
Mapping Dependency Structures to Phrase Structures
and the Automatic Acquisition of Mapping Rules

Bernd Bohnet∗ & Halyna Seniv∗∗

∗Institute for Intelligent Systems – University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany

bohnet@iis.uni-stuttgart.de

∗∗Institute of Natural Language Processing – University of Stuttgart
Azenbergstraße 12, 70174 Stuttgart, Germany

senivha@ims.uni-stuttgart.de

Abstract
This paper describes a simple graph grammar based formalismthat is capable to translate dependency structures into phrase structures.
A procedure is introduced for the automatic acquisition of mapping rules from corpora which are annotated with both phrase structures
and dependency structures. The acquired rules are evaluated by applying them to a corpus annotated with dependency structures.

1. Introduction
Recently, it has been reported that German corpora an-

notated with phrase structures have been converted into cor-
pora annotated with dependency structures, cf. (Bohnet,
2003), (Forst, 2003). Lin (1995) has published such a
method for English phrase structure corpora. Collins et
al. (1999) as well as Xia and Palmer (2001) have proposed
an inverse method for converting dependency structures to
phrase structures. In the case of German, no such method
has been adapted so far, due to the fact that the word order
can not be easily determined from a dependency tree. But in
the case of corpora annotated with dependency structures,
the information about the word order is already available
in the word sequence of the sentences. However, when
the word order is not available, it is possible to retrieve
unordered phrase structures. This unordered phrase struc-
tures are useful structures, e.g. they can be used in the lin-
earization process of free word order languages. They can
serve as so called word order domains or precedence units,
cf. (Bröker, 1998), (Gerdes and Kahane, 2001), (Bohnet,
2004).

In order to translate dependency structures into phrase
structures, we use a graph grammar, cf. (Rozenberg,
1997). Graph grammars consists of declarative rules which
describe how a source graph is mapped onto a target
graph. We reused the graph grammar compiler described in
Bohnet and Wanner (2001) to translate the phrase structure
annotation of the NEGRA corpus into dependency struc-
tures, cf. (Bohnet, 2003). For the learning procedure of
the mapping rules we need a corpus annotated with phrase
structures and dependency structures. Therefore, we also
reused results of that phrase structure to dependency struc-
ture translation. Additionally, the procedure was appliedto
the recently available TIGER corpus. The method was eas-
ily extendable, since the annotation of the TIGER corpus is
mostly similar to that of the NEGRA corpus.

In this paper the adopted dependency sturctures and
phrase structures are described. Then, the basic notion of
the graph grammar formalism is given. After that we have
a look at an sample grammar and explain the automatic ac-

quistion of the mapping rules and finally, the results are
evaluated.

2. Dependency and Phrase Structures
The nodes of the dependency structures are labelled

with the basic word form and the edges with syntactic re-
lations (e.g. subjective, dobjective, iobjective, etc.), cf.
(Mel’čuk, 1988). Morphosyntactic features (e.g.number,
tense, etc.) are represented as attributes, which are at-
tached to the nodes. Unlike phrase structures, dependency
structures do not store word order information. The depen-
dency structures annotation is retrieved by structure transla-
tion from the phrase structure annotation which is described
in detail by Bohnet (2003). An example of a dependency
structure is shown in Figure 1.

’police’

’the’

’had’

’blocked’

’entrance’

’the’

pos=VVPP

pos=VAFIN

pos=NN

pos=NN

pos=ART

pos=ART

Figure 1: A dependency structure. The nodes are labelled
for better readability with already inflected forms.

For the rule acquisition, we use the phrase structure an-
notation of the German NEGRA and TIGER Corpus which
contain about 20000 and 40000 sentences of German news-
papers, respectively. The phrase structures used in the cor-
pora are supposed to be theory independent and hence, they
are rather flat. The words of the corpora are annotated with
syntactic categories (e.g.NN ’normal noun’,KON ’coor-
dinated conjunction’, etc.), and the grammatical functions
(e.g.SB ’subject’ ,OA ’accusative object’, etc.) which are
represented as attributes. An example of a phrase structure
is shown in Figure 2.

 855

Figure 2: Phrase structure as hierarchical graph.

3. Graph Grammar Formalism
In the mapping procedure the compiler applies gram-

mar rules to the input graphs. A graph rule consists of a
left-hand side graph (LS), a right-hand side graph (RS), a
set of conditions and a set of correspondences which spec-
ifies the gluing of the result, i.e. the right-hand side graph
fragments. If a fragment of the source graph matches the
left-hand side of a rule, and the condition specified, the
fragment is mapped onto the subgraph specified at the right-
hand side. Additionally, rules can contain context informa-
tion in both sides. Left-hand side context means that a rule
can share an input fragment with other rules; right-hand
side context is a target fragment that must have already
been created by other rules. In order to represent depen-
dency trees and phrase structures in one graph formalism,
we use hierarchical graphs, cf. (Busatto, 2002). They al-
low to define a hierarchy of packages on top of a directed
labelled attributed graph. The packages can contain other
packages and nodes.

