
A Flexible Language Acquisition Tool Kit for Natural Language Processing

Svetlana Sheremetyeva

Department of Computational Linguistics

Copenhagen Business School,

Bernhard Bangs Alle 17 B,

DK-2000, Denmark

lanaconsult@mail.dk

Abstract
The paper describes a Flexible Language Acquisition Tool (FLAT) kit, - a suite of multipurpose interactive tools for developing NLP
systems and/or training computational linguists. The kit facilitates the use of linguistic expertise in developing NLP applications and
allows for maintaining and improving a system output without extra programming effort. It can be used for any language based on
ANSI character set without reengineering and has an element providing for its integration in any NLP application, thus dramatically
reducing the complexity and costs of development process.

Introduction
Speeding up acquisition of high quality linguistic

knowledge resources while reducing acquisition effort and
cost has always been in focus of NLP researchers and
developers. A lot of work has been made in the past ten
years or so to develop software whose goal is to facilitate
future development of NLP systems such as, to name just
a few, GATE (Cunningham et al., 2002), tools for Spanish
morphological lexicons (Coni et al., 1997), a thesauri and
terminology maintenance framework (Fischer et al.,
1996), a syntactic analyzer toolkit (Ibrahim and Cummins,
1989). On the other hand, since increasing the size of
knowledge resources or their depth does not necessarily
lead to a commensurate improvement of output quality in
an application it is important to determine when
enhancing a resource component is no longer profitable.
This would allow for a considerable reduction in
acquisition time, effort and cost.

We attempt to contribute to the problem by
suggesting a Flexible Language Acquisition Tool (FLAT)
kit that facilitates the use of linguistic expertise in
developing NLP applications and allows for maintaining
and improving a system output without extra
programming effort. Quick-response user interfaces make
it easy for a linguist to experiment with different kinds
(and sizes) of lexical and grammatical knowledge to
decide on what is a must for a given application.
 The current version of the FLAT kit is a 32-bit
Windows application developed to run in a number of
operating environments: Windows 95/98/2000/NT. It can
be used for languages based on ANSI character set and
includes an element providing for its integration in any
other application, thus reducing the complexity and costs
of development process. In this paper we only focus on
selected components of the FLAT kit.

FLAT Architecture
The FLAT kit is telescopically created of the following

program modules: Lexicon Creator, Tagger, Chunker,
Predicate/Argument Analyzer, Transfer module, and
Generator. While the first module, - Lexicon Creator, can
be used as a stand-alone tool, every next tool is built by
successively integrating the listed modules thus covering
the main steps of uni- or multilingual NLP processing.

The most characteristic feature of the FLAT kit is that all
processing modules are equipped with interpreters
(compilers) with extremely user-friendly control and
interactive interfaces for acquisition/updating linguistic
knowledge and tracing complete or partial processing.

Lexicon Creator
Lexicon Creator is a FLAT core component and allows

for flexibility in descriptions of lexical items in the format
of supertags that is quite popular nowadays. For example,
Joshi and Srinivas (1994) who seem to coin this term use
elementary trees of Lexicalized Tree-Adjoining Grammar
for supertagging lexical items. Gnasa and Woch (2002)
use grammatical structures of the ontology as supertags. A
supertag used in (Sheremetyeva, 2003) combines
morphological and semantic information described by the
following feature structure:

Tag
[POS
[Noun
[object[plural, singular]
process[-ing, other[plural, singular]]
substance [plural, singular]
other [plural, singular]]]]]

Within this feature space such word as, e.g., rotation can
be coded as noun , singular no ing ending ,
process . Figure 1 shows a screen shot of the Lexicon

Creator interface with a set of tags used in AutoPat1. A
new deeper tag Adjective meaning shape (AdjSh) is
being added to code such words as round , circular ,
etc. The basic principle for this tool is that the user can
easily update both the list of lexemes and their
descriptions making the latter as shallow or deep as
required. Among other functionalities of Lexicon Creator
are multi-parameter search and import functionalities. The
user can import any lists of words from external text files
and tag them all, in groups or individually. In addition to
that the tool is pipelined to the tagger, so as to
automatically import new words after tagging.

