
Steps towards Semantically Annotated Language Resources

Manfred Klenner, Fabio Rinaldi, Michael Hess

Institute of Computational Linguistics, University of Z¨urich,
Winterthurerstrasse 190, CH-8057 Z¨urich, Switzerland
fklenner,rinaldi,hess g@cl.unizh.ch

Abstract
The use of textual resources such as text corpora, tree banks, large-scale lexica etc., has become a widely accepted commitment in the
field of computational linguistics. However the scope of the annotations proposed has been unbalanced towards the ’surface’ level. Only
recently corpora with a deeper level of annotations have started to emerge. In this paper we describe a machine learning approach aimed
at learning transformational rules that would allow the (partial) generation of semantic annotations starting from syntactic annotations
generated by a parser (or created manually).

1. Introduction
The use of textual resources such as text corpora, tree

banks, large-scale lexica etc., has become a widely ac-
cepted commitment in the field of computational linguis-
tics. These resources can be used for many applications,
such as rapid deployment of prototype NLP systems, train-
ing of statistical NLP components, evaluation of NLP ap-
plications.

However, the availability of annotated data is not well
balanced within the various subareas. Part of speech tagged
corpora and tree banks are available in various languages,
but semantically annotated databanks are not. There a few
exceptions and of course some ongoing efforts to overcome
this situation. The developers of FrameNet are augment-
ing the knowledge representation structures with annotated
textual data, e.g. they annotate FrameNet relevant thematic
roles over a corpus of real-world sentences. Consequently,
the FrameNet resource is used by (Gildea and Jurafsky,
2001) to train a classifier that - given a sentence - assigns
thematic roles.

We are concerned with a complementary project for
German, focusing on a particular application domain: An-
swer Extraction (Abney et al., 2000). The format used for
the semantic representation is based on a version of Mini-
mal Recursion Semantics (Copestake et al., 1999; Hobbs,
1985) called Minimal Logical Form (MLF) (Hess, 1997).
Additionally, our system is supposed to learn a larger set of
semantic interpretation rules instead of assigning thematic
roles only.

We are pursuing two goals: building up a large cor-
pus of real-world sentences with their respective semantic
representation and find those machine learning approach
that produces the best interpretation rules for the pairings
of sentences and MLFs. This way, semantic interpretation
becomes independent of the syntactic representation struc-
tures produced by a particular parser. Any tree format is
allowed - the various variants of phrase structure trees but
also dependency trees.

2. Minimal Logical Forms
We use sentences from the Negra corpus (Skut et al.,

1997), a German tree bank comprising 20.000 sentences.
Fig. 1 shows an example of a Negra tree, here the sub-
ordinate clause“der analoge Kassetten abspielen kann”

(literally translated as“which analogue tapes play can”).
Each node has anode number(terminals range from 1 up
to 499, nonterminals start with 500), a categorical label
(e.g. VMFIN denotes a finite modal verb) and a grammat-
ical function (e.g. SB denotes a subject, NK means noun
kernel).

S 509

PRELS 27
hd: der
fun: SB

VP 510
fun: OC

NP 511
fun: OA

ADJA 29
hd: analoge
fun: NK

NN 30
hd: Kassetten
fun: NK

VVINF 31
hd: abspielen
fun: HD

VMFIN 32
hd: kann
fun: HD

Figure 1: Negra Parse Tree of a Subordinate Clause

Up to now, about 1000 Negra sentences have been trans-
lated semi-automatically into MLFs (see section 3.). MLF
are flat, existentially closed conjunctions of atomic formu-
lae where some of the relationships are supplied with “han-
dles”, namely eventualities, objects and properties. Fig.
2 shows a graphical representation of the minimal logical
form of the subordinate clause from Fig. 1.

obj(der,r-27,i-27) obj(kassetten,r-30,i-30)

modal(kann,e-32,e-31)

evt(abspielen,e-31,[i-27,i-30])

prop(analoge,r-29,i-30)