4. Sample Grammar
We identified two main rule groups.Build rules build-

ing phrases andadjoin rules inserting phrases into phrases.
The rule groups are applied in two phases. In the first step
the build rules are applied and in further steps the adjoin
rules, because they need the result of the build rules or other
adjoin rules.

Two typical build rules are shown in Figure 3 and in Fig-
ure 5. The left-hand side of each rule consist of two nodes
labelled with the variable names?Xs and?Ys which are
connected by an edge. The edges of the rules are labelled
with aux,subjective anddeterminative. Part-of-
Speech tags (pos) are located beneath the nodes which are
conditions. On the right-hand side of each rule is a package
that is created, if the rule is applicable. Each package con-
tains two nodes and it is labelled with a name or possible
names separated by vertical strokes representingor. Each
package has an attributefunc that encodes the possible
grammatical functions. The exact functions are selected by
the adjoin rules. Both node names and attribute values can
represent a set of possible values. They are interpreted as
constrains which restrict the applicable adjoin rules and the
unification of intersecting packages.

In the first step, only the build rules are applicable to
the source graph. When they are applied to the dependency
tree of Figure 1 the intermediate graph shown in Figure 4 is
created. Two of the applicable rules are shown in Figure 3
and one on the left side in Figure 5. The rule on the left side
of Figure 3 matches as following: the node?Xs to hatte
’had’, and the node?Ys to abgesperrt ’blocked’. The
rule on the right side matches as following: the node?Xs

to hatte, and the node?Ys to Polizei ’police’.

���

���

aux

pos=VAFIN

pos=VVPP

���

�	�

��
��������
�������������

�

���

���

subjective

pos=VAFIN

pos=NN

���

�	�

��
��������
�������������

�

��������
�
� !"�
�
��##
�
$�%�&�����'�$
�
� !"�
�
��
�
$�%�&

()� ()��)��)�

Figure3: Two build rules.

They build together the phrase that is labelled with
S (cf. Figure 4), i.e. each of the rules builds a pack-
age. The first one is S[hatte abgesperrt] and
the second S[hatte Polizei]. The two pack-
ages are unified to one package S[hatte Polizei
abgesperrt] because the packages intersect, the labels
(S) are equal and theattribute(s) (func) arecompatible.

The rule shown on the left side in Figure 5 is applica-
ble twice, once to the node Polizei ’police’ , the edge
determinative and the node Die ’ the’ . And once to
the nodeZugang ’entrance’ , the edgedeterminative
and the nodedem ’ the’ . The first instance of the rule cre-
ates the package shown in Figure 4 on the left side which
is labelled with NP|PP and thesecond instancecreates the
package on the right side with same label. A rule which is
not printed creates thepackagethat is labelled with VP.

NP|PP

NP|PP

S
VP

Figure 4: Result of the first step, intermediate graph.

In the next phase the adjoin rules are applied. On the
right side in Figure 5 an adjoin rule is shown. It is applica-
ble to the nodehatte ’had’, the edgesubjective and
the nodePolizei ’police’. And further in the intermedi-
ate graph that is the resulting structure of the first step (cf.
Figure 4) the dashed package (cf. Figure 5) labelled with
NP|CNP matches to the package on the left that is labelled
with NP|PP. The rule restricts the package further toNP,
because the package is constrained toNP orPP and the rule
is only applicable toNP’s or CNP’s, therefore the rule have
to be anNP.

The instance of the rule creates a package labelled with
S that contains theNP package and the nodehatte. This
package intersects with the package that is labelled with
S and is shown in the intermediate graph. Therefore,
the two packages are unified to one packageS[NP[Die
Polizei] hatte ...].

Other adjoin rules which are not printed pack the
NP|PP on the right hand side in Figure 4 into theVP pack-
age and again the latter package into theS package. The

 856

result is the unordered phrase structure that is shown in Fig-
ure 6.

���

���
pos=VAFIN

pos=ART

���

�	�

���

���

determinative

pos=VAFIN

pos=NN

���

�	�

��
��

�����������

���
�����

�������
!
��
!
"�#
!
$�%�������&�$'

!
(")*�
!
��
!
+�',%�

-�� -��������

��
.��

/

�����01����

���
�����

subjective

func=SB

Figure 5: A build rule is shown on the left side and an adjoin
rule on the right side.

