive PPs. Not one of these
systems was given part-of-speech (POS) tags and few use
lemmas.

Although not a training feature as such, we also need the
attachment point of a PP since supervised learning algor-
ithms must know the “answer” for each training and test
instance. A corpus annotation scheme might explicitly state
prepositional attachment but if it does not then the attach-
ment must be calculated, see �4.1 for a description of this
derivation process for the PTB2.

2.2. Novel Data Features

Two (related) features that have not yet been used in
published work on PP attachment are the lexical and phrasal
distances from a preposition to its attachment point. Count-
ing every word token (but not punctuation) between the two
points yields the lexical distance, whilst counting the log-
ical groups of word tokens gives the phrasal distance. It
is reasonable to assume that proximity is a possible indi-
cator of prepositional attachment. Both distance measures
can be used simultaneously and both will probably have to
be calculated since such information does not usually di-
rectly appear in a corpus. It is worth noting that the lexical
and phrasal distances need not be represented by numeric
values, since not all MLAs handle numeric data well: cate-
gories like near, medium, and far could be used to represent
arbitrary ranges (1–2, 3–6, and 7+ for example).

Another annotation type appearing in the PTB2 is the
phrase function tag (PFT). 45% of the PPs in the PTB2 have
such a tag and we chose to include them in the PP training
corpus, though the experiments that we report here did not
make use of them. This is because PFTs are not common in
other corpora and we wanted to show the utility of a basic
set of readily available features. Table 2 shows that these
basic features offer good accuracy even for a basic decision
tree.
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Figure 1: The logical structure of the final CSV format for
the PTB data.

3. Corpus Format
The new corpus must be directly suitable for training

MLAs. The simplest format to use is comma-separated
variable (CSV). The representation we selected is descr-
ibed below. Some fields are repeated: starting each instance
with the original words and their lemmas means instances
are readily identifiable and problems with lemmatisation
are easily spotted. There is no obligation for a MLA to
use every field but most MLAs can, effectively, ignore cer-
tain features by not using them in the classification process.
The ML environment Weka also permits the user to dese-
lect certain data features.

In the following descriptions, an attachment candidate
is an actual word to which the PP in question might attach.
For verb groups (VGs), the last verb is the attachment can-
didate, for other phrases it is the head word. The fields in
the PP corpus can be grouped logically as follows:

lemmas: only nouns and verbs were lemmatised with an
in-house program, morph, used in our Information
Extraction systems. There is one lemma for the at-
tachment candidate in each phrase and the lemma is
repeated in that phrase’s group of fields. The lem-
mas appear in their own group purely to make each
instance easier to identify manually.

original words: the attachment candidates, one per
phrase, as they appear in the original document, be-
fore lemmatisation. Like the lemmas, these words are
repeated elsewhere in the instance and are grouped to-
gether purely for human readability.

POS tags: of the original words. If combining several cor-
pora that use different tagsets to create PP attachment
instances, POS tags must be translated to a common
tagset.

fields for the Verb Group head: the first of these fields is
the function tag for the VG or null if there is no tag.
The second, third, and fourth fields are the lemma,
original word, and POS tag of the grammatical head
(see �4.1) of the VG. Note that the head word may be
different from the attachment candidate — for exam-
ple in “had thought” had is the head but thought is the

attachment candidate — though not in the example in
Figure 1. For VGs, the attachment candidate can be
considered the semantic head.

fields for the Simple Noun Phrase head: as for the VG
fields.

fields for the Prepositional Phrase head: each PP (there
may be multiple PPs in a pattern of ambiguity) is al-
ways represented by four fields. These fields are the
same as for VGs and SNPs.

fields for the Complement head: for each PP there is
a corresponding complement with the same fields,
though the values will of course differ.

lexical distances: there is one numeric value for the at-
tachment candidate attachment in each phrase in the
pattern.

phrasal distance: as for lexical distances but with the fig-
ures for phrasal distances.

attachment: this is the target function value for the MLA.
The value is suffixed with a number to identify which
phrase is the actual attachment point for the preposi-
tion, so in a pattern containing two adjectival phrases,
the first is ADJ 1 and the second ADJ 2.

4. Corpus Conversion Process
Having identified some features that we want to use for

training MLAs, we now describe the process used to con-
vert the parsed Wall St Journal texts of the PTB2 into input
vectors suitable for training a PP attachment algorithm.

The first five stages of conversion maintain the origi-
nal PTB2 nested bracket structure format, with the new
information supplementing existing phrase-level annota-
tions. The remaining stages manipulate existing annota-
tions whilst retaining the PTB2 format, except the last two
stages which break away from this format. The conver-
sion process, therefore, produces numerous versions of the
original data. Some of the new annotations, such as a PP’s
attachment point, refer to another bracket in the same sen-
tence. We numbered each bracket sequentially, resetting
the count to 1 at every new sentence (or equivalent top level
structure), so a reference to 29 indicates the twenty-ninth
bracket in the current sentence. These references do not
appear in the final training data.