Figure 2: Minimal Logical Form of the Subordinate Clause

Here, e-32 represents an instance of a modality, namely
the ability of playing some sort of tapes. The playing event
is represented by e-31, its arguments are the objects i-27
and i-30. Objects and properties have attached two kind of

 1161

(Gold Standard)

Negra Treebank

(1000 Trees)

 MLF

Parser

Interpreter

Interpreter

Parse Trees
MLF

Interpretation

Rules
(hand−crafted)

(automatically)

 (statistical)

 1000 sentences

Rule Induction

Human

Interpretation
Rules

(learned)

Annotator

Test Set MLF

Evaluation
100 sentences

900

trees

900

100 MLF

 100 MLF

Semantic

Semantic

 (from learned rules)

Figure 3: Annotation and Learning Design

constants: a reifier (prefixr) and an identifier (e or i). The
identifier represents an instance of the denoted object, while
the reifier refers to the ’property of being such an object’.

Such a flat format has been shown to be well suited
for some NLP applications, like question answering (Ri-
naldi et al., 2002), as it allows for underspecification (which
could arise as a result of partial parsing) and definition of
a similarity measure (partial matching of user queries and
MLF formulas).

The algorithm described in this paper is being applied in
the ExtrAns system, a Question Answering system specif-
ically targeted at technical domains (Rinaldi et al., 2004).
While the original ExtrAns system has been developed for
English, we are currently considering its application to Ger-
man. The work described in this paper is an essential step
in that direction, as it provides a way to generate in a rapid
manner an initial set of semantic interpretation rules, which
later can be refined manually.

3. The Semantic Annotation Process
Minimal logical forms are generated semi-

automatically from Negra sentences using a (robust,
rule-based) semantic interpreter. In a post processing state,
the resulting minimal logical forms are scrutinized by a
human annotator, and - where necessary - corrected and
completed (see the upper part of Fig. 3). This way, a gold
standard of minimal logical forms is produced.

noun = [cat: ’NounClass’] &
adj = [cat: ’ADJA’] &
lp(adj,noun)
=)
prop(adj,noun).

Figure 4: Adjective Interpretation Rule

Interpretation rules consist of a condition and an action

part (separated by=), see the adjective interpretation rule
from Fig. 4). Conditions are made out ofnode descrip-
tions (e.g. [cat:NounClass] , wherecat refers to the
syntactic label of a node and ’NounClass’ is alabel class
which subsumes e.g. ’NN’) and two-placed predicates that
serve as restrictions upon the tree structure (e.g.lp for lin-
ear precedence1). Additionally, there are rule variables (e.g.
noun, adj). Every rule variable functions as a local vari-
able within a rule, such that subsequent parts of the rule can
refer with it to whatever (node number) it might evaluate.
Action parts contain one or more semantic predicates (here
prop(adj,noun)) .

The adjective interpretation rule applied to the tree
given in Fig. 1 would result in the binding ofnoun to
node 30 andadj to node 29. The expansion of the semantic
constructor predicateprop(adj,noun) yields the MLF
’prop(analoge,r-29,i-30)’.

For semi-automatic annotation, there are currently
about 60 (hand-crafted) rules, (partially) covering phenom-
ena such as verb interpretation (finite, modal and infinitive
constructions), noun interpretation (genitive NPs, adjective
phrases, attributive PPs) coordination at the AP, NP and PP
level, some rules for compound nouns and appositive con-
structions. No rules for negation or the relations between
main and subordinate clauses exist, to name but two phe-
nomena not captured by the current rule set. Moreover, the
existing rules are neither perfect nor complete. The hand-
crafted rules are meant to ease the process of semantic an-
notation, not to replace it. Note that we do not want to
spend to much effort in writing rules for a syntactic format
that is not produced by any parser: there is no parser that
produces Negra trees. But even if, manual rule engineering
is not our goal. We want to get independent from any par-
ticular parsing scheme by a machine learning approach that
adapts to any kind of parse trees. To this end, a corpus of se-
mantically annotated sentences is needed. Currently, 1000
sentences have been translated into MLF. They serve as a
basis for our experiments with a rule learning component.

