
A Suite of Tools for Marking Up Textual Data for Temporal Text Mining
Scenarios

Argyrios Vasilakopoulos, Michele Bersani and William J. Black

UMIST, Dept. of Computation
P.O. Box 88, M60 1QD, Manchester, UK

{a.vassilakopoulos@postgrad.umist.ac.uk, Michele@sibilo.co.uk, wjb@co.umist.ac.uk}

Abstract

Text Mining is a relatively new area of research, very interesting for both computational linguists and data miners. It involves
collecting and analyzing quantities of textual data by domain experts, whose main task is the manual revision of markup. We describe
a suite of tools used to simplify the process: the Parmenides System that consists of data warehouse, ontology, semi-automatic
information extraction and data mining tools. Here we focus on the Annotation Editor which incorporates linguistic tools that initialize
the markup automatically.

Introduction

Knowledge Management (KM) is important for the
smooth operation of modern organisations as it defines the
way information is structured, stored, retrieved and
shared. The information existent and currently produced
in such environments consists mainly of textual
(unstructured) data which, in order to be useful, needs to
be analysed, structured and stored appropriately. Towards
the management of textual data a number of tools are
already created, offering the domain expert an easy way to
deal with the management task. In this paper we present a
suite of tools we currently develop and use in the
Parmenides framework for annotating textual data. Our
tool incorporates functionality comparable to that of the
GATE Annotation Tool (Gaizauskas et al, 1996) (i.e. the
ability to manually annotate semantic elements of interest)
as well as an NLP and IE pipeline which helps the human
annotator by providing useful clues (semi automatic
annotation). In that sense, our tool is more likely to be
compared to the Amilcare (Ciravegna, 2001; Ciravegna et
al., 2002), Amilcare-based (MnM, Melita, OntoMat) and
Visual Text (Deane et. Al, 2001) tools, which allow the
annotation of textual data interactively by users.
Regarding the link of our tool to the ontology, the most
relevant work seems to be the Ontology Forge System
described in (Collier, 2003). However, that environment is
more an ontology creation and population (ontology
expansion) tool focused mainly on named entities, while
our Annotation Editor targets the domain expert’s real
needs in marking up basic semantic elements and events,
using the ontology as a resource rather than an end-
product.
In the next sections we briefly describe our knowledge-
based framework, the way we structure our data (Common
Annotation Scheme) and the actual annotation editor.

The Parmenides System

The Parmenides System is an implementation of an
“Ontology Driven Text Mining Framework”. It consists of
a document warehouse, ontology acquisition and editing
tools, a set of processing modules for automatic ontology-

linked information extraction, annotation-editing tools,
and data-mining tools (Spiliopoulou & Mueller, 2003).
The Document Warehouse (DW) is the module
responsible for collecting, converting, annotating and
storing documents for further analysis. The DW consists,
thus, of the Document Collector and Converter (DCC) and
the Annotation Editor. The link behind the modules that
make up the DW, as well as the interface between any two
modules of the whole system, is the Common Annotation
Scheme (CAS). Every module (except the DCC)
understands and extends the CAS.
The existence of the Annotation Editor in the DW is of
vital importance: it is the tool that allows the domain
expert to analyse semantically the data relevant to his/her
domain. Additional reasons for using such an editor are
the following:

- The editor helps in the production of data which
will constitute our resources. With this data we
develop and tune processing (modules) and
language (lexicons, ontologies, etc.) resources for
each specific domain.

- The annotated data will reveal the users’ targets
(events and concepts of interest in general).

- The data marked up by domain expert is assumed
correct and thus, constitutes a gold standard
against which we can safely measure system
performance.

Parmenides System Merits
As mentioned in the introduction, Parmenides System
targets the domain expert’s real needs. It is designed as a
real world Text Mining system that can deal with large
amounts of textual data for various case studies. The
design has benefited from experience using GATE which
is oriented towards the developer of annotation based text
analysis, and is instead focused on the needs of end users
who need to annotate texts in large quantities, related to
their own private ontologies. Our tool:

- Can deal with large amounts of textual data. Our
system is designed to store and collectively
analyse large amounts of textual data. The
Resource Manager imposes less of an overhead

 807

mailto:reli98@goliat.ugr.es

than competing systems when a pipeline of text
analysers is executed.

- Is focused on conceptual annotation. Conceptual
annotations are non span-based (although they
build on text span annotations) annotations that
constitute the user’s actual need. They are the
only way to describe events and relations, so the
system has to cope with representing them
successfully, in a user friendly way.

- Can automatically produce conceptual
annotations through the BSEE compiler, using
ontology information. With the authoring of
appropriate rules, which will be in accordance to
the ontology structures, there is the possibility to
automatically extract event and relation
conceptual annotations.

Common Annotation Scheme

The Parmenides Common Annotation Scheme (CAS) is
an XML representation which consists of three types of
annotations as described in (Rinaldi et al., 2003):

Structural Annotations: They define the structure of the
document (head, body and further sections, paragraphs,
sentences and tokens). These annotations are in-line
annotations i.e. they contain the text spans they label.

