Semi-automatic acquisition of command grammar

Thierry Poibeau* and Bénédicte Goujon**

* Laboratoire d'Informatique de Paris-Nord — CNRS UMR 7030 and Université Paris 13
99, av. JB Clément F-93430 Villetaneuse
thierry.poibeau@lipn.univ-paris13.fr

** Thales Research and Technology
Domaine de Corbeville F-91404 Orsay
benedicte.goujon@thalesgroup.com

Abstract
This paper presents an original strategy for the production of command grammars for complex systems. We show that command
grammars describe a sub-language that can be processed by local syntactic rules and compositional semantic strategies. The paper
shows how prepositional attachment ambiguity can be handled by such a system.

Introduction

Vocal interfaces offer an appropriate way to access
information from complex systems. People have
demonstrated that voice is more efficient, in such systems,
to perform complex tasks, than using keyboard and mouse
(Carbonnell and Dauchy, 1999). However, in order to be
efficient, vocal interfaces should take into account various
ergonomic constraints:

— An appropriate understanding of vocal utterances,

— Linguistic variation handling,

— Reduced processing time (Scapin, 1986).

In order to fulfil these requirements, systems generally
include lexical data and grammars of the concerned
domain in order to control what can be said in input and
analyse this flow of data according to the model of the
application.

Command grammars are complex systems requiring
domain vocabulary and attested linguistic structures.
Moreover, for each utterance, a set of possible variations
must be specified: the system should be able to deal with
implicit information and solve incomplete utterances.
Lastly, the system should be able to send a warning when
the utterance is not recognized with sufficient probability
to infer a correct understanding. All these reasons explain
why command grammars are most of the time written by
hand from a model of the domain or from a set of example
utterances.

The portability of command grammars is limited by
different constraints: the grammar is generally represented
by an unordered list of rules that mix syntax and
semantics. The knowledge base used by the vocal system
generally duplicated the knowledge base of the
application, since formalisms are much complex and
could cause some coherence and update problems. It is
generally the work of professional analysts to develop
resources (linguists, domain experts). The attempts to
transfer this part of the development process to
operational officers have always failed due to the
complexity of the task.

This paper is focused on this question. We propose some
elements for a better automation of the process. We
propose to automatically derive a part of the knowledge
required by the grammar elaboration phase from
application models and from the set of examples provided
by domain experts. We defend the hypothesis that

command grammars can be assimilated to sub-languages.
This sub-language can be described with a limited set of
rules that are incrementally applied to the input utterances.
The semantics attached to each utterance is calculated
simultaneously from (non monotonic) compositional
rules. This paper completes proposals presented in
Poibeau and Goujon (2004) for French: we show that the
model initially proposed for French can valuably be
applied to English.

In the following section, we present some works that are
partly similar to ours. We then detail the notion of sub-
language applied to command grammars and we propose a
dynamic model based on the knowledge base of the
application. We then present several examples and an
operational implementation of the system.

State of the art

Many authors have already studied the generation of
command grammar from formal models. Mathieu et al.
(2001) propose a general model in which a grammar is
instantiated by a independently-elaborated semantic
lexicon. This approach is interesting since the lexicon is
not mixed with syntax, but several experiments have
shown that abstract syntactic constructions elaborated
apart from the application are, most of the time, too
general to encode all data required for a given application.
It is then necessary to modify the grammar model for each
new application.

Our aim is to develop grammars that can easily take into
account the domain and the application. Brown and
Burton have addressed this kind of problems in 1976, in
the Semantic Grammar framework. Several applications
have been developed on top of this theory; among others
the MYCIN expert system for NLP based interfaces. The
limit of this approach is the fact that the description of the
grammar and of the semantic lexicon was at the same time
too costly and hardly re-usable.

Thot et al. (2002) propose a process to automatically
generate grammars to query a database using NLP
techniques (in English; but the process could applied to
other kind of languages). An abstract grammar is
developed with gaps that are filled by named elements
from the database (table names, field names...). This
application is interesting since there is a clear link
between the application model and its interaction tier.
However, this experiment is limited to databases. The aim

2147

of this paper is to extend this kind of systems to classical
vocal interfaces integrated on top of complex systems
from the industry.

Command-grammar as a sub-language

Utterances found in command and control applications are
very specific compared to everyday conversation.
Utterances are above all orders that are expressed with
imperative or infinitive clauses.