4. Rule Learning
Given a set of pairs consisting of the minimal logical

form (the gold standard version) and the syntax tree of a
sentence, semantic interpretation rules can be derived au-
tomatically. Note that learninginterpretation rulesinstead
of a full-fledgedsemantic interpretation function(mapping
parse trees directly to MLFs) reduces the complexity of the
learning problem: no (global) control structures need to be
learned. This kind of knowledge comes with our semantic
interpreter (which defines a learning bias, thus).

Before we specify our learning experiments, let’s intro-
duce one technical detail of our semantic interpreter. Iden-
tifiers and reifiers (our semantic objects) are constructed
from the (syntactic) node numbers they stem from. E.g.,
e-31denotes the identifier of the verbabspeichern, which
has node number 31 (cf. Fig. 1). Thus, every identifier
in the resulting MLF can be easily traced back to its corre-
sponding syntactic node. We call such a node thehost of the
identifier. The algorithm for rule construction vastly utilize

1lp is restricted to syntax nodes under the same mother

 1162

Starting from the rule anchor downwards:

� for each level of immediate dominance:

– generate a node description for all nodes that ei-
ther are hosts, or (itself) are dominating a host

– generate a rule restriction predicate that captures
this immediate dominance restriction

– generate a rule restriction predicate that captures
the linear precedence restriction

� finally, add the MLF-predicate with the generated
node variables as the semantic constructor of the in-
terpretation rule

Figure 5: Basic Rule Learner

this correspondence. The general idea is: Construct one
rule for each single MLF predicate (e.g. prop(analoge,r-
29,i-30)). That means: find hosts for all the identifiers of
the MLF, find a least general syntactic node that dominates
them all (we call such a node arule anchor) and fix the
structural restrictions originating from the rule anchor lead-
ing to the hosts. Structural restrictions are immediate dom-
inance, linear precedence and the categorical label of the
nodes (see Fig. 5 for a description of the algorithm).

Consider the MLF evt(abspielen,e-31,[i-27,i-30]).
VVINF-31, PRELS-27and NN-30 are the identifier hosts
of e-31, i-27 andi-30. S-500is found to be the rule anchor,
it dominates all identifier hosts.

In the first iteration, the node descriptionsx1=[cat:’S’] ,
x2=[cat:’PRELS] and x3=[cat:’VP’] are generated, as
well as the rule restrictionsidom(x1,[x2,x3])andlp(x2,x3).
PRELS-27 is a identifier host, butVP-510 must be
expanded. Two node descriptions are generated:
x4=[cat:’NP’] andx5=[cat:’VVINF’] . The rule restrictions
are idom(x3,[x4,x5])and lp(x4,x5). VVINF-31 is a identi-
fier host. The expansion ofNP-511yields: x6=[cat:’NN’]
andidom(x4,[x6]). Finally evt(x5,[x2,x6])is asserted. The
resulting rule is given in Fig. 6.

The question then was, how well does this basic algo-
rithm behave: does the learned rules generalize well over
unseen parse trees?

5. Experiments
We evaluated the basic construction algorithm with re-

spect to the Negra tree bank and the LoPar parser (Schmid,
2000). The LoPar parser is a statistical parser that is based
on a large, manually constructed context free grammar that
was automatically converted into a probabilistic context
free grammar using expectation maximization tuning over
a large text corpus (22 million words). LoPar relies heavily
on the X-bar schema, thus it is producing very deep syn-
tactic structures. It uses a tag set similar to the Negra tag
set, but the syntactic labels are further augmented with sub-
categorization information. As a result, a large number of
different node labels exist, e.g.,’VPA1-1-2.nap.na’or ’VPP-
past1-1-2.n.’. Both decisions, the use of X-bar and the huge
tag set, pose some problems to the rule construction algo-
rithm (see below).

x1=[cat:’S’] & x2=[cat:’PRELS’] &
x3=[cat:’VP’] &
idom(x1,[x2,x3]) & lp(x2,x3) &
x4=[cat:’NP’] & x5=[cat:’VVINF’]
idom(x3,[x4,x5]) & lp(x4,x5) &
x6=[cat:’NN’] & idom(x4,[x6])
==>
evt(x5,[x2,x6]).