1 AutoPat is an authoring system for patent claims
(Sheremetyeva, 2003).

 435

Figure 1. A screenshot of the Lexicon Creator interface.

Picture 3. A screenshot of the Chunker interface

 436

Analysis tools
FLAT analysis tools include Tagger, Chunker and
Predicate/Argument Analyzer. Figures 2 shows a screen
shot of the interface for tracing analysis process at
different phases, -tagging, disambiguation and
chunking. It contains the main menu, a set of
bookmarks for different processing steps and a control
screen divided into two windows with instruction
buttons under each of them. The lower window of the
screen traces a certain analysis phase, the upper window
displaying the analysis trace of the previous phase,
which makes it convenient to spot any errors. At the set
up stage the upper window is empty and interactive.
The user can either download a text from an external
file or type it directly into the upper interactive window.
It is possible to save traces of individual processing
stages in different text files. Processing traces are
presented in a very illustrative form, e.g., in addition to
brackets different colors are used for every type of a
chunk.

Tagger assigns and disambiguates supertags of a
selected lexicon. It is possible to perform the tagging of
the same text based on different lexicons to decide on
the right one for a given application. The tagger reports
immediately whether the text is covered by a lexicon
listing unknown words (if any) in a pop-up window.
Multiple tags are disambiguated according to the
disambiguation rules written by the developer in
Disambiguation Rule Interpreter. Any changes that
might be made in a lexicon or in disambiguation rules
are immediately traced in the control interface thus
allowing for operative testing. Tagger can directly be
used for lexical acquisition from relevant corpora due to

its functionality to import unknown lexemes to a FLAT
lexicon.

Chunking is carried out by matching the strings of
supertags against patterns in the right hand side of the
rules written by the developer in the Chunking Rule
Interpreter. The chunking procedure is a succession of
processing steps itself starting with the simple-noun-
phrase procedure, followed the complex- noun-phrase
procedure, which integrates simple noun phrases into
more complex structures (those including prepositions
and conjunctions). Then the prepositional-, adverbial-,
infinitival- and gerundial-phrase procedures switch on
in turn. The order of the calls to these component
procedures in the chunking algorithm is established to
minimize the processing time and effort. The ordering is
based on a set of heuristics.
 Predicate/Argument Analyzer searches for all
possible predicate-pattern matches over the residue of
free words in a chunked text and returns flagged

predicates. It then retrieves semantic (case-roles) and
syntactic dependencies (such as syntactic subject),
requiring that all and only dependent elements (chunked
phrases in our case) be present within the same
predicate structure. The tool including
Predicate/Argument Analyzer requires a FLAT
predicate lexicon with deep description of lexical units
including syntactic and semantic knowledge about
predicates and their arguments (Sheremetyeva, 1999). A
sample piece of such knowledge tuned to a patent
domain is provided with the FLAT programs. The
developer can reuse a lot of universal knowledge in the
lexicon and Predicate/Argument Rule Interpreter and
edit it as needed.

Figure 3. A screenshot of the chunker compiler interface.

 437

Compilers
The most characteristic feature of the FLAT kit is

that all processing modules are equipped with
interpreters (compilers) with extremely user-friendly
interactive interfaces for acquisition or updating
grammar knowledge. A developer can write or update
rules underlying a certain processing phase in a very
simple IF-THEN-ELSE-ENDIF formalism.
 The rules can use a 5-step window context with the
lexeme, tag or phrase in question in the middle. The
conditioning knowledge can be rather rich. It includes
the knowledge specified in the lexicons and the
knowledge acquired at preceding processing steps.
Immediately after saving new rules an updated trace can
be displayed in the control interface. The rules that can
be written by a developer in every interpreter are tuned
to a particular FLAT lexicon. There might be several
sets of rules based on the same or different lexicons.
The linguist is thus free to experiment with different
kinds (and sizes) of lexical and grammatical knowledge.

