M apping Dependency Structuresto Phrase Structures
and the Automatic Acquisition of Mapping Rules

Bernd Bohnet* & Halyna Seniv**

*Institute for Intelligent Systems — University of Stuttgar
Universitatsstr. 38, 70569 Stuttgart, Germany
bohnet@iis.uni-stuttgart.de

**Institute of Natural Language Processing — University ottgart
Azenbergstral3e 12, 70174 Stuttgart, Germany
senivha@ims.uni-stuttgart.de

Abstract
This paper describes a simple graph grammar based formgatns capable to translate dependency structures insplatructures.
A procedure is introduced for the automatic acquisition apping rules from corpora which are annotated with both gghstructures
and dependency structures. The acquired rules are evaloatpplying them to a corpus annotated with dependencgtatas.

1. Introduction quistion of the mapping rules and finally, the results are

Recently, it has been reported that German corpora ar?_valuated.

notated with phrase structures have been converted into cor
pora annotated with dependency structures, cf. (Bohnet, 2. Dependency and Phrase Structures

2003), (Forst, 2003). Lin (1995) has published such a The nodes of the dependency structures are labelled
method for English phrase structure corpora. Collins elyiih the basic word form and the edges with syntactic re-
al. (1999) as well as Xia and Palmer (2001) have proposegtions (e.g. subjective, dobjective, iobjective, etc.), cf.

an inverse method for converting dependency structures tBviel’guk, 1988). Morphosyntactic features (e.gumber,
phrase structures. In the case of German, no such methqgnse, etc.) are represented as attributes, which are at-
has been adapted so far, due to the fact that the word ordg{ched to the nodes. Unlike phrase structures, dependency
can not be easily determined from a dependency tree. Butigryctures do not store word order information. The depen-
the case of corpora annotated with dependency structuregency structures annotation is retrieved by structurestean

the information about the word order is already availablejon from the phrase structure annotation which is desdribe

in the word sequence of the sentences. However, Whep getail by Bohnet (2003). An example of a dependency
the word order is not available, it is possible to retrievegtycture is shown in Figure 1.

unordered phrase structures. This unordered phrase struc-
tures are useful structures, e.g. they can be used in the lin-

earization process of free word order languages. They can ’ng’:VAFIN

serve as so called word order domains or precedence units, subjective aux

cf. (Broker, 1998), (Gerdes and Kahane, 2001), (Bohnet, ’police’ bbcked,

2004). cl.etermimti\?eos=NN dobjective POS=VVPP
In order to translate dependency structures into phrase the’ ‘entrance’

structures, we use a graph grammar, cf. (Rozenberg, pos=ART — pos=NN

1997). Graph grammars consists of declarative rules which derermynive

describe how a source graph is mapped onto a target 'ggeS:_ART

graph. We reused the graph grammar compiler described in
Bohnet and Wanner (2001) to translate the phrase structufégure 1: A dependency structure. The nodes are labelled
annotation of the NEGRA corpus into dependency Struc.fOl’ better readability with already inflected forms.
tures, cf. (Bohnet, 2003). For the learning procedure of
the mapping rules we need a corpus annotated with phrase For the rule acquisition, we use the phrase structure an-
structures and dependency structures. Therefore, we alsmtation of the German NEGRA and TIGER Corpus which
reused results of that phrase structure to dependency strucontain about 20000 and 40000 sentences of German news-
ture translation. Additionally, the procedure was appti®d papers, respectively. The phrase structures used in the cor
the recently available TIGER corpus. The method was eagora are supposed to be theory independent and hence, they
ily extendable, since the annotation of the TIGER corpus isare rather flat. The words of the corpora are annotated with
mostly similar to that of the NEGRA corpus. syntactic categories (e.gNN 'normal noun’, KON 'coor-

In this paper the adopted dependency sturctures andinated conjunction’, etc.), and the grammatical funcdion
phrase structures are described. Then, the basic notion ¢.g. SB 'subject’ , OA 'accusative object’, etc.) which are
the graph grammar formalism is given. After that we haverepresented as attributes. An example of a phrase structure
a look at an sample grammar and explain the automatic adgs shown in Figure 2.