4.1. Identifying Head Words

No current version of the Penn Treebank has explicit
annotations indicating prepositional attachment. But if we
assume that the attachment point is the head word of a PP’s
parent phrase, then we can derive an attachment for nearly
all 117,822 PPs in the PTB2 — instances were the PP is
first in a sentence are ignored since, bracketing-wise, the
parent is generally the sentence-level bracket itself. The
heads were found using the rules adapted by Collins and
Brooks (1995) from Magerman (1994). Although neither
of those publications offers an evaluation of the accuracy
of the rules (and, of course, there is no consensus on ex-
actly which word is the “head” in certain cases, for exam-
ple co-ordination), a manual checking of several hundred
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examples showed acceptable behaviour. The rules for find-
ing heads do not always lead directly to lexical items: since
the head of a phrase must be one of its direct children, many
phrases have another phrase as their head, though they can
be traced down to the lexical level. Therefore, we prefer to
refer to these annotations as head containers.

4.2. Identifying Prepositional Complements
This stage indicates which phrase is a PP’s comple-

ment and simplifies the later stage of conversion to machine
learning input vectors. A -PC=nn annotation (where nn is
the relevant bracket number) is appended to any annotations
already on the current PP annotation.

4.3. Identifying PP Attachment Points
Having identified head containers, PP attachment points

(taken to be the head word of a PP’s parent) can be found.
This process involves finding a PP’s parent and then trac-
ing the head containers down to the lexical level. The
bracket number of the attachment point is noted explicitly
in a -AP=nn annotation appended to the PP annotation.

4.4. Grouping Verbs
The fourth stage involves collecting verb phrases (VPs)

into verb groups (VGs). Each verb in the PTB annotation
scheme commands its own bracket, so consecutive verbs
look like this:

(VP (MD would)
(VP (VB have)

(VP (VBN convicted) ... )))

To make the output resemble that from a chunking parser
consecutive verbs must be collected into a single group:

(VP ��� ��� ����	
 ��� �
��
 ���� ��������	

 � � �)

which involves removing the brackets belonging to all but
the first VP whilst keeping the encompassing VP bracket
so that the scope of the verb phrase is retained. So after
grouping, the data contains a mixture of VPs and VGs but
every verb directly belongs to a VP. A verb which is not
adjacent to any other (for example if an adverb intersects
them) appears in a VG on its own. Attributes such as -AP
are updated during verb grouping because the number of
brackets changes.

4.5. Identifying Simple Noun Phrases
This straightforward conversion phases makes the text

look more like the output of a chunking parser. All noun
phrases containing no sub-phrases are relabelled SNP for
simple noun phrase (sometimes referred to as base NPs in
other literature).

4.6. Chunking
The parse trees in the PTB were adapted to resemble

the output from a chunker. The emulation works by printing
any phrase containing at least one lexical item (not counting
certain categories such as -NONE-, commas, brackets and
other punctuation, as well as co-ordinating conjunctions),
but excluding the first phrase embedded within a prepo-
sitional phrase. This strategy chunks examples such as
“the users of the produce from last year” into three pieces
(underlined separately).

Number Pattern Instances

1 VG SNP PP 22,816
2 VG PP PP 6,345
3 VG SNP PP PP 6,266
4 VG ADJP PP 2,360
5 VG SNP SNP PP 2,172

Table 1: The five most common patterns of potential PP
ambiguity found in the chunked PTB2.

4.7. Identifying Patterns of Potential Ambiguity

This step does not manipulate the corpus as such, but
analyses the output of the chunking phase. The previous
stage produces a list of phrase names which not only have
their annotations (such as -AP=nn) intact but are now em-
bellished with indices so that the correct text is recoverable
from the PTB2 files. Ignoring these indices and annota-
tions for brevity, we have a series of patterns, one for each
top-level sentence. For example

S �� SNP ADJP SNP VG SNP PP SNP
which describes the first sentence in the PTB. These gram-
mar patterns must be parsed to identify any prepositional
phrase with a potentially ambiguous attachment. The full
sentence pattern is split into parts separated at the VGs be-
cause we assume that PPs do not attach across groups of
verb — in the PTB2 only 0�98% of PPs attach across the
first VG in front of a PP.

