
A General-Purpose, off-the-shelf Anaphora Resolution Module:
Implementation and Preliminary Evaluation

Massimo Poesio Mijail A. Kabadjov

University of Essex, Department of Computer Science
Wivenhoe Park, Colchester, CO4 3SQ, UK
poesio@essex.ac.uk, malexa@essex.ac.uk

Abstract
GuiTAR is an anaphora resolution system designed to be modular and usable as an off-the-shelf component of a NL processing
pipeline. We discuss the system’s design and a preliminary evaluation of the two algorithms implemented in the current version of the
system – for definite descriptions and for pronoun resolution.

1. Introduction
Although there is a growing interest in using

anaphora resolution (AR) modules as components of the
processing pipeline for applications such as information
extraction (Gaizauskas and Humphreys, 2000), question
answering (Morton, 2000; Watson et al., 2003), and
summarization (Boguraev and Kennedy, 1997; Alonso
and Fuentes, 2003), and although a number of robust,
domain-independent algorithms for resolving pronouns,
definite descriptions, and demonstratives have been
proposed (Hobbs, 1978; Kennedy and Boguraev, 1996;
Mitkov, 1998; Vieira and Poesio, 2000; Ng and Cardie,
2002; Byron, 2002), no domain-independent anaphora
resolution module is currently available that developers of
NLE applications can pick off the shelf in the way of
tokenizers, POS taggers, parsers, or Named Entity
classifiers. Yet it is clear that engineering one's anaphora
system presents many advantages, not the least of which
is that such a system could be evaluated in a task-oriented
fashion, by measuring its contribution to the overall
performance of a particular application. We are
developing such a tool, GuiTAR (General Tool for
Anaphora Resolution) as part of our research on
segmentation and summarization. In this paper we briefly
discuss the architecture and implementation of the system,
as well as some preliminary evaluation results.

2. Architecture and Implementation
 GuiTAR has been designed to be as independent as
possible from the specifics of the modules used to extract
certain information from the text – e.g., POS-taggers and
parsers – and to be as modular as possible, allowing for
the possibility of replacing specific components (e.g., the
pronoun resolution component). These two goals are
achieved in part by designing clear interfaces between the
modules, in part by making the code modular.
 In this section we discuss the architecture and
implementation of both GuiTAR proper and of additional
modules, also implemented, that compose a pipeline that
can be used to run the system over raw text. The pipeline,
illustrated in Figure 1, takes as an input either XML or
raw text and produces an XML file annotated with
anaphoric links, and an evaluation of AR performance
with reference to an annotated corpus. XML is also used

as the data interchange format between modules 1 .
GuiTAR proper (the Anaphora Resolution Module) is
designed to take as input syntactic information in XML
format (MAS-XML). GuiTAR augments its input with
anaphoric links, leaving the rest of the input untouched.
The overall architecture of the pipeline is compliant with
the guidelines for AR systems set out by Byron and
Tetreault (1999). GuiTAR may be used either as part of
the pipeline (data-level integration) or within an
application via its API.

Fig. 1: Dataflow model of the processing pipeline.

2.1. Minimum Anaphoric Syntax (MAS-XML)
 The GuiTAR XML input/output interface, MAS-
XML, based on the GNOME mark-up scheme (Poesio,
2004), is meant to specify the minimal information
required by anaphoric resolvers, is easy to produce from
the output of a full parser, and maybe (relatively) easy to
approximate starting from the output of POS taggers.

GuiTAR’s Input
Nominal expressions are the main processing units of an
anaphora resolution system. GuiTAR expects NEs to be
marked with an <ne> tag and to be uniquely identifiable.
GuiTAR also expects <ne> elements to have a CAT
attribute (specifying the NP type: the-np, pronoun, etc)

1 For the advantages of working within the SGML paradigm for
NLP, see (McKelvie, Brew and Thompson 1997).

 663

and PER, NUM and GEN attributes specifying agreement
features. (Systems that cannot extract such features could
either include ‘guessers’ in their preprocessors or should
supply underspecified values.) The internal structure of
NEs – in particular, modifiers and heads – should be
marked using <mod> and <nphead> tags. MAS-XML also
requires tokens to be marked with a <w> tag, with a P
attribute specifying the part-of-speech, and sentences to
be marked with an <s> tag. For example, here is how the
NP “the fragile eggs” would be marked-up in MAS-XML:

(1) <ne id="ne139" cat="the-np" per="per3" gen=”neut”
 num=”plur”>

 <W … P="DT">The</W>
 <mod id="m89" type=”preadj”>

<W … P="JJ">fragile</W>
 </mod>
 <nphead>
 <W P="NNS" C="">eggs</W>
 </nphead>
 </ne>

MAS-XML does not specify requirements on NE analysis.
For instance, complex NEs may be either marked as
single <ne> elements containing embedded <ne>s, or as
flat <ne>s (the structure delivered by most partial parsers).