23452

26789:52

24;<2

2=452

25>=?5>:52

2@87:A5<2

Figure 6: The result of the next steps, an unordered phrase
structure.

5. Acquisition of the Graph Grammar Rules

The learning procedure of the rules is straight forward.
We use a corpus annotated with dependency structures and
phrase structures. Both are represented as hierarchical
graphs. As input of the learning procedure we take each
sentence and perform the following two steps: For the build
rules we take each edge of the dependency tree and we will
look up, if the start and end node of the edge are in the same
phrase of the phrase structure. If they are in the same then
we create a build rule. Otherwise we create an adjoin rule.
After that similar rules are combined. The creation of build
and adjoin rules is described below.

Creation of build rules. The left-hand side of a build
rule consists of an edge which is similar to the one of the
dependency tree. The node labels are replaced by variables,
i.e. the label of the source node by?Xs and the label of the
target node by?Ys. The attributes likepos are kept as
conditions.

After that, we create the right-hand side of the rule. It
consists of an package labelled with the name of the phrase
and we keep the attributes. This package contains two vari-
able nodes which have attached the attributes of the nodes
from the phrase structure. Finally, the correspondences are
added between the appropriate nodes of the left-hand side
and right-hand side, cf. for instance Figure 3.

At this stage, we search in the list of already created
build rules, and if there is a rule with the above left-hand
side, then we merge both rules, i.e. the package label and
attributes values of the right-hand side are associated with
or (’|’). Otherwise we add the new rule to the list of rules.

Creation of adjoin rules. The creation of the left-hand
side is equal to that of the build rules (see above).

In the case of the right-hand side, we identified four dif-
ferent relations of the position from a governor and its de-
pendent1 in a phrase structure:

1. In the phrase of the governor is a subphrase containing
the dependent, cf. Figure 7 (left). This is the most
frequent case.

2. In the phrase of the dependent is a subphrase contain-
ing the govenor, cf. Figure 7 (right). This is the inverse
case to 1.

3. Both the dependent and the governor are contained in
different subphrases of one phrase, cf. Figure 8 (left).

4. The dependent is in a subsubphrase of a phrase in
which the governor is contained, cf. Figure 8 (right).

B

CDE

FEB

CDE

FE

GHIHGHJKLHGMHINOPQHQGHIHGHJKLHGMHINOPQHQ

Figure 7: Relation of the position from a governor and its
dependent in aphrasestructure.

R

STU

VUR

STU

VU

WXYXWXZ[\XW]XŶ_̀aXaWXYXWXZ[\XW]XŶ_̀aXa

Figure 8: Relation of the position from a governor and its
dependent in aphrasestructure.

Thecreation of theright-hand sideproceedsas follows:
The appropriate case among the cases above is choosen.
The inner package will be marked as right-hand side con-
text which hasto bealready created and it ismatched in the
target structure during the application step. The packages
arelabelled with thenamesof thephrasesand theattributes
are kept. The package contains two variable nodes with
the attached attributes and finally, the correspondencesare
added.

At this stage, we search in the list of already created
adjoin rules, and if there is a rule with the above left-hand
side, then we merge both rules. Otherwise we add the rule
to the ruleset.

Summarisation of rules. The user can choose among
three options: do not summarise, summarise when the
right-hand side context is equal (=), or summarise when
the right-hand side context is a subset or equal (⊆). Of
course, it is only possible to summarise rules of the same
type(cf. Figure7 and Figure8).

1The governor is the mother node and the dependent is the
child node of an edge from a dependency tree.

 857

6. Evaluation
The evaluation of the learning procedure consists of

four steps. At first, we execute the learning procedure to
a set of training examples. After that, we summarise the
rules. Then, we apply the learned rules to a set of depen-
dency structures, and finally, we compare automatically the
resulting phrase structure annotation to the original phrase
structure annotation of the sentences.

We learned from a training sets of 2500, 5000, 7500
and 10k sentences, and as result, we received four rule sets.
Then each of the sets are applied onto two sets of depen-
dency structures. The first set is selected randomly among
structures of the training set and the second set randomly
from the remaining unkown structures. Afterwards, we re-
peated the steps with summarised rule sets.

The results of the summarisation for 10k annotated sen-
tences are as following: After the learning step, we received
1860 rules, and when we summarise the rules with the equal
option (=) the number of rules decreased to 1443 (reduced
by 22%) and with the subset or equal option (⊆) to 771
(reduced by 58%). But also the number of correct results
decreased.