Given the assumption about attaching across VGs and
having segmented the sentence at the VGs, a PP is deemed
to be potentially ambiguous if it is not first or second in
its segment. The end of the pattern of potential ambiguity
is taken to be the last PP in that segment. This allows for
multiple PPs, for example VG SNP PP PP, though they
need not be consecutive, for example VG PP SNP PP.
However, such patterns can themselves contain more cases
of potential ambiguity. Once the second PP from the pattern
VG SNP PP PP has been attached, the pattern collapses
to become VG SNP PP which itself contains a potentially
ambiguous PP. This method of collapsing patterns finds
over 124,500 ambiguous PP instances. A benefit of the
method is an increased number of examples for the more
common patterns, especially the canonical form, for which
nearly 23,000 examples were attained. Table 1 lists the five
most common patterns of PP potential ambiguity discov-
ered in the chunked version of the PTB2, though there are
many more.

4.8. Conversion to Input Vectors

The last stage of actual corpus conversion takes the in-
stances of the most numerous patterns discovered during
the analysis phase (Table 1), recovers the relevant data from
the modified PTB2 (stage 5, SNPs), and writes the data to
the CSV format described in �3. Most of the required fea-
tures have been explicitly marked by now, though the lexi-
cal and phrasal distances must be calculated here. The field
names for each pattern are written to separate header files,
so they are not mistakenly treated as instances.
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Ungeneralised Data Generalised Data

Pattern 1 82�9041% 83�3370%
Pattern 2 96�2480% 95�9217%
Pattern 3 80�6632% 80�5155%
Pattern 4 78�7804% 78�9123%
Pattern 5 85�7796% 82�5863%

Table 2: Some results on the new corpus for the ID3-gain
ratio algorithm.

5. Experiments Using the New Corpus
The utility of the PP attachment corpus can be demon-

strated by some experimental results. Thousands of (strat-
ified 10-fold cross-validation) experiments have been car-
ried out on the converted PTB2 (Mitchell, 2004) though for
brevity only a few are reported here, see Table 2. The de-
cision tree was a custom implementation based on Mitchell
(1997). It uses ID3 (Quinlan, 1986), one of the simplest
algorithms for decision trees since it does not use prun-
ing. Our implementation uses gain ratio in its calcula-
tions, a measure which penalises features that have a large
range of values. In terms of PP attachment, this forces the
algorithm to prefer the preposition as the primary discrim-
inant for partitioning the data because it is a closed class
of words whereas nouns, verbs, adjectives, and adverbs
are open class words and, as such, are potentially limitless
sets. We have previously shown (Mitchell and Gaizaus-
kas, 2002) that an ID3 gain ratio decision tree has com-
parable PP attachment accuracy (for Pattern 1, the canoni-
cal form) to more sophisticated algorithms such as EDTBL
(Brill and Resnik, 1994) which scored 80�8%, though on
a smaller data set derived from the PTB1. Using a larger
set also from the PTB1 (Ratnaparkhi et al., 1994), Collins
and Brooks (1995) attained 84�6% (using backed-off esti-
mation) and Zavrel et al. (1997) 84�4% (using k-Nearest
Neighbours). This data set has nearly the same number of
training instances for Pattern 1 as those in our novel PP cor-
pus. Merlo et al. (1997) (also using backed-off estimation)
attained 69�9% accuracy for Pattern 3, a verb, a noun, and
two consecutive PPs.

A second version of the PP training data was created
where numbers and proper names were converted to generic
keywords, following the procedure outlined in Brill and
Resnik (1994). Analysis of the results using paired � tests
(recommended by Dietterich (1998)) shows that generalis-
ing the data (converting names and numbers to keywords)
offers no statistically significant advantage and the half per-
cent increase in accuracy reported by Collins and Brooks
(1995) was probably due to the data order in their single
run of the experiment. Intuitively, however, we feel that for
live language engineering systems, generalising names and
numbers is a sensible strategy.

6. Discussion
This paper introduced a resource suitable for training

MLAs for PP attachment. The corpus’ format, comma-
separated variable, makes it readily usable by algorithms
and ML environments such as Weka. The method for con-
structing the PP corpus means it contains more instances

than other widely available resources. This is important
because MLAs generally increase in accuracy with more
training data. The corpus also contains features that we be-
lieve have not been used before for PP attachment: lexical
and phrasal distances and phrase function tags. Moreover,
it contains patterns of prepositional ambiguity that have not
been widely covered in previous research, if at all. We also
briefly presented some experiments on the corpus, though
many more were carried out using more algorithms on more
patterns of ambiguity than there is space to include. The
results of all these experiments were analysed statistically
and, surprisingly, generalising the data (converting names
and number to keywords) offers no significant gain, though
we still recommend the practice.

The code to convert the PTB2 to the PP corpus is avail-
able via the Sheffield NLP website: nlp.shef.ac.uk.
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