855

S - \ tohat t e, and the nod@Ys to Pol i zei 'police’.
P F

Rule:aux_VAFIN_VVPP_build Rule:sub_VAFIN_NN_build

: - Ls:
LS: RS: g
-?Xs 7Xs
. Pos=VAFIN pos:VAFIN
Figure 2: Phrase structure as hierarchical graph. X - — — S
9 grap aux — subjective —
:
3. Graph Grammar Formalism Pos=VVPP \ Pos=NN ‘
e
_]) —— - ‘f'unc=CJ|Mo| = - — — = = “func=CJ|MO|
In the mapping procedure the compiler applies gram- OC|RE|CC|NONE OCIRE|CC|NONE

mar rules to the input graphs. A graph rule consists of a

left-hand side graph (LS), a right-hand side graph (RS), a

set of conditions and a set of correspondences which spec- . . .
ifies the gluing of the result, i.e. the right-hand side graph They _bu”d togt_ather the phrase that is Ie_xbelled with
fragments. If a fragment of the source graph matches thg (cf. Flggre 4, € each of the rules builds a pack-
left-hand side of a rule, and the condition specified, the?9& The first one is [hat_ t e_abgesper re] and
fragmentis mapped onto the subgraph specified at the righ[he second S[hatte Polizei]. The two pack-

hand side. Additionally, rules can contain context informa agbes are unifiedbto one ﬁaCka?(e St _hat te Pﬁl ilazbili
tion in both sides. Left-hand side context means that a rul@29€SPerr t] because the packages intersect, the S

can share an input fragment with other rules; right-han S) are equal and the attribute(s) (f unc) are compatible,

side context is a target fragment that must have alread Thg rule shown on the left so!e |n.F|,gur§ 5,'5 applicar
been created by other rules. In order to represent depe le thcg, once to the node Pol i zel , pc,)llce . the edge
dency trees and phrase structures in one graph formalisff€t €7 M nati ve and the node Di e "the’. And once to
we use hierarchical graphs, cf. (Busatto, 2002). They alt€ node Zugang "entrance’, the edge det er mi nat i ve
low to define a hierarchy of packages on top of a directed"d the node dem’the’. The first instance of the rule cre-

labelled attributed graph. The packages can contain othéF% the package shown in Figure 4 on.the left side which
packages and nodes. islabelled with NP| PP and the second instance creates the

package on the right side with same label. A rule whichis
not printed creates the package that is labelled with VP.

Figure 3: Two build rules.

4. Sample Grammar

We identified two main rule group$uild rules build-
ing phrases anddjoin rulesinserting phrases into phrases.
The rule groups are applied in two phases. In the first step
the build rules are applied and in further steps the adjoin
rules, because they need the result of the build rules or othe
adjoin rules.

Two typical build rules are shown in Figure 3 and in Fig-
ure 5. The left-hand side of each rule consist of two nodes

labelled with the variable namé&sXs and?Ys which are Figure 4: Result of the first step, intermediate graph.
connected by an edge. The edges of the rules are labelled
with aux, subj ect i ve anddet er mi nat i ve. Part-of- In the next phase the adjoin rules are applied. On the

Speech tagg0s) are located beneath the nodes which argright side in Figure 5 an adjoin rule is shown. It is applica-

conditions. On the right-hand side of each rule is a packagéle to the nodéat t e *had’, the edgesubj ect i ve and

that is created, if the rule is applicable. Each package corthe nodePol i zei 'police’. And further in the intermedi-

tains two nodes and it is labelled with a name or possibleate graph that is the resulting structure of the first step (cf

names separated by vertical strokes representingEach ~ Figure 4) the dashed package (cf. Figure 5) labelled with

package has an attribufaunc that encodes the possible NP| CNP matches to the package on the left that is labelled

grammatical functions. The exact functions are selected byith NP| PP. The rule restricts the package furtherN,

the adjoin rules. Both node names and attribute values capecause the package is constraineldRmr PP and the rule

represent a set of possible values. They are interpreted ésonly applicable tdNP’'s or CNP's, therefore the rule have

constrains which restrict the applicable adjoin rules dwed t to be arNP.

unification of intersecting packages. The instance of the rule creates a package labelled with
In the first step, only the build rules are applicable toS that contains th&P package and the nodat t e. This

the source graph. When they are applied to the dependenpgackage intersects with the package that is labelled with

tree of Figure 1 the intermediate graph shown in Figure 4 isS and is shown in the intermediate graph. Therefore,

created. Two of the applicable rules are shown in Figure 3he two packages are unified to one pack&peNP[Di e

and one on the left side in Figure 5. The rule onthe left sidePol i zei] hatte ...].

of Figure 3 matches as following: the no@Xs to hat t e Other adjoin rules which are not printed pack the

'had’, and the nod@Ys to abgesperrt 'blocked’. The NP| PP on the right hand side in Figure 4 into t® pack-

rule on the right side matches as following: the nGdes age and again the latter package into $1package. The

856

result is the unordered phrase structure that is shown in Fig
ure 6.