Figure 3 shows the interface of the phrase-chunking
compiler (all other compilers have similar
functionalities). The right pane is a type-in area. The
right pane is designed to support rule writing. It
contains two clickable menus, the menu of tags and the
menu of expressions used in the rule formalism. A
double-click on any of the selections transfer it into the
text of a rule. The tool would not let the user leave a
compiler without the Check it button click. In case of
a mistake an error message appears with the cursor in
the place where a correction should be made. This, on
the one hand, makes the work less difficult and time
consuming and, on the other hand, controls rule
consistency and correctness of the formalism.

Conclusions
We have presented the FLAT kit, - a suite of

multipurpose interactive tools for developing NLP
systems and/or training computational linguists. A rich
feature space that can be created with the kit tools
allows for quite a good performance in solving the most
difficult NLP problems such as, recovery of empty
syntactic nodes, long distance dependencies,
disambiguation of PP attachment and parallel structures,
etc.

FLAT has been successfully used as part of
developer environment for AutoPat (authoring system
for patent claims) and is now being used for updating
the AutoPat knowledge for AutoTrans (an MT system
for patents).
The kit might be useful, for example, for creating

tagged corpora due to its pipelined Lexicon creator and
Tagger and flexible user-friendly import and tagging
functionalities.
 FLAT can also be used in teaching computational
linguistics disciplines due to its glass-box nature as
the locked character of many NLP commercial
products does not make it possible to use them to the
most advantage of students (Balkan et al., 1997). The
author has a positive experience of using FLAT as
training software when Teaching MT courses at
Copenhagen Business School (Denmark) and Southern
Ural State University (Russia) on the material of

English, Danish and Russian languages. One of the lab
tasks, for example, was to acquire linguistic knowledge
necessary to translate a training suite of sentences. With
FLAT students had a hands-on experience in creating a
lexicon for a given text, deciding on the depth of
description to resolve ambiguities, learning how to
write formal (programmable) grammar rules in FLAT
compilers. They could do it in two languages, - English
and their native (Danish or Russian), thus learning more
about universal and contrastive features of natural
languages, etc. Quite an intensive linguistic training was
possible due to the fact FLAT is targeted to solving
linguistic problems of NLP and do not require
programming skills.

References
Balkan L., D.Arnold and L.Sadler. (1997) Tools and

Techniques for Machine Translation Teaching: A
Survey.
http://clwww.essex.ac.uk/group/projects/MTforTeach
ing/index_1.html

Canningham H., D.Maynard, K.Bontcheva, V Tablan,
and C.Ursu. (2002). The GATE User Guide.
http://gate.ac.uk

Coni, J.M., J.C.Gonzalez, and A.Moreno (1997).
ARIES: A Lexical Platform for Engineering Spanish
Processing Tools. Journal of Natural Language
Engineering, 3(4).

Fischer, D., W.Mohr, and L.Rostek (1996). A Modular,
Object-Oriented and Generic Approach for Building
Terminology Maintenance Systems. In TKE 96:
Terminology and Knowledge Engineering. Frankfurt.

Gnasa M., and Jens Woch. 2002. Architecture of a
knowledge based interactive Information Retrieval
System.http://konvens2002.dfki.de/cd/pdf/12Pgnasa.
pdf.

Ibrahim, M.H. and F.A Cummins (1989). TARO: An
Interactive Object-Oriented Tool for Building Natural
Language Systems, In IEEE Intelligence. Los
Angeles.

Joshi A.K., and Bangalore Srinivas (1994).
Disambiguation of Super Parts of Speech (or
Supertags): Almost Parsing.
http://acl.ldc.upenn.edu/C/C94/C94-1024.pdf

Sheremetyeva S. (2003) Towards Designing Natural
Language Interfaces. Proceedings of the 4th

International Conference Computational Linguistics
and Intelligent Text Processing Mexico City,
Mexico, February 16-22.

Sheremetyeva, S. (1999). A Flexible Approach To
Multi-Lingual Knowledge Acquisition For NLG.
1999. Proceedings of the 7th European Workshop on
Natural Language Generation. Toulouse. (France)
May 13-15.

 438

http://clwww.essex.ac.uk/group/projects/MTforTeach
ing/index_1.html
http://gate.ac.uk
http://konvens2002.dfki.de/cd/pdf/12Pgnasa
http://acl.ldc.upenn.edu/C/C94/C94-1024.pdf

