
Design of an Interactive Web-based User Interface
for Speech Database Query Formation
Toomas Altosaar & Matti Karjalainen

Laboratory of Acoustics and Audio Signal Processing
Helsinki University of Technology, Finland

Toomas.Altosaar@hut.fi Matti.Karjalainen@hut.fi

Abstract
This paper presents the design of an advanced experimental system currently under development that allows speech database
queries to be defined in a high-level manner both intuitively and interactively. Queries are graphically specified by creating
matching template units that are instances of classes, e.g., phones, phonemes, syllables, and words. Also, the features and
properties of these instances are defined, e.g., voicing, part-of-speech tags, etc. Types, features, and properties of each unit can
be made as specific or general as required, enabling different degrees of query selectivity. Relations between template units are
used to specify query contexts and are indicated through links. Template units can be named symbolically, enabling the
formation of reusable libraries of queries. Interaction is promoted since formed queries can be applied to object-oriented speech
databases with immediate feedback. Databases can be located on a central server or on a local machine. Being html-compliant,
the system is accessible from different web-browsers and platforms making it a portable tool for speech processing.

1. Introduction
Speech corpora form a solid basis for research on spoken
language since theoretical hypotheses can be tested
comprehensively on large volumes of data. However,
before corpora can be used an infrastructure is necessary
that allows access to the data. A speech database – corpora
integrated with an access mechanism – fulfills this
requirement (Hendriks, 1990).
Speech database access is typically performed on relational
database management systems (RDBMS). Here the rich
structure of speech first needs to be flattened due to the
inherent representational constraints of the RDBMS
paradigm. In an object-oriented database (OODB), a more
natural model of speech can be formed thus allowing
complex queries to be designed and applied reliably
(Altosaar, Millar & Vainio, 1999).
Typical queries in an OODB system may take the form of
functions that search the local environment of a speech
utterance, moving repeatedly from unit to unit and testing
for matching contextual locations. These query functions
may return matches according to some binary or
continuous valued function, e.g., all [A] phones in some
context are returned as a set of matches, or, all units that
the query was applied to are returned but sorted according
to some closeness-of-match criterion.
However, specifying these query functions textually, such
as with computational methods in a programming
language, e.g., C, Lisp, etc., usually requires that the user
be fluent in the query syntax or implementation language
of the speech database. This has the negative effect of
restricting the number of potential users being able to
utilize the system. An intuitive and easy to use interface
would have much value since design and manipulation of
speech database queries could be performed by non-
programmers. By lowering the required skill threshold,
meaningful research could be performed, e.g., by students
and people working outside the core speech technology
area. Furthermore, since the system described here is
designed to work on html-compliant web-browsers, it
would be highly portable, functioning on different
computer and operating system platforms. Other benefits
would include the possibility to test and verify the related

annotations of a corpus since queries could be formed
interactively and tested immediately on parts or entire
volumes of speech data. Syntax and validity checking of
queries by the system is also important since faulty
queries could be detected before their expensive application
to large databases would commence.
This paper presents the design of an interactive web-based
system for forming and manipulating queries that can be
applied to speech databases. Through visualization, the
reliability of query specification is expected to be enhanced
in the sense that fewer human errors are made when
compared to writing equivalent query functions by hand in
a textual format. The interface under development is
integrated with the QuickSig speech OODB system
(Altosaar, 2001). Speech corpora that have been
represented under QuickSig include, e.g., TIMIT,
ANDOSL, Kiel, Estonian and Finnish.