Zoom
Display the list of flights

Verb objects are simple or complex noun phrases. Thus,
one of the major challenges for such grammars is to
choose a good segmentation and solve ambiguities
between possessives phrases and direct or indirect objects.

Display the list of flights from Paris
Display the list of flights on the screen
Display the list of arrival flights

The above-mentioned examples show some typical
problem of prepositional phrase attachments in English.
This problem is even more crucial in analytic language
like French, in which most syntactic objects are
introduced by the French preposition d. Sequences such as
display the list of the flights leaving from Paris or display
the list of the flights to Paris include possessive phrases
attached to the noun phrase flights whereas display the list
of the flights on the screen includes an indirect verb object
(display ~ on the screen).

Information about verb sub-categorization frames, about
preposition semantics and about the application model are
necessary to process most of the ambiguities. For
example, on the one hand, the flight object has
properties like a departuretime , an arrival time , etc.
On the other hand, the flight ~ object does not have a
screen (of course a plane can integrate some screens but
that point is not relevant from our point of view).

We have shown that a command grammar can be
assimilated to a sub-language in which only a part of
everyday language complexity is involved. This
description, based on restricted syntactic and semantic
regularities, is coherent with previous works form
Mathieu et al. (2001). This kind of approach is most of the
time based on a first phase using a corpus to acquire
syntactic regularities by means of machine learning
techniques. This point is relevant since, in complex
industrial environments, end-users have to provide a set of
key structures to the analysts who develop the project in
coordination with application experts. The application
database is then viewed as a reservoir of knowledge
including a semantic dictionary for domain objects and
their respective relations. For example, in the framework
of navigation-simulated applications, all the environment
description is included in a repository (application
database). All information concerning the application
objects is encoded in this database.

Formal data models

Data that are manipulated through an interface are
generally stored in the application database. This database
includes a formalized image of the application.

A database is a set of objects. Objects include attributes,
which have values. Some values can be assigned by
default (from the interface of the system, it is possible to
specify a set of numeric values, a period of time, a
symbolic value, etc.). The major part of the actions made
through an interface must have access to at least a part of
the application data.

An action can then be viewed as a process which aim is to
modify an object or its values. A lot of formal
representation systems have been developed in the 1990’s,
mainly for software development. The knowledge
representation community has produced several studies
concerning various formal frameworks, the MADS, KOD
or KADS methods, among others (Guarino, 1995).

The main issue of this kind of system is to establish a
connection between the formal domain (the formalized
application database) and the set of utterances (natural
language clauses used to designate these objects). That is
the main reason why we propose to directly integrate, in
the application database, information about possible
linguistic realizations of a given piece of knowledge.

Incremental analysis

Thanks to the linguistic analysis, formal representations of
utterances are built from the utterances.

Grammar rules

Grammar rules are intended to group together
linguistically related set of words. The analysis is
performed by different rules that are grouped by priority
order. If a rule cannot be applied to an utterance, the
system tries some other rules in order to obtain a complete
analysis of the utterance. If the result is a partial analysis,
the process has failed. This is briefly the different kind of
rules:

— Simple syntactic clauses are isolated along with some

propositions (relative clause, completive clause)

— The sub-categorization frame of the syntactic head (the
verb, most of the time) is first taken into account.
Thus, utterances are firstly segmented in accordance
with this sub-categorization frame (several
segmentations can be proposed in case of ambiguity)

— Possessive phrases introduced by of (in French) are
arbitrary attached to their lefi-hand side syntactic
segment. The same strategy is applied to French for
the prepositions d and de.

— Syntactic phrases introduced by other prepositions are
analysed according to the semantic value of the
complement and of its introductive preposition.
Preposition semantics is registered in a table in
accordance with the proposals from Jensen and Nillson
(2003). Due to lack of place, we do not describe this
last point in this paper.

The system tries to build at the same time a syntactic and

a semantic representation of the utterance. This technique

i8 close to the one used in grammar formalisms like LFG

(with the c-structure and the f-structure, Bresnan 2000) or

to the TAGs (with the synchronous tags formalism,

Shieber and Schabes 1990).