Rule:det_NN_ART_build Rule: subj_VAFIN_NN_adjoin

LS: LS:
?Xs ?Xs
pos=VAFIN pos=VAFIN
____ S
L subjective —
determinative
Y 2V
pos=ART pos=NN =
S~ < _ - “func=MOJSB| >~ - — — | ~ < func=CJ|MO]|
...NONE

..JNONE

Figure 5: A build rule is shown on the left side and an adjoin
rule on the right side.

‘the’

‘entrence’

‘blocked"

Figure 6: The result of the next steps, an unordered phragg
structure.

5. Acquisition of the Graph Grammar Rules

The learning procedure of the rules is straight forward.

We use a corpus annotated with dependency structures and

phrase structures. Both are represented as hierarchical
graphs. As input of the learning procedure we take each
sentence and perform the following two steps: For the build
rules we take each edge of the dependency tree and we will
look up, if the start and end node of the edge are in the samg

4,

In the case of the right-hand side, we identified four dif-

ferent relations of the position from a governor and its de-
pendentin a phrase structure:

1. Inthe phrase of the governor is a subphrase containing
the dependent, cf. Figure 7 (left). This is the most
frequent case.

. In the phrase of the dependent is a subphrase contain-
ing the govenor, cf. Figure 7 (right). Thisis the inverse
caseto 1.

. Both the dependent and the governor are contained in
different subphrases of one phrase, cf. Figure 8 (left).

The dependent is in a subsubphrase of a phrase in
which the governor is contained, cf. Figure 8 (right).

depedency edge phrases

depedency edge

phrases

gure 7: Relation of the position from a governor and its

dependent in a phrase structure.

depedency edge phrases depedency edge phrases

N

=~

gure 8: Relation of the position from a governor and its

phrase of the phrase structure. If they are in the same theglependent in a phrase structure.

we create a build rule. Otherwise we create an adjoin rule.
After that similar rules are combined. The creation of build
and adjoin rules is described below.

The creation of the right-hand side proceeds as follows:

The appropriate case among the cases above is choosen.

Creation of build rules. The left-hand side of a build "€ inner package will be marked as right-hand side con-
rule consists of an edge which is similar to the one of the!®t Whichhasto be already created and it is matched in the

dependency tree. The node labels are replaced by variabld&9et structure during the application step. The packages
i.e. the label of the source node Bs and the label of the &€ labelled with the names of the phrases and the attributes

target node by?Ys. The attributes likepos are kept as
conditions.

After that, we create the right-hand side of the rule. |
consists of an package labelled with the name of the phrase

are kept. The package contains two variable nodes with
the attached attributes and finally, the correspondences are
yadded.

At this stage, we search in the list of aready created

and we keep the attributes. This package contains two vardioin rules, and if there is arule with the above left-hand
able nodes which have attached the attributes of the nod&ide: then we merge both rules. Otherwise we add the rule

from the phrase structure. Finally, the correspondenaes afo
added between the appropriate nodes of the left-hand side
and right-hand side, cf. for instance Figure 3.

therule set.
Summarisation of rules. The user can choose among

three options: do not summarise, summarise when the

At this stage, we search in the list of already createdi9ht-nand side context is equal (=), or summarise when
build rules, and if there is a rule with the above left-handthe right-hand side context is a subset or equal (). Of
side, then we merge both rules, i.e. the package label arftPUrse. it is only possible to summarise rules of the same
attributes values of the right-hand side are associated wittyPe (¢f. Figure7and Figure8).

or (’|). Otherwise we add the new rule to the list of rules.
Creation of adjoin rules. The creation of the left-hand
side is equal to that of the build rules (see above).

857

1The governor is the mother node and the dependent is the

child node of an edge from a dependency tree.

6. Evaluation intersecting with them. Thus, we would get the correct

The evaluation of the learning procedure consists oftructure, but not always a unique phrase label. However, it
four steps. At first, we execute the learning procedure tgvould reduce the errors of the structure by about 75%. The
a set of training examples. After that, we summarise thé®ason for error No. 2 and No. 3 are annotation errors in
rules. Then, we apply the learned rules to a set of depeﬁ-he dependency structures or in the phrase structures.
dency structures, and finally, we compare automatically the 7. Conclusion and Further Work
resulting phrase structure annotation to the originalghra \ye presented a declarative formalism to map depen-
structure annotation of the sentences. dency trees to phrase structures, and a procedure to learn

We learned from a training sets of 2500, 5000, 7500mapping rules from a corpus annotated with both depen-
and 10k sentences, and as result, we received four rule sefgancy structures and phrase structures. We showed that it
Then each of the sets are applied onto two sets of depefs possiple to build automatically a grammar with a high
dency structures. The first set is selected randomly amongsyerage of 88% for unkown sentences. Hence, the for-
structures of the training set and the second set randomyajism and grammar interpreter can be used to translate
from the remaining unkown structures. Afterwards, we refoth dependency structures into phrase structures as shown

peated the steps with summarised rule sets. in this paper and to translate phrase structures into depen-
The results of the summarisation for 10k annotated SeNgency structures as shown in Bohnet (2003).