GuiTAR’s Output
GuiTAR leaves its input markup intact, but adds markup
information specifying that a particular anaphoric
expression has been identified as belonging to the same
coreference chain as another NE. 2 This information is
expressed by separate <ante> elements, as in the
MATE/GNOME markup scheme (Poesio, Bruneseaux &
Romary, 1999; Poesio, 2004). An <ante> element has
attributes CURRENT specifying the anaphoric expression
and REL specifying a semantic relation; it contains one or
more <anchor> elements specifying the antecedent.
(2) <ante current="ne139" rel="ident">
 <anchor antecedent="ne112" />

</ante>

2.2 Pre-processing
 This module is akin to the “Translation layer” of
Byron and Tetreault (1999), and for simplicity we regard
it as one module, but it actually comprises an open set of
(sub)modules – one for every different input format that
needs to be handled by GuiTAR. Both a text-to-MAS-
XML and an example AnyXML-to-MAS-XML
preprocessing modules have been implemented. The first
module can be used to run GuiTAR over unrestricted text,
and is based on the LT-XML suite of tools developed by
the University of Edinburgh's LTG (Brew et. al., 2000)
augmented by a heuristic-based syntactic information

2 At present the system can only resolve anaphoric expressions
whose antecedents are discourse entity realized by an NE. The
markup method could easily be extended to encode the results of
ellipsis resolution, but it would be more difficult to use to
encode the antecedents of references to abstract objects (see
(Byron, 2002)).

extractor3. The second preprocessing module is used to
run the system over the GNOME corpus (see below).

2.3. Anaphora Resolution (GuiTAR proper)
 GuiTAR is implemented in Java. Considerable effort
has been made to achieve a modular design using APIs, so
that different resolution algorithms for different types of
anaphoric expressions can be tested, as well as algorithms
that deal with all types of anaphoric expressions (e.g., (Ng
and Cardie, 2002)) can be incorporated. The main classes
of the implementation are illustrated in Fig. 2.
 GuiTAR processes its MAS-XML compliant input
incrementally left-to-right, simultaneously updating its
discourse model when new <s> and <ne> elements are
encountered, and using the discourse model to interpret
the new NEs. The construction and update of the
discourse model takes place via methods of the
DiscourseModel API, thus isolating the system from the
details of the implementation. The API makes a discourse
model an instance of the class DiscourseModelImpl,
containing one or more discourse segments, instances of
the abstract class DiscourseSegment. (Depending on
the implementation of this class, discourse segments may
be simply linearly ordered, or also hierarchically
embedded.) A discourse segment contains one or more
utterances, instances of the class Utterance; these in
turn contain a list of forward looking centers (Grosz, Joshi
and Weinstein, 1995), instances of the abstract class Cf,
which are realizations in a particular utterance of a given
discourse entity, an instance of the DE class.
 In order to make the system independent from
specific anaphora resolution algorithms, the
implementation details of specific AR algorithms are
hidden behind the AnaphoraResolution API, whose main
method is the abstract method resolveAnaphor() in class
Cf. Depending on the implementation of the Cf class, a
single interpretation algorithm may be used for all NPs,
or separate algorithms may be used, e.g., for pronouns,
definite descriptions, and demonstratives. In the current
version of the system, an implementation of the MARS
pronoun resolution algorithm (Mitkov, 2002) is provided
as implementation of the resolveAnaphor() method for
pronouns, and a partial implementation of the algorithm
for resolving definite descriptions proposed in (Vieira and
Poesio, 2000) as an implementation of the method for
definite descriptions. No methods are included for dealing
with demonstratives or proper nouns. However,
implementations of generic approaches resolving all types
of anaphors (e.g., (Ng and Cardie, 2002)) could also be
implemented and associated with the general class
NominalGroup.

