
Generating an Arabic full-form lexicon for bidirectional morphology lookup

Abdelhadi Soudi

CLC and CS department
Ecole Nationale

de L'Industrie Minérale
Rabat, Morocco

asoudi@enim.ac.ma

Andreas Eisele

Computational Linguistics Department
Saarland University

P.O.Box 151150
D-66041 Saarbrücken, Germany
eisele@coli.uni-sb.de

Abstract
We describe the generation of an Arabic full-form lexicon and its conversion into a two-level Finite State Transducer (FST) for
morphology analysis and generation. The implementation of morphological lookup is based on a representation of the relevant data in
the form of a FST, for which generic implementations exist that facilitate the integration into larger software systems for natural
language processing. We show the feasibility of our encoding and the analysis of both vowelled and unvowelled Arabic words.

Introduction
Arabic morphology represents a special type of
morphological systems. It is generally considered to be a
non-concatenative system that depends on manipulating
root letters in a non-concatenative manner, using different
operations such as gemination and infixation. An Arabic
verb can be conjugated according to one of the
traditionally recognized patterns. There are 15 triliteral
forms, of which at least 9 are in common. They represent
very subtle differences. Within each conjugation/pattern,
an entire paradigm is found: two voices (perfect and
imperfect), two voices (active and passive) and five
moods (indicative, subjunctive, jussive, imperative and
energetic). In addition to prefixation and suffixation,
inflectional and derivational processes may cause stems to
undergo infixational modification in the presence of
different syntactic features as well as certain consonants.
With respect nouns, there are three number categories for
Arabic nouns (including adjectives): singular (mufrad),
dual (mu#anGaY), and plural (jam`). The plural is further
divided into sound (Al-jam`u Al-sGaAlim-u), the use of
which is practically confined to (at least in the masculine)
to participles and nouns indicating profession and habit,
and broken (al-jam`u l-mukasGaru) types. Broken plurals
are then divided into plurals of paucity (jam`u Al-
qilGa0i), denoting three to ten items, and plurals of
multiplicity (jam`u Al-ka#ra0i), denoting more than ten
items. There are four forms of the plural of paucity and at
least 23 forms of the plural of multiplicity. Several
singulars have more than one plural form. There are also
underived nouns with plural or collective sense (usually
indicating a group of animals or plants). These are treated
as singular, but may form a ‘singulative’ (çismu Al-
waHda0i) indicating an individual of the group, by
attachment of the suffix 0. 1

Most of the computational attempts to model Arabic, such
as Kay’s (1987) non-concatenative Finite State model,
Kiraz’s (1994a, 1994b) Multi-tape two-level model and
Beesley’s Finite State model (1990), reflect the separation
of levels advanced by McCarthy (1981, 1990). In
McCarthy’s proposal, Arabic stems are formed by a

1 The symbols we use in the transliteration are provided at the
end of the paper.

derivational combination of a root and a vowel melody.
The two are arranged according to canonical patterns.
A detailed description and evaluation of the above-cited
computational models is provided in Soudi (2002).

In this paper, we describe the generation of an Arabic full-
form lexicon for bi-directional morphology lookup on the
basis of an Arabic morphology generator (Soudi & al.,
2002, 2001; Cavalli-Sforza & al., 2000 ; Leavitt, 1994).

1. The Construction of the Lexicon
We have taken advantage of an Arabic morphology
generator based on Morphe (leavitt, 1994), a tool for
compiling morphological rules into a word generation
program.2 In Morphe, the generation of Arabic inflected
forms takes place in two steps, the first to generate the
required stem, the second to generate the appropriate
inflectional prefixes and suffixes. The generation process
is based on the Lexeme-based Morphology framework
(Aronoff, 1994; Beard, 1995) which focuses on stems in
contrast to the root+pattern+vocalism approaches
followed by other researchers.3

The lexicon is populated with full-forms by using a lisp
function that takes as its argument a word or a list of
words and provides all their inflectional
paradigms/declensions. The output is stored in a lexicon
file. In building the lexicon, we have avoided duplication
of morphosyntactic information by separating the static
features (part of speech and any other idiosyncratic
information) from the dynamic features, such as voice,
tense, mood, number, person, and gender, in the case of
verbs, and case, number and definiteness in the case of
nouns, which realize the different surface forms. That is,
all the surface forms generated according to a combination
of the dynamic features share or inherit the same static
features. This advantage, coupled with the brevity of the
lexicon, saves a significant amount of space. The lexicon
is growing at a fast pace.