Figure 6: Learned Interpretation Rule

The learning algorithm does not utilize the advanced
features of the semantic interpreter (e.g.,cat classes like
’NounClass’), nor does it try to combine similar rules via
generalization2. As a result, a lot of (specific) rules are gen-
erated and the (empirical) question is whether they are of
any generative power. In a first experimental setting (see
Fig. 3 for the general setting), the whole set of minimal
logical forms generated by the interpreter were compared
to the gold standard3. The automatic construction of inter-
pretation rules for Negra trees achieved a precision of 0.80
and recall of 0.90 (see Fig. 7) for unseen parse trees. In
the LoPar setting a similar value for precision, 0.79, but a
worse value for recall, 0.70, resulted. This is a reflex of
the aforementioned syntactic scheme of LoPar trees (deep
trees, a lot of different syntactic label): The learned rules
are to specific (recall).

Negra LoPar
precision 0.80 0.79
recall 0.90 0.70

Figure 7: Evaluation Results on the Whole Set of MLF

We didn’t expect such a good result, given such a simple
learning algorithm as presented above. So we did a closer
inspection of the results and found that different seman-
tic predicates has got different precision and recall values.
Verb interpretation seemed to be the critical point, which
we evaluated separately (see Fig. 8).

Negra LoPar
precision 0.68 0.81
recall 0.69 0.22

Figure 8: Evaluation Results for Verb Interpretation

For the Negra setting, precision is 0.68 % (instead of
80%) and recall 0.69 % (instead of 90%). This seem more
realistic to us, and showed us that learning of verb interpre-
tation rules are to be tuned. They should (in part) be more
specific (since they trigger on negative examples - lower-
ing precision). But they should also be more general (since
31% of the positive examples are not captured - worsening
recall)4 At least for recall, the situation is even more drastic

2However, the generated rule groups are ordered: most specific
rules first

3We did 10-fold cross-validation
4One could equally well argue that our MLF-Corpus is yet to

 1163

#Rules Most Frequent Rules Single Rules
Negra 132 28,25,15,14,12 90
Lopar 282 4,3,3,3,3 265

Figure 9: Rule Statistics

for the LoPar parse trees. Here a recall value of 0.22% was
achieved. But this is reasonable, given the huge syntatic la-
bels used by LoPar (remember that interpretation rules are
formulated wrt. syntactic labels). This observation is ex-
emplified by the distribution of rule frequencies as given in
Fig. 9.

In the case of Negra, 132 rules were learned, where the
most frequent rule was counted 28 times (i.e. there are 28
positive examples). The table also reveals the sparse data
problem that is responsible for the low recall: 90 out of 132
rules are counted 1 time (i.e. they are derived from one pos-
itive example). With LoPar, 282 rules were learned, but the
most frequent rule was learned from only 4 positive exam-
ples. Because of the vast syntactic labels used by LoPar,
94% (265 out of 282) of the rules stem from a single posi-
tive example.

We realized that much more effort must be spent in
building up a larger semantically annotated training cor-
pus. But also a more sophisticated learning approach must
come into play. Currently, we are experimenting with a in-
ductive logic programming approach. However, to keep the
hypothesis space at a tractable size, we let the basic learn-
ing algorithm specified in Fig. 5 generate seed rules. That
is, inductive learning does not start from scratch but with
a skeleton of constraints that any verb interpretation rule
necessarily must comprise.

6. Related Work
Learning for semantic interpretation was first done by

(Zelle and Mooney, 1993). Their system, CHILL, is an ap-
proach to induce a natural language parser. The goal is to
learn the actions of a shift-reduce parser expressed as a Pro-
log program. Their technique seems to be well suited for
data base queries posed in natural language. Here the input
is more or less simple, compared to the unrestricted texts
that we must account for in an answer extraction scenario.