We will describe some examples based on syntactic

phrases introduced by ambiguous preposition that are the

2148

most problematic ones for ambiguity resolution. The
semantic value of the syntactic phrase is calculated in
connecting the named elements from the utterances and
the application knowledge base. From this point of view, a
sequence can correspond to an attribute or a value, to an
object description, to the instantiation of the argumental
structure or to a complex predicate, etc.

The semantic compositional analysis is not monotonic.
Some elements produce specific logical form according to
their semantic value, among others complex determiners
and quantifiers. For example, the list of all the flights (la
liste de tous les vols in French) means: “query the
database and search for all the objects which type is
flight ” (see below). The same model is applied for
quantifiers and operations on sets of objects. Quantifier
focus analysis is limited given that most of the time, in
this kind of sub-language, the quantifier only concerns the
syntactic phrases immediately following the quantifier
itself.

A simple analysis example

The verb of the sentence is first isolated. Objects are then
analysed and indirect objects are typed according to their
introductive preposition (minimal phrase analysis).

(V Display) (NP the list) (PP of the flights)
(PP leaving from Paris)

If a verb sub-categorizes an object introduced by a
registered preposition and if a syntactic phrase is found
being introduced by this preposition, the sequence is
segmented according the verb sub-categorization.
Otherwise, syntactic phrases introduced by light
prepositions (of in English, d or de in French) are by
default attached to the preceding group. Ambiguity is
reduced since most syntactic groups are then related to
assumed syntactic heads.

(V Display)
flights)

(NP (NP the list) (PP (PP of the
(PP leaving from Paris)

At the same time, the system search for correspondences
between application objects and linguistic designations in
utterances in order to dynamically build logical forms. For
example, Paris is identified as a location name, leaving
Jfrom correspond to an attribute from the object flight
and the string flight matches the object flight (from the
application knowledge base). The following structured can
be generated from the text:

(PP leaving from Paris)
departure = Paris

(PP (PP of the flights)
Paris))
Flight: departure = Paris

(PP leaving from

(NP (NP the | isty (PP (PP of the flights) (PP
leaving from Paris)

Ox such as x = (Flight : departure = Paris)

(V Display) (NP (NP the list) (PP (PP of the
flights) (PP leaving from Paris)
Display Ox such as x = (Flight: departure =

Paris)

Words related to grouping of objects (the list of, the set of)
are analysed according to pseudo-logic forms from which
the knowledge base can be queried.

The list of application objects has to be known from the
system. For safety reasons (vocal interfaces can be
implemented on top of complex and sensitive systems), an
analysis is not validated of the head of a syntactic phrase
not has been recognized (but the application can be tuned
so that an utterance is acceptable even if some elements
from the syntactic analysis are not recognized).

Complex verb sub-categorization frames

When the verb sub-categorizes several syntactic elements,
the segmentation phase is intended to process these
elements first. In the example Move the tank from point
alpha to point beta, the verb mover requires three
arguments: the object that has been moved (the tank), the
starting point (point alpha) and the ending point (point
beta).

(V Move (NP the tank) (PP from point alpha)
(PP to point beta))

Several partial analyses are process at the same time in
case of ambiguity. Segmentation faults are solved during
the analysis: if no logical form can be obtained from a
given segmentation, the analysis process rejects the
former. The decision is only taken once the system has
access to the whole necessary information.

Discontinuous expressions

A sequence like Display the list of the flights on the screen
(the same structure can be found in French Afficher la liste
des vols d [’écran) causes a problem if the noun phrase on
the screen is not included in the knowledge base as
related to the verb. The following analysis is not possible:

(PP (PP of the flights) (PP on the screen))
flight = screen

because flight and screen are not a valid attribute-value
pair. For the sequence Display the list of the flights on the
screen to be valid, the complex lexical entry Display ~ on
the screen must be registered in the application knowledge
base. When the system segments the sentence in minimal
chunks, a pre-processing step is intended to group together
compound words and other complex syntactic phrases.
The following segmentation is thus obtained:

(V Display_on_the_screen) (NP the list) (PP of
the flights)

In the end, given that the semantic value of Display on the
screen is the same as the one of Display (the two
expressions are synonyms) the noun phrase is deleted
from the logical form so that the same result is obtained as
for Display the list of the flights.