Lexical Annotations: They identify lexical units of interest
(entity instances), such as person’s names, organizations,
drug names, time expressions, etc. and are token-reference
annotations, i.e. they do not contain textual spans but refer
to unique token IDs instead.

Semantic/Conceptual Annotations: They are also token-
reference annotations referring to specific (already marked
up as lexical annotations) entities via co-referential IDs.
They are used to mark entities, relationships and events.

An Editor for the CAS

Our analysis tools having been prototyped in the GATE
environment, we evaluated the latter’s suitability for
annotation editing, and concluded that it did not enable
users to fully benefit from the way that knowledge
encoded in the ontology importantly constraints the slots
and fillers that users may choose when correcting or
creating fact annotations. The CAFETIERE (Conceptual
Annotation of Facts, Events, Terms, Individual Entities
and Relations) Annotation Editor offers constrained
instance creation and slot filling. The editor allows users
to manipulate documents converted to a skeletal CAS
representation or a previously saved analysis. From a
scratch document, users can annotate manually, or run a
pipeline of NLP and IE analysers, and add, modify or
delete annotations.
 Users can add new annotations strictly in order, lexical
first, then conceptual. Different instances of the same
entities can be marked as co-referent, and complex
representations of structured objects and events built up
with all slots as constrained by the ontology. Figure 1

shows examples of annotations in the CAFETIERE
Editor.

Automatic Analysis Pipeline
The automatic analysis pipeline aims at performing some
basic natural language analysis and information extraction
processes. Currently the pipeline is four level:
tokenization, part-of-speech tagging, gazetteer and
ontology lookup and semantic element end event
extraction. More specifically the aforementioned steps
collectively contribute the following information:

- Tokenization: Breaks texts in tokens and assigns
a unique token id and orthographic classification
tag to each of them. The orthographic tags are
fully configurable and the ones currently used are
the same as the ones used in GATE.

- Part-of-Speech Tagging: Assigns a POS
classification label to each of the tokens of the
text. We currently use a java implementation of
the popular Brill Tagger (Vasilakopoulos, 2003),
trained on texts tagged with the Penn TreeBank
corpus tagset.

- Gazetteer lookup: lookup of single and multi
word tokens in flat lists of names (companies,
people, locations, etc…) suitable to specific
domains. This kind of lookup returns only the
conceptual class of the single/multi words
matched, paying no attention to the specific
attributes of the entities they represent.

- Ontology lookup: lookup of single or multi word
tokens in ontologies like Protégé. The
information acquired by ontology lookup is more
meaningful compared to information produced
by gazetteer lookup, and provides better input for
the BSEE Compiler module, as attributes of
concepts, as well as inter-conceptual relations are
now accessible.

- BSEE Compiler: A rule compiler that elaborates
the output of the 3 previous steps. BSEE
Compiler applies sets of context sensitive rules
on pre-processed texts and extracts basic
semantic elements (named entities, temporal
expressions), events and relations (by means of
filling predefined template slots). We currently
elaborate hand-crafted rules for specific case
studies. However, work is in progress towards
exploitation of “rule induction” via Machine
Learning on already annotated corpora.

All information added by all these four steps of analysis is
shown to the domain expert through the Editor’s window
and is fully modifiable (editable, extendable) according to
the case study needs.

Ontology Integration
Regarding the Annotation Editor, our system interacts
with the ontology in two ways. The first way is through
the Ontology Lookup phase, and the second is through the
compiler phase.
The Lookup essentially links surface forms from the
current text to existent ontology instances. The user can

 808

browse and manipulate the instances found according to
his/her needs and reflect the changes to the ontology. A
point worth to be mentioned here is the fact that the user
can provide information about attributes of annotations
(concepts-instances), which are constrained according to
the same constraints defined in the Ontology (constraints
on slots).
In a similar way, BSEE rules can use the structure of the
concepts they look for and can impose constraints on
concept attributes according to their type. However, in
such cases, the rule writer has to know exactly the way the
ontology is structured and the exact identity of the legal
objects for each of the slots referred to.
It is, also, worth mentioning, the ability of the editor to
use any ontology manager API available (in our case we
have both integrated the Protégé and Wordmap ontology
managers (Wordmap, 2002)). The only prerequisite is the
fact that the integrated ontology has to implement a basic
interface according to which the Annotation Editor can
communicate with the resource.

Event (Multi-span) Annotation
The target of the Annotation Manager is the mark up of
events (with their appropriate attributes) and temporal
information. Currently, events are represented as
templates with appropriate slots according to user defined,
domain-specific ontologies. Annotation itself is very
simple: the human annotator highlights manually the span
of text that denotes the event instance (that is the core of
the event, the verb or nominalization that indicates the
event instance), associates it with a concept in the
ontology used, (getting in this way the template for the
event) and finally filling out the template slots.
Additionally, at this point, the Annotation Editor proposes
all possible candidate fillers for each of the slots of the
event template: the human annotator can safely choose
among the proposed legal filler objects for every attribute
of the event instance he annotates. Event instances are
then saved as PEvent elements according to the common
annotation scheme. Instead of doing the event annotation
manually, BSEE rules can me written in order to discover
events and their appropriate fillers according to the core
event phrase and its context.