3. Preliminary Experiments

 Syntactic information plays an important role not
only in pronoun resolution, but also in the resolution of
definite descriptions, the presence of modification being

3 This heuristic component extracts NP type (see section 3),
agreement features, NP head and (pre)modifiers.

 664

one of the best signals for identifying non-anaphoric DDs
(Poesio and Vieira, 1998). However, as pointed e.g., by
Mitkov (2002), some of the best-published results in
anaphora resolution were achieved after a substantial
amount of pre- and post-processing. One of the issues we
have been addressing in the early development of
GuiTAR is the difference in performance between running
the system over texts in which sentences and NEs have
been hand-identified and over unrestricted text4. We ran
two experiments over the same corpus to address these
questions.

3.1 The corpus
 For the development and evaluation of GuiTAR we
have been using the GNOME corpus (Poesio, 2004), a
corpus featuring texts from three different domains
annotated with anaphoric relations. In this work we used
texts from the museum and pharmaceutical domains.
These texts contain 3354 nominal expressions.

Fig. 2: GuiTAR’s Class Diagram in UML.

The nominal expressions are divided into 28 mutually
exclusive categories (types); the five most frequent types
are “bare-np”, “the-np”, “pers-pro”, “pn” and “a-np”
representing 22.2%, 16.6%, 9.66%, 9.54%, 8.02% of the
total. The focus of our work so far has been the processing
of the-np (definite descriptions) and pers-pro (personal
pronouns), which are the second and third most frequent
type of NP in our corpus.
 10 types of semantic relations are annotated in the
corpus. At the moment we are only concerned with the
identity relation, which is also the most common,
representing 55.95% of all the anaphoric relations
annotated (2075 relations); the rest are bridging references
(Poesio et al, 2002). 21 NP types are involved in an

4 Eventually the performance of chunkers vs. full parsers is to be
measured as well.

identity relation, the three most prominent being pers-pro,
poss-pro and the-np (26.5%, 17.4%, 15.33% accordingly
of a total of 1161 instances of identity relation). 95% of
all the personal pronouns (pers-pro) and 32% of all the
definite descriptions (the-np) are used anaphorically via
an identity relation.

3.2 Results with hand-annotated text
 In these experiments, GuiTAR was run over the
annotated corpus described in section 3.1, and its
performance evaluated against the annotation. The results
are summarised in Table 1.

Table 1: Performance for hand-marked sentences and NPs.
Column t indicates the total number of anaphors of each
type; r those identified by the system; c those correctly
resolved. The errors were classified into three categories:
no matches (nm), spurious matches (sm) and wrong
matches (wm). (see table 1 and 2). Minimising the “no
matches” improves recall; minimising the spurious
matches means precision goes up; and finally, resolving
wrong matches would enhance both precision and recall.

Definite Descriptions
 Most of the “no matches” for this type of anaphora
are NEs with a different head from the corresponding
antecedent or containing a synonymous pre-modifier(s):
(3) a. “the Getty Museum’s microscopem…the instrumentm ”
 b. “the native Britishb ... the native Britonsb ”
 c. “the right amounta ... the correct amounta of cream ...”
Endowing the system with lexical knowledge would
alleviate this problem (Vieira and Poesio, 2000; Poesio et
al, 2002).
 The “spurious matches” are mostly cases in which a
non-anaphoric definite occurs near an NE with the same
head. Adding to the system discourse-new detection
techniques like those in the original system (Vieira and
Poesio, 2000) might help in this case. Finally, the “wrong
matches” are particularly common in the pharmaceutical
texts, in which many entities with the same head occur,
and often the closest antecedent is not the correct one, as
in the following example:
(4) “The patchp … only one Menorest patch¬p… the patchp”

Pronouns
 We did not spend much time tuning the pronoun
resolution algorithm; a thorough tuning of the parameters
used to compute the “antecedent indicators” (Mitkov,
2002) may lead to better results The results shown in table
2 were obtained with the following antecedent indicators
turned off: indicating verbs, collocation pattern preference,
immediate reference and term preference. We haven’t

 665

implemented the last two indicators, but by turning on
“indicating verbs” and “collocation pattern preference”
the number of correctly resolved pronouns slightly
dropped (i.e. to 198).

3.3 Unrestricted Text
 In these experiments the system was over the raw text
of the files in the corpus, and its performance again
measured against the annotation. The results are
summarised in Table 2.