tences are as following: After the I_earning step, we reetive \\e plan to extend the procedure to corpora annotated
1860 rules, and whenwe summarise the rules with the equlith topological information, i.e. we want to apply it onto
option (=) the number of rules decreased to 1443 (reduceghe German Topological Field Model. Furthermore, we in-

by 22%) and with the subset or equal optiad) (o 771 ;og a generalization mechanismin order to be able to learn
(reduced by 58%). But also the number of correct result$;om smaller training sets.

decreased. 8 Ref
. . . . erences
The results of the evaluation are summarised in Table 1.

The first column contains the corpus name, the second coP- Bohnetand L. Wanner. 2001. On Using a Parallel Graph
umn the number of sentences of the training set, the third Rewriting Formalism in Generation. Iﬁght European
column the number of sentences of the test set, the fourth \erkshop on Natural Language Generation, Toulouse.
column specifies whether the test set is contained in th8- Bohnet. 2003. Mapping Phrase Structures to Depen-
training set or not, the fivth whether the rules are general- dency Structures in the Case of Free Word Order Lan-
ized or not, and finally the last column gives the precentage 9uY2ges. IrFirst International Conference on Meaning-
of correct results. Text Theory, Paris.
B. Bohnet. 2004. A Graph Grammar Approach to Map be-
corpue E;f;”;'rl?_)sm‘ e | ey f,t,'g,”;é,‘g)ed‘ ?;/’Or)fe“‘ tween Dependency Trees and Topological Models. In
First International Joint Conference for Natural Lan-

NEGRA | 2500 1000 Yes No 95) 4
NEGRA | 5000 1000 Yes No 95 guage Processing, Hainan.
NEGRA | 7500 1000 Yes No 95 P : :
NEGRA 16000 1606 Ves o 5 N. Brok_er. 1.998. Separating Surface Order and Syntactic
NEGRA | 2500 1000 No No =5 Relations in a Dependency Grammar.GOLING-ACL
NEGRA | 5000 1000 No No 85 08.
NEGRA | 7500 1000 No No 87 . .
NEGRA 10000 1000 No No 8 G. Busatto. 2002.An Abstract Model of Hierarchical
[NEGRA | 10000 [1000 [Yes [= [89 | Graphs and Hierarchical Graph Transformation. Ph.D.
NEGRA | 2500 1000 No = 76 thesis, Universitat Paderborn.
NEGRA | 5000 1000 No = 80 H = :
NEGRA T 5500 1600 o — o M. Colllns, .J. Haji¢, L. Ramshaw, and C. T|I.Imann. 1999.
NEGRA | 10000 1000 No = 86 A Statistical Parser for Czech. IRroceedings of the
[NEGRA [7500 [1000 [No [C [68 | ACL.
C . L.
[NEGRA] 10000 [1000 [No [C [70| M. Forst. 2003. Treebank Conversion - Establishing a test-
[TIGER [7500 [1000 [Yes [No [96 | -
[TIGER | 7500 [1000 | No [No [o1 | suite fora broad'COVGrage LFG from the the TIGER tree-

bank. InProceedings of the EACL Wbrkshop on Linguis-
Table 1: Summarisation of the results. tically Interpreted Corpora, Budapest.
K. Gerdes and S. Kahane. 2001. Word order in german: A

Translation errors have the following impact: . ; .
formal dependency grammar using a topological hierar-

1. Phrases are not pack.ed. This is the most frequent case.chy_ In Proceedings of the ACL.

2. Phrases are packed into wrong phrases. D. Lin. 1995. A dependency-based method for evaluating
3. Phrases are packed recursively. broad-coverage parsers. IiCAl, pages 1420-1427.

4

. Phrases are wrong unified, e.g. two NPs with the sameA. Mel'€¢uk. 1988. Dependency Syntax: Theory and
grammatical function are encapsulated in each other. Practice. State University of New York Press, Albany.
This is the most seldom case. G. Rozenberg, editor. 199Handbook of Graph Gram-

The reason for error No. 1 is that the rules are not mars and Computing by Graph Transformation. World

learned since the case was not in the training set or it seems Scientific, Singapore, New Jersey, London, Hong Kong.

that they are not learned as we avoid the execution of con-. Xia and M. Palmer. 2001. Converting Dependency
tradictory rules. Itis possible to solve that problem bylpac Structures to Phrase Structures.Thre Proc. of the Hu-

ing the none packed phrases into already packed phrasesman Language Technology Conference, San Diego.

858