2 Leavitt also says that MORPHE can be used for analysis, but it
has never been tested for it.
3 A detailed description of the generation of Arabic verbal and
noun morphology is provided in (Cavalli-Sforza & Soudi, 2003;
Soudi & al., 2002, 2001; Cavalli-Sforza & al., 2000)

 1275

Interestingly, the full-form lexicon encodes
morphosyntactic information that is missing in some
existing systems, such as xerox’ and the Arabic Tree
Bank’s (ATB) corpus which is analyzed by Buckwalter’s
morphological analyzer. Examples of such information
include:

- linking a broken plural noun with its
corresponding singular. By way of example, our
lexicon encodes the following information for the
noun rijaAlun “men” : (baseform rajul) (number
plural) (case nominative) (definiteness -) (gender
masc). The ATB corpus, however, does not
provide information on the number feature; nor
does it link the broken plural form to the singular
noun. In the ATB corpus, number and gender are
only determined by the suffix, especially in the
case of sound plural nouns;

- linking the passive and the active participle to the
corresponding verb;and

- linking the verbal noun to the corresponding
 noun.

2. FSTs and Morphological Lookup
The implementation of morphological lookup is based on
a representation of the relevant data in the form of a finite-
state transducer (FST) in the style of Kaplan and Kay
(1994) and Karttunen (1994)4. FSTs describe regular
relations between strings in a declarative way. Their
mathematical properties are simple and well understood,
and they can be used for generation of surface forms as
easily as for morphological analysis. They generalize
finite-state acceptors to multiple tapes, where transitions
between states simultaneously affect several levels of
string representation. Applications for morphological
lookup use one of these tapes for the surface string, and
another for the underlying linguistic analysis. Since FSTs
factor out independent sources of variation, exponential
numbers of forms with all morphological readings can be
represented very compactly. The clear separation between
compilation of the FST and transduction of strings nicely
accommodates different requirements for off-line and on-
line processing of the linguistic specification and makes it
easy to embed morphological processors for different
natural languages into larger systems.

2.1. Requirements of off-line and on-line
processing
At first sight it may look somewhat roundabout to expand
a compact and linguistically adequate morphological
description into a full-form lexicon and then transform the
data again into a different compact representation. It is
important to note that these representations serve
completely different purposes.

The source form of the morphological resource needs to
be easy to read and write for linguists who build and
maintain the specification, in order to facilitate frequent
activities such as inspecting and updating the lexicon. But
when morphology is applied, it is typically a submodule
within packages for syntactic analysis or generation,
which are themselves part of larger systems. Hence, the

 4 See also (Beesley and Karttunen 2003) for an extensive

introduction

representations and algorithms used at run-time need to
facilitate integration with other software. An
implementation should impose the smallest possible
number of constraints onto its clients and should offer
APIs that can be used from multiple programming
languages. Algorithms that can treat different natural
languages in a uniform way are very helpful when
building larger multi-lingual applications.

The existence of generic implementations of FST
construction and lookup, developed for morphological
processing of other languages, made it particularly
attractive to try the same approach on Arabic data.

2.2. Off-line processing
The construction of FSTs for Arabic morphology involves
several steps (see also Beesley 1990, 1996, 1998). Pairs
consisting of a surface form and a lexical analysis are
transformed into a sequence of pair labels at the
granularity of individual characters and attribute-value
pairs. For example, the pair:

AlomudarGisu
mudarGis+sp=Un+cat=n+def=def+number=sg+case=nom

is transformed to a sequence

A:ε l:ε o:ε m u d a r G i s u:ε ε:+sp=Un ε:+cat=n
ε:+def=def ε:+number=sg ε:+case=nom

The complete enumeration of all sequences of pairs
derived from the lexicon is given to a generic and highly
scalable algorithm that generates a minimal finite-state
representation of the data. The resulting FST is written
out in a format that requires only somewhat more than 4
Bytes per transition. This algorithm has been used before
to transform MMorph databases (Petitpierre & Russel,
1994; Bouillon E.A., 1998) for 5 European languages into
FSTs, where it has shown impressive capabilities for
speed and compression. It has encoded more than 830000
German full forms (with over 6.5 million different
analyses) in only 1.2 MB. For Arabic, we can optionally
strip all vowels from the surface part of the pairs and use
the algorithm to build an FST that relates unvowelled
words with their (vowelled) analyses.