Table 2: Performance for unrestricted text

 The breakdown of errors into the three classes
previously identified proved to be much harder for this
case, so we have not included it. In this experiment the
criterion for classifying an anaphor as correctly resolved
is broader than the one applied in the previous experiment.
When processing the text versions of the corpus files, a
process of NP alignment takes place, but there is a many-
to-many relationship between the set of hand-marked NPs
and the NPs identified by the partial parser. Hence,
evaluating the performance of the system, the result is
considered correct whenever the NE proposed as
antecedent is among those included in the set of NEs
matching the one hand-annotated.
 We see from table 2 that for pronoun resolution the
results are comparable to those obtained in the first
experiment, but for DDs there is a considerable drop in
performance. The overall results are broadly comparable
with the results of systems participating in MUC-7. We
identified three main problems, all due to problems with
chunking: 1) the chunker is not able to identify DDs
embedded within a possessive NE - e.g., “the king” in
“the king's mistress” – so these DDs are not identified; 2)
the chunker treats appositions as separate NPs 5 : “the
French king” in “the French king Louis XIV”; 3) Incorrect
chunking due to tagging errors - e.g., “The Getty
Museum's microscope still_NN works_NNS”, where
“works” is actually a verb.

5. Conclusion and Future work
The system has also been evaluated in terms of its
contribution to segmentation; the results will appear in a
future paper. Current work includes developing an
improved discourse-new detector. We plan to make
GuiTAR available through the OpenNLP initiative within
the year.

Acknowledgements
 This research was supported in part by the Mexican
Council for Science and Technology (CONACYT).

5 Appositions are not annotated as co-referential in our corpus.

References
Alonso, L. and M. Fuentes, 2003. Integrating Cohesion

and Coherence for Text Summarization. In Proc. of the
EACL Student Session, pages 1–8, Budapest.

Boguraev, B. and C. Kennedy, 1997. Salience-based
content characterisation of text documents. In Proc. of
ACL/EACL Workshop on Summarization, pages 2–9.

Brew, C. and D. McKelvie and R. Tobin and H.
Thompson and A. Mikheev, The XML Library LT
XML Version 1.2, LT-XML

Byron, D., 2002. Resolving Pronominal Reference to
Abstract Entities. In Proc. of the 40th ACL..

Byron, D. and J. Tetreault, 1999. A Flexible Architecture
for Reference Resolution. In Proc. of the 9th EACL..

Gaizauskas, R. and K. Humphreys, 2000. Quantitative
Evaluation of Coreference Algorithms in an
Information Extraction System. In S. Botley and T.
McEnery (eds.), Corpus-based and Computational
Approaches to Discourse Anaphora. Amsterdam / New
York: John Benjamins, pages 145–169.

Grosz, B., J. Aravind, and W. Scott, 1995. Centering: A
Framework for Modelling the Local Coherence of
Discourse. Computational Linguistics, 21(2).

Hobbs, J.R., 1978. Resolving pronoun references. Lingua,
44, pages 311–338.

Kennedy, C. and B. Boguraev, 1996. Anaphora for
everyone: Pronominal anaphora resolution without a
parser. In Proc. of the 16th COLING, Budapest.

Morton, T. Coreference for NLP Applications. Proc. 38th
ACL

Ng, V. and C. Cardie, 2002. Improving Machine Learning
Approaches to Coreference Resolution. In Proc of ACL

McKelvie, D., C. Brew, and H. Thompson, 1997. Using
SGML as a Basis for Data-Intensive NLP. In Proc. of
ANLP, Washington D.C.
Mitkov, R., 2002. Anaphora Resolution. Longman

Poesio, M. and R. Vieira, 1998. A corpus-based
investigation of definite description use. Computational
Linguistics, 24(2):183–216. Also available as Research
Paper CCS-RP-71, Centre for Cognitive Science,
University of Edinburgh.

Poesio, M., F. Bruneseaux and L. Romary, 1999. The
MATE meta-scheme for coreference in dialogues in
multiple languages. In Proc. of the ACL Workshop on
Standards for Discourse Tagging. Maryland.

Poesio, M., Ishikawa, T., Sabine Schulte im Walde, and R.
Vieira. 2002. Acquiring Lexical Information for
Anaphora Resolution. Proc. of LREC

Poesio, M., 2004. The MATE/GNOME annotation
scheme for anaphora deixis, revisited. Proc. of
SIGDIAL.

Vieira, R. and M. Poesio, 2000. An empirically-based
system for processing definite descriptions.
Computational Linguistics, 26(4).

Watson, R., J. Preiss, and E.J. Briscoe, 2003. The
Contribution of Domain-independent Robust
Pronominal Anaphora Resolution to Open-Domain
Question-Answering. In Proc of Int. Symposium on
Reference Resolution, Venezia

 666