Temporal Annotation
Through the Annotation Manager GUI three kinds of
temporal annotations can be made:

Annotations of Temporal Expressions: Temporal
expressions (TIMEX objects) are annotated by simply
annotating the relevant textual span and assigning the
appropriate features. The features available are currently
the ones used in the TimeML specification (Ingria &
Pustejovsky, 2002).

Timestamping of Event Instances: The timestamping of
event instances is done indirectly, by selecting an
appropriate TIMEX for the appropriate temporal slot of
the event template. As every TIMEX has the value
attribute, the filling of the appropriate event template slot
with a TIMEX essentially indicates the temporal
anchoring of the event instance in question.

Event Temporal Ordering: This is done by creating
special Temporal Relations between already marked up
event instances. The possible temporal relations that can
hold between any two events are again the ones proposed
by the TimeML specification (under the TLINK element
tag). However, this is totally modifiable and any set of
temporal relations can be used, according to the user’s
own preference.
Again, with the authoring of domain and ontology specific
rules all three kinds of temporal annotation can be
performed automatically by the system.

Conclusions and Future Work

In this paper we described the Annotation Editor used in
the Parmenides Text Mining Framework. We presented
the CAFETIERE Annotator Manager which is designed to
semi-automatically extract and annotate basic semantic
elements, facts, and events in natural language texts. The
CAFETIERE editor uses domain expert ontologies in
order to help the annotator in performing its task,
according to the specific application domain structure and
rules.
In order to have a system that is both robust and really
easily adaptable, there are still some things to be done.
First, we need to further develop the ontology front-end.
The fact that we can easily adapt any ontology manager
the user wishes makes our tool usable in different
environments. However, work still has to be done on
consistency when new items are discovered in texts and
update the ontology.
A second issue is linked to the authoring of BSEE rules.
At present, rules are hand-crafted, by linguist experts who,
collectively with domain experts, analyse specific
domains. One of our future plans is the use of machine
learning techniques in order to induce rule sets from
already annotated data by domain experts. Having
fulfilled these extensions, it will be easier for our tool to
be adapted with the least effort to completely new
domains, as well as the annotation task which is the basis
for successful text mining scenarios, will be considerably
facilitated.

Acknowledgements
This work has been partly funded by the European Union
and the project partners in Parmenides Project (IST-2001-
39023).

 809

Figure 1: Annotations in CAFETIERE

References

Ciravegna F., Dingli A., Petrelli D., Wilks Y. (2002)

Document Annotation via Adaptive Information
Extraction. Poster at the 25th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval August 11-15,
2002, in Tampere, Finland.

Ciravegna F. (2001) Adaptive Information Extraction
from Text by Rule Induction and Generalisation. In
Proceedings of 17th International Joint Conference
on Artificial Intelligence (IJCAI 2001), Seattle,
August 2001.

Collier N., Takeuchi K., Kawazoe A. (2003) A
Framework for integrating Deep and Shallow
Semantic Structures in Text Mining.

Deane P., Hilster D., Meyers A. (2001) Text Processing
in an Integrated Development Environment (IDE):
Integrating Natural Language Processing (NLP)
Techniques. In PC AI, Volume 15, Issue 5, Sept/Oct
2001.

Gaizauskas R., Rodgers P., Cunningham H.,
Humphreys H. (1996) GATE User Guide.
Department of Computer Science, University of
Sheffield, Department of Computer Science,
University of Sheffield. 1996. http://gate.ac.uk/.

Ingria B., Pustejovsky J. (2002) TimeML Specification.
Available at
http://www.cs.brandeis.edu/~jamesp/arda/time/docu
mentation/TimeML-Draft3.0.9.html

Rinaldi F., Dowdall J., Hess M., Ellman J., Zarri G.P.,
Bernard L., Karanikas H. (2003) Multilayer
Annotations in Parmenides. Second International

Conference on Knowledge Capture 2003, Florida,
USA.

Spiliopoulou M., Mueller R.M. (2003) PARMENIDES:
Ontology Driven Temporal Text Mining on
Organisational Data for Extracting Temporal Valid
Knowledge. In the 14th on Machine Learning and the
7th on Principles and Practice of Knowledge
Discovery in Databases Joint European Conferences
(ECML/PKDD 2003), September 22-26, 2003,
Cavtat, Croatia.

Vasilakopoulos A. (2003) Improved Unknown Word
Guessing By Decision Tree Induction for POS
Tagging with TBL. In Proceedings of CLUK
Conference, Edinburgh, 2003.

Wordmap (2002) Wordmap Introduction. Found at
http://www.wordmap.com/downloads/white_papers.h
tml

 810

http://gate.ac.uk/