2.3. On-line processing
The compiled FST representations can then be interpreted
by existing implementations of exact and error-tolerant
finite-state lookup implemented at the German Research
Center for Artificial Intelligence (DFKI). In order to
accommodate different requirements for functionality,
speed and compatibility, there are two implementations of
the lookup routine that can work with the same binary
representations. The Java implementation focuses on
simplicity and reliability and can be included in multi-
threaded applications. The C implementation5 is
significantly faster and allows for the search of a set of
most similar strings under a given distance metric. The
error-tolerant lookup follows roughly the approach of
Oflazer (1996) and furthermore allows specifying the
likelihood of deviations (such as typing/spelling/OCR
errors or phonetic similarity) in an application-specific
error metric. Programming interfaces to several host

5 Sometimes called SILO for “similarity-based lookup”.

 1276

languages (Python, Perl, Prolog, LISP, Java via JNI6) and
to XML/RPC exist, as sketched in Figure 1. Using this
generic framework, robust morphological analysis and
generation can be embedded quite flexibly into various
platforms for NLP, including deep syntactic analysis and
generation in the framework of HPSG, based on LKB
(Copestake, 2002) or PET (Callmeier, 2000). However,
the simplest way to use the toolkit is a command-line
lookup program that enumerates all possible analyses for a
given full form or vice versa.

jawaAb+bpstem=>ajowibaO+cat=n+def=def+number=pl+case=nom
jawaAb+bpstem=>ajowibaO+cat=n+def=def+number=pl+case=gen
jawaAb+bpstem=>ajowibaO+cat=n+def=def+number=pl+case=acc

3. Evaluation
We have studied the feasibility of our encoding and the
analysis of both unvowelled and vowelled Arabic word
forms, using both our full-form lexicon - which contains
currently 65 000 analyses but is rapidly growing - and a
lexicon of 34 590 analyzed word forms which we have
extracted from the Arabic Treebank. Although the lookup
involves searching for a consistent instantiation of the
vowels, the current lookup speed of 4000 words per
second is fast enough for many important types of
applications.

Network Clients,
other Programming Languages

XML/RPC
Interface

C, C++
(e.g.PET)

Application-
Specific

Error
Metric

Full-Form
Lexicon

Linguistic
Specification
(Lexicon and

Rules)

FST

Java
ApplicationsJava Lookup

Error-Tolerant
Lookup (C)

FST
compilation

Morphe
Linguistic
Processor Python,

 Perl,
Prolog

LISP
(e.g. LKB)

So far, our focus in the building of the lexicon has been
concentrating on encoding all the necessary features to
avoid duplicating the development process in case we
realize later that there are missing features. In so doing,
we have gained insight from our evaluation of the
morphosyntactic description in the ATB corpus and
Xerox’ morphological analyzer with respect to the missing
features in these resources, such as those indicated in
Section 1.

Since our focus has been so far on the design, the current
lexicon contains only 65 000 full-forms – which is very
little for a language with a rich morphology – but it is
growing at a fast pace.

Conclusion
We have described the generation of an Arabic full-form
lexicon based on an adequate morphosyntactic description
and its conversion into a two-level Finite State Transducer
(FST) for morphology analysis and generation. We have
also shown the feasibility of our encoding and the analysis
of both unvowelled and vowelled Arabic words.

Figure 1: Software Architecture

Using the lookup tool, the example given above comes out
as follows:

Acknowledgements
> java –jar fst.jar morph-ar.fst AlomudarGisu

The integration of FST-based morphological lookup into
HPSG parsers is being done in the framework of the EU
project DeepThought, Contract N° IST-2001-37836.

---- 1 result(s) for AlomudarGisu:
mudarGis+sp=Un+cat=n+def=def+number=sg+case=nom
> java -jar fst.jar morph-ar.fst –g\
mudarGis+sp=Un+cat=n+def=def+number=sg+case=nom Special thanks must go to Tim vor der Brück and Marc

Schröder for their help with the Java lookup code. ---- 1 result(s) for mudarGis+sp=Un+cat=n+def=…:
AlomudarGisu

References
The same lookup routine, used with the “unvowelled”
FST, will enumerate analyses of all ways how vowels can
be inserted, as is shown below:

Aronoff, M. (1994). Morphology by Itself: Stems and
Inflectional Classes. MIT Press, Cambridge,Mass.

Beard, R. (1995). Lexeme-Morpheme Base Morphology: A
General Theory of Inflection and Word Formation.
State University of New York Press.

> java –jar fst.jar morph-ar-u.fst Almdrs
---- 3 result(s) for Almdrs:
mudarGis+sp=Un+cat=n+def=def+number=sg+case=nom

Beesley, K. (1998). Consonant Spreading in Arabic
Stems. In Proceedings of COLING’98.

mudarGis+sp=Un+cat=n+def=def+number=sg+case=gen
mudarGis+sp=Un+cat=n+def=def+number=sg+case=acc

Beesley, K. (1990). Finite-State Description of Arabic
Morphology. In Proceedings of the Second Cambridge
Conference: Bilingual Computing in Arabic and
English.

For nouns that follow the broken plural pattern, the
analysis displays also the singular stem:

> java –jar fst.jar morph-ar-u.fst "Al>jwbO"
---- 3 result(s) for Al>jwbO: Beesley, K (1996). Arabic Finite-State Morphological

Analysis and Generation. In Proceedings of the 16th
Intl. Conference on Computational Linguistics, vol. 1,
pp. 89-94, Copenhagen, August 1996.