The results of the evaluation are summarised in Table 1.
The first column contains the corpus name, the second col-
umn the number of sentences of the training set, the third
column the number of sentences of the test set, the fourth
column specifies whether the test set is contained in the
training set or not, the fivth whether the rules are general-
ized or not, and finally the last column gives the precentage
of correct results.

corpus training set test set known summarized correct
(name) (# sent.) (# sent.) (Yes/No) (NO/=/⊆) (%)

NEGRA 2500 1000 Yes No 95
NEGRA 5000 1000 Yes No 95
NEGRA 7500 1000 Yes No 95
NEGRA 10000 1000 Yes No 95

NEGRA 2500 1000 No No 79
NEGRA 5000 1000 No No 85
NEGRA 7500 1000 No No 87
NEGRA 10000 1000 No No 88

NEGRA 10000 1000 Yes = 89

NEGRA 2500 1000 No = 76
NEGRA 5000 1000 No = 80
NEGRA 7500 1000 No = 84
NEGRA 10000 1000 No = 86

NEGRA 7500 1000 No ⊆ 68
NEGRA 10000 1000 No ⊆ 70

TIGER 7500 1000 Yes No 96
TIGER 7500 1000 No No 91

Table 1: Summarisation of the results.

Translation errors have the following impact:
1. Phrases are not packed. This is the most frequent case.

2. Phrases are packed into wrong phrases.
3. Phrases are packed recursively.
4. Phrases are wrong unified, e.g. two NPs with the same

grammatical function are encapsulated in each other.
This is the most seldom case.

The reason for error No. 1 is that the rules are not
learned since the case was not in the training set or it seems
that they are not learned as we avoid the execution of con-
tradictory rules. It is possible to solve that problem by pack-
ing the none packed phrases into already packed phrases

intersecting with them. Thus, we would get the correct
structure, but not always a unique phrase label. However, it
would reduce the errors of the structure by about 75%. The
reason for error No. 2 and No. 3 are annotation errors in
the dependency structures or in the phrase structures.

7. Conclusion and Further Work
We presented a declarative formalism to map depen-

dency trees to phrase structures, and a procedure to learn
mapping rules from a corpus annotated with both depen-
dency structures and phrase structures. We showed that it
is possible to build automatically a grammar with a high
coverage of 88% for unkown sentences. Hence, the for-
malism and grammar interpreter can be used to translate
both dependency structures into phrase structures as shown
in this paper and to translate phrase structures into depen-
dency structures as shown in Bohnet (2003).

We plan to extend the procedure to corpora annotated
with topological information, i.e. we want to apply it onto
the German Topological Field Model. Furthermore, we in-
tend a generalization mechanism in order to be able to learn
from smaller training sets.

8. References
B. Bohnet and L. Wanner. 2001. On Using a Parallel Graph

Rewriting Formalism in Generation. InEight European
Workshop on Natural Language Generation, Toulouse.

B. Bohnet. 2003. Mapping Phrase Structures to Depen-
dency Structures in the Case of Free Word Order Lan-
guages. InFirst International Conference on Meaning-
Text Theory, Paris.

B. Bohnet. 2004. A Graph Grammar Approach to Map be-
tween Dependency Trees and Topological Models. In
First International Joint Conference for Natural Lan-
guage Processing, Hainan.

N. Bröker. 1998. Separating Surface Order and Syntactic
Relations in a Dependency Grammar. InCOLING-ACL
98.

G. Busatto. 2002.An Abstract Model of Hierarchical
Graphs and Hierarchical Graph Transformation. Ph.D.
thesis, Universität Paderborn.

M. Collins, J. Hajič, L. Ramshaw, and C. Tillmann. 1999.
A Statistical Parser for Czech. InProceedings of the
ACL.

M. Forst. 2003. Treebank Conversion - Establishing a test-
suite for a broad-coverageLFG from the the TIGER tree-
bank. InProceedings of the EACL Workshop on Linguis-
tically Interpreted Corpora, Budapest.

K. Gerdes and S. Kahane. 2001. Word order in german: A
formal dependency grammar using a topological hierar-
chy. InProceedings of the ACL.

D. Lin. 1995. A dependency-based method for evaluating
broad-coverage parsers. InIJCAI, pages 1420–1427.

I.A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press, Albany.

G. Rozenberg, editor. 1997.Handbook of Graph Gram-
mars and Computing by Graph Transformation. World
Scientific, Singapore, New Jersey, London, Hong Kong.

F. Xia and M. Palmer. 2001. Converting Dependency
Structures to Phrase Structures. InThe Proc. of the Hu-
man Language Technology Conference, San Diego.

 858