2. Object Model for Representing Speech

2.1. Representation Frameworks
Representing data with objects allows abstraction layers to
be created that hide implementation details. Focus can
move from low-level issues to higher-order concepts that
are more directly related to the problem at hand.
Speech offers itself to be modeled readily with objects
based on classes, e.g., classes can be defined for items
such as a signal, phoneme, segment boundary, a talker,
etc. Objects, which are instances of these classes and strive
to model actual data, can be associated with other objects,
e.g., a talker may have produced a set of signals, with each
signal having one or more annotations, which in turn may
include sentence, word, syllable, and phone objects.
Objects can be made aware of their local surroundings
using links enabling efficient automated inferences to be
performed during query stages.
A collection of speech objects modeling a related
phenomenon is referred to as a representation framework
(Altosaar, 2001). A domain is one part of a framework and
can readily be used to express a language theory where
different hierarchical levels exist, e.g., in phonetics the
creation of sentence, word, syllable, and phone levels for

 583

some available data may be a natural solution. Each level
in turn may have a set of specialized speech objects called
units associated with it that represent actual occurrences in
an utterance, e.g., some actual phones.
Figure 1 shows a 3-D graphic visualization of a
representation framework for an utterance of speech that
includes acoustic, phonetic, linguistic, and orthographic
domains. Each domain, depicted as a plane, has specific
levels and units associated with it. Such a model of speech
can be queried readily since the types and relations of
objects to one another have been pre-computed.

Figure 1: A representation framework residing in an
OODB that models an utterance of speech. Queries
operate on speech units and their relations with units
in similar or other domains.

2.2. Queries
Search spaces are typically sets of frameworks, e.g., an
entire corpus, or several corpora. Matching contexts can be
found in a representational framework by first defining a
query template that resembles a fragment of the structure
shown in figure 1. Database search takes place by
measuring the closeness-of-match between a query
template and local framework structure. For each
comparison a distance measure is calculated that indicates
how well the template matched part of the framework.
Typically, the distance measure returns a simple binary
valued result: either the query template fits into to the
structure at some location or it doesn’t. The result of a
query is a set of matching locations represented as a list of
pointers to speech units in the frameworks. These can be
used in further speech processing tasks efficiently since
they offer a low database impedance mismatch (Altosaar &
Vainio, 2000) with the application, i.e., the results of the
query and the speech processing application share the same
data structures.
This process is best illustrated through an example where
the goal is to locate all fricative-vowel phone pairs in one
or more frameworks. This query can be envisioned as a
simple dipole query template structure, consisting of the
two phone units shown in figure 2.

Figure 2: Example query template for identifying
locations of fricative-vowel [F-V] pairs.

For an example search space, figure 3 shows a partial
framework depicting the phonetic annotation for the
Finnish sentence “isompi on suurempi”, where sentence,
word, syllable, and phone speech units exist.

Figure 3: Part of a framework for an example
utterance in the phonetic domain. Boxed areas show
matches for the query template of figure 2. (Finno-
Ugric phonetic alphabet is used on the phone level;
others are marked with orthography).

By visually inspecting the query template and the
framework to which it is applied, one notices that two
locations fit the match: the [s-o] and [s-u:] pairs. This is
since [s] can be thought of inheriting from the more
general fricative class, and both [o] and [u] from the vowel
class.

2.3. Query Expressed in Lisp
In order to automatically locate desired locations in an
utterance of speech, small sections of programming code
have been written to model these queries. This code is then
applied to a framework’s existing units, or a subset of
these, and an index calculated indicating how well the
query matched the framework at some location.
For example, in Lisp, the language used in the QuickSig
OODB system, the query of figure 2 can be written as:

(lambda (x)
 (and (typep x 'fricative)
 (typep (next-unit x) 'vowel)))

Here lambda defines a function and the variable x
represents an arbitrary unit in the framework where query
focus is currently positioned, i.e., the unit being currently
tested. The and macro requires that all of its arguments are
not nil valued for it to return a non-nil value (nil signifies
false in Lisp). The typep function tests whether its first
argument inherits the class specified by the second
argument (a symbol) in its class hierarchy. For example,
the desired context requires the first part of the phone pair
query to be a fricative, so the variable x is tested whether
it has the class fricative in its class hierarchy. (It should be
noted that the QuickSig speech OODB system relies
heavily on class hierarchies and automatically builds
frameworks prior to query application (Altosaar, 2001)).
For the template to match part of the framework, the
second phone must be a vowel and this is achieved by
testing the next-unit of x. Predefined functions exist for
units in the frameworks that can be applied generically and
utilize the links in the frameworks to access local context.
For example, the functions prev-unit and next-unit access
adjacent units on the same level, the function units returns
a list of all lower-level units, the function unit-of returns
the parent unit(s), etc. These functions also accept
additional arguments for inter-domain navigation.