6 One interesting application of the JNI interface to SILO was in
a system for trademark search based on phonetic similarity.

 1277

Beesley, K. & Karttunen, L. (2003). Finite State
Morphology. CSLI Publications, University of
Stanford, CA

Bouillon, P., Lehmann, S., Manzi, S. & Petitpierre, D.
(1998). Développement de lexiques à grande échelle. In
Actes du Colloque des journées LTT de TUNIS, (pp. 71-
80) ftp://issco-ftp.unige.ch/pub/publications/ltt.ps.gz

Buckwalter, T (2002). http://www.qamus.org.
Callmeier, U. (2000). PET -- a platform for

experimentation with efficient HPSG processing
techniques. In Journal of Natural Language
Engineering, 6(1) (Special Issue on Efficient Processing
with HPSG):99-108.

Cavalli-Sforza, V. & Soudi, A. (2003). Enhancements to a
Morphological Generator Motivated by English-to-
Arabic MT. In Proceedings of the Eight International
Symposium on Social Communication, Center for
Applied Linguistics, SANTIAGO DE CUBA, January
20-24 2003.

Cavalli-Sforza, V., Soudi, A. & Mitamura, T. (2000):
Arabic Morphology Generation Using a Concatenative
Strategy. In Proceedings of the 1st Conference of the
North American Chapter of the Association for
Computational Linguistics (NAACL 2000), Seattle,
April 29-May 3, pp. 86-93.

Copestake, A. (2002). Implementing Typed Feature
Structure Grammars. CSLI Publications, University of
Stanford, CA.

Kaplan, R. M. & Kay, M. (1994). Regular Models of
Phonological Rule Systems. In Computational
Linguistics. 20:3, pp. 331-378.

Karttunen, L. (1994). Constructing Lexical Transducers.
In Proceedings of the Fifteenth International
Conference on Computational Linguistics. Coling 94, I,
pages 406-411, Kyoto, Japan

Leavitt J.R. (1994). MORPHE: A Morphological Rule
Compiler. Technical Report, CMU-CMT-94-MEMO.

Oflazer, K. (1996). Error-tolerant Finite State Recognition
with Applications to Morphological Analysis and
Spelling Correction, In Computational Linguistics
Vol.22:1.

Petitpierre, D. and Russell G. (1994). MMorph - the
multext morphology program. Technical report, ISSCO,
University of Geneva.

Soudi, A. & Cavalli-Sforza,V. (2002c). Arabic
Morphology Generation: A two-step strategy. In
Proceedings of the Arabic and Information Technology
International Conference, organized by “Le Haut
Conseil de la Langue Arabe”, Algiers, Algeria, 28-29
December 2002.

Soudi, A., Cavalli-Sforza,V. and Jamari, A. (2002a):
Arabic Noun System Generation. In Proceedings of The
International Conference on the Processing of Arabic,
Lamanouba University, Tunisia, April 2002, pp. 69-87.

Soudi, A (2002). A Computational Lexeme-based
Treatment of Arabic Morphology. Doctorat d’Etat
Thesis. Jointly supervised by Mohammed V University
(Rabat , Morocco) and Carnegie Mellon University
(Pittsburgh, USA).

Soudi, A., Cavalli-Sforza,V. & Jamari, A. (2001): A
Computational Lexeme-Based Treatment of Arabic

Morphology. In Proceedings of the Association for
Computational Linguistics, Arabic Processing
Workshop, Toulouse, France, July 2001, pp.155-162.

Transliteration
The transliteration we use is for the sake of implementation and
portability. This is not a phonetic system.

 A (alif^) ا
 b ب
 t ت
 # ث

 j ج
 H ح
 x خ
 d د
 ‹ ذ
 r ر
 z ن
 s س
 š ش
 S ص
 D ض
 T ط
 Z ظ
 ` ع
 > غ
 f ف
 q ق
 k آ
 l ل
 m م
 n ن
 h ه
 w و
 y ي
 Y ى
 0 ة
 َ (fatHa0) a
 ِ (kasra0) i
 ً (fatHtaAn) F
 ٍ (kasrataAn) K
 (DamGa) u
 (DamGataAn) M
◦ (sukuwun) o
َّ (šadGa) G
 ^ (hamza on ^alif) أ
 (hamza under ^alif) ç
̃ (waSla0 on ^alif) ~
 (hamza on w) V
 @ (hamza on line) ئ
 v (hamza on y) ئ

 1278

http://www.xrce.xerox.com/people/beesley/beesley.html
http://www2.parc.com/istl/members/karttune/
http://csli-publications.stanford.edu/site/1575864347.html
ftp://issco-ftp.unige.ch/pub/publications/ltt.ps.gz
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Copestake%2C Ann/002-0806007-5468810