FrameNet (Baker et al., 1998) is the most prominent se-
mantic annotation project. Among other things, a corpus
of annotated sentences with frame semantics is being de-
veloped. Annotation results in the attachment of semantic
(case) roles (e.g. agent, patient, ..) to substrings of a sen-
tence. However, the arguments of the verb are not identi-
fied, since the substrings are not further segmented. Thus,
no logical form is derived. Although, in principle, this is
possible, it would have it’s costs. Moreover, Gildea and
Jurasfky (2001) report problems with the phrase shaping
done by the annotators. Consider the substring segmen-
tation [a horse who] in the FrameNet example:I had
[<Theme>a horse who] loved going [<Path> on the beach
and in the sea at Weston-Super-Mare] but hated puddles
and tiny streams.

small to to provide a representative training set given our basic
rule constructor algorithm

7. Conclusion
Although our direct goal is to improve the answer ex-

traction process and port our question answering system to
German, the potential of the methodology proposed in this
paper (to learn semantic interpretation rules from a seman-
tically annotated corpus) are wider than that. The problems
with hand crafted rules are well known. They are expen-
sive to create and hard to maintain. But even worse, if
the syntactic input structures are modified (e.g. upgrad-
ing to a new version of a statistical parser or the use of a
new and better one), the whole set of rules needs to be re-
engineered. These limitations can be removed by a compo-
nent that learns interpretation rules from a large (invariant)
semantic corpus and syntactic input structures that are not
restricted to a particular tree format.

There is a large number of real-world systems that could
potentially benefit from large-scale semantically annotated
resources (e.g. question answering systems, semantic web
applications, etc.), however the costs of producing such
resources (once formats for representing them have been
agreed) are bound to be huge. We think that the machine
learning approach presented in this paper (possibly fol-
lowed by manual verification) might provide a major sup-
port in this enterprise.

8. References
Abney, Steven, Michael Collins, and Amit Singhal, 2000. An-

swer extraction. In Sergei Nirenburg (ed.),Proc. 6th Applied
Natural Language Processing Conference. Seattle, WA: Mor-
gan Kaufmann.

Baker, C. F., C. J. Fillmore, and J. B. Lowe, 1998. The berkeley
framenet project. InProceedings of the COLING-ACL. Mon-
treal, Canada.

Copestake, A., D. Flickinger, I. Sag, and C. Pollard, 1999. Min-
imal recursion semantics. an introduction. Technical report,
Stanford University.

Gildea, D. J. and D. Jurafsky, 2001. Automatic labelling of se-
mantic role.Computational Linguistics, 28:245–288.

Hess, Michael, 1997. Mixed-level knowledge representations and
variable-depth inference in natural language processing.Inter-
national Journal on Artificial Intelligence Tools, 6(4):481–509.

Hobbs, Jerry R., 1985. Ontological promiscuity. InProc.
ACL’85. University of Chicago, Association for Computational
Linguistics.

Rinaldi, Fabio, James Dowdall, Michael Hess, Diego Moll´a, and
Rolf Schwitter, 2002. Towards Answer Extraction: an appli-
cation to Technical Domains. InECAI2002, European Confer-
ence on Artificial Intelligence, Lyon.

Rinaldi, Fabio, James Dowdall, Michael Hess, Diego Moll´a, and
Rolf Schwitter, 2004. Question answering in terminology-rich
technical domains. In Mark Maybury (ed.),New Directions in
Question Answering. AAAI Press.

Schmid, H., 2000. Lopar: Design and implementation. Technical
Report Technical Report, No 149, University of Stuttgart.

Skut, W., B. Krenn, T. Brants, and H. Uszkoreit, 1997. An anno-
tation scheme for free worder order languages. In5th Interna-
tional Conference of Applied Natural Language, Washington,
USA.

Zelle, M.J. and R.j Mooney, 1993. Learning semantic grammars
with constructive inductive logic programming. InProceed-
ings of the 11th National Conference on Artificial Intelligence.

 1164