Attribute name deduction from utterance

Human discourse generally includes ellipses, that is to say
non-explicitly specified elements. For safety reasons, most
implicit elements are not allowed in command and control
grammars: when commanding a complex system, all
pieces of information are required and must be given
explicitly. However, the system allows a limited number

2149

of ellipses when they do not introduce ambiguity in the
discourse and when they produce a more natural
conversation style.

The ellipses allowed by the system mainly concerned
attribute names. For example, if someone says the two
planes, the system can easily infer that the number refers
to the number of objects designated by the noun phrase.
For a sequence like the grey planes, the information that
grey is a colour is found in the application database. If the
noun grey was not known by the system, the analysis
would failed since the value could not be related to an
attribute name.

Syntactic variations

A set of variants is integrated to the system for the
analysis of sentences such as I want to zoom. Most of
these variants can be represented as adjuncts (/ want to) to
simple basic forms (zoom). These adjuncts do not modify
the semantic value of the original form on which they are
added. Their deletion allows to go back to a sequence
recognized by the application grammar.

Implementation

The proposed models could be entirely dynamic.
Utterances are segmented and analysed from generic
analysis rules and the logical form elaborated on the fly
from information contained in the application database.
However, practically speaking, most analysers need a
static knowledge base. The explicit production of the
application grammar is also useful to check the set of rules
and modify them whenever necessary.

The generation of the set of grammar rules can however
cause some maintenance problems. If some modifications
are introduced manually in the grammar, they will be lost
when a new version of the grammar will be automatically
generated from the application database and the set of
abstract un-instantiated grammar rules (which is necessary
when the application models change).

The grammar obtained from the method hereby described
is independent from the analyser: the system must only be
compliant with the input format of the analyser. A
wrapper can be added at the end of the generation phase in
order to produce grammars in an appropriate format. The
generation phase is largely independent from the
application knowledge base.

The overall result is comparable with a manually
generated grammar. However, the automation of the
process produces more coherent and homogeneous
grammars. Lastly, the analysis of a sample of utterances
provided by the end-user allows to check if the grammar
can analysed and produced valid logical forms from
application utterances.

Conclusion

This paper describes a system that semi-automatically
produces grammars for vocal interfaces of complex
systems. The system uses, on the one hand, the
application model and knowledge base and, on the other
hand, a set of un-instantiated grammar rules. The
compilation of these two sources generates some easily
adaptable application grammars. Logical forms are built
during the analysis so that most ambiguities can be solved

dynamically, when the system has relevant information
available. The overall semantics representation process is
most of the time compositional but we have also described
some non-monotonic cases.

References

Bonnet A. (1980) “Les grammaires sémantiques, outil
puissant pour interroger les bases de données en
langage naturel”. In R.A.LR.O. Informatique, vol. 14,
n°2, pp. 137- 148.

Bresnan J. (2000) Lexcical functional syntax. Blackwell.
Oxford.

Carbonell, N. et Dauchy, P. (1999). “Empirical data on the
use of speech and gestures in a multimodal human-
computer environment”. Proceedings HCI
International’99, Munich, pp. 446-450.

Guarino, N. (1995). Formal ontology, conceptual analysis
and knowledge representation. International Journal
Human-Computer Studies, 43(5). 625--640.

Jensen et Nillson (2003) « Ontology-Based Semantics for
Prepositions ». Proceedings of the ACL-SIGSEM
workshop on the syntax and semantics of prepositions
and computational linguistics applications, Toulouse.

Mathieu F.A., Surcin S. et Sedogbo C (2001) « Un
systtme de commande vocale multimodale
ThomSpeaker”. Technique et science informatiques.
Vol 20, n°3/2001, p.337-368.

Poibeau and Goujon (2004). Génération semi-automatique
de grammaires de commande vocale. Journées d’Etudes
de la Parole (JEP 2004). Fes (Marocco).

Scapin, D.L. (1986). Guide ergonomique de conception
des interfaces humain-machine. INRIA.

Shieber S. and Schabes Y. (1990). Synchronous Tree
Adjoining Grammars. In I3rd Computational
Linguistics (COLING 1990). Helsinki. Pp. 253-260.

Toth A.R., Harris T.K. , Sanders J., Shriver S., Rosenfeld
R (2002) Towards every-citizen’s speech interface : an
application generator for speech interfaces to databases.
ICSLP 2002. Denver. pp. 1497-1500.

2150