 584

However, as the complexity of the query increases so does
the complexity of the textual query. This can be seen if we
add the following two conditions to the query template of
figure 2:

• the phone pair should exist at the beginning of a
syllable (refer to this syllable with variable syllx)

• syllx is neither a word-initial nor a word-final
syllable.

Figure 4 shows the modified query template required to
express these two additional constraints.

Figure 4: Original query template with additional
constraints. Units marked with bracket notation are
wild-card units, e.g., at least one syllable unit must
be present before and after syllx, and at least one
phone must follow the [F-V] pair.

By looking carefully at figure 3, it can seen that the new
query continues to accept the first match from the original
query, but rejects the second match since both additional
contextual constraints are not fulfilled by the [s-u:] pair.
The program code that represents this new query template
can be expressed as follows:

(lambda (x)
 (and
 (typep x 'fricative)
 (typep (next-unit x) 'vowel)
 (let* ((syllx (unit-of x))
 (wordx (unit-of syllx))
 (sylls (units wordx)))
 (and
 (eq x (first (units syllx)))
 (neq syllx (first sylls))
 (neq syllx (first (last sylls)))))))

The initial part of this query is similar to the one for
figure 2. Since access is needed to all of the syllables in
the word, the let* construct sets up three temporary
variables: syllx is a syllable in which the potential [F-V]
pair resides, and syllx is then queried for its parent wordx.
The variable sylls is a list of all syllable units within
wordx. With this information, an additional and form is
now able to check for the additional constraints: the
function eq is a predicate function that checks whether x
(now known to be a fricative) is the same object as the
first unit in syllx, and that syllx should not be the first
syllable in the word, nor the last one. The let* construct
finally returns the result of the additional constraints
(either a non-nil or nil value) and thus participates equally
with the initial [F-V] constraint. When applied to the
framework in question, this time only the [s-o] phone pair
is found to match the new query and a list containing one
element is returned: a pointer to the first [s] phone unit in
the framework. The reason why [s] is returned and not a

word or a syllable unit is because query focus was
specified as being the fricative.
As seen by this example, defining queries in the
implementation language of the OODB allows for high
degrees of expressive freedom. Complex queries, e.g.,
those including recursion, or structural elements that are
defined to be of a wild card matching nature, can also be
written in textually represented program code. Some
criteria that we have found to be important and existing in
a query formalism is the ability to:

• access local context through the use of
navigational functions, e.g., next-unit, etc., that
utilize explicit or logical links in frameworks,

• associate symbolic names with query templates so
that libraries of queries can be published and
reused by other queries and users,

• define local functions within a query so that
recursive search methods can be applied.

This textual formalism is however error-prone to the
programmer and cryptic to the non-programmer. Learning
to use a specific textual query syntax or programming
language presents a substantial usage barrier in any case. If
query structures could be created visually, e.g., on a
standard html-compliant browser, then this would improve
robustness, address the learning-curve issue, and provide a
portable implementation base as well.

3. Design of the User Interface
Retaining the expressive power of textual queries in a user
interface requires several key components. These elements
must enable and aid the user in forming the necessary
constraints in several different query dimensions, e.g.,
structural, type, and property. The function and design of
the components of a query formation interface are now
presented.

3.1. Structural Editor
This part of query specification is used to generate only
the query’s structural shape, i.e., refer to only the shapes
of figures 2 and 4. The user begins by first selecting a
domain and level from a menu and then creates a single
unit. Parents, siblings, and children can then be
subsequently added to this unit or other units to create the
desired template structure. Query template units can be
defined over many domains and linked to one another if
necessary to form multi-dimensional queries (Altosaar,
2001). For this reason it is advantageous that the graphical
interface of the structural editor support 3-D visualization.
The left half of figure 5 shows one possible user interface
for a structural editor. A single mouse click either selects
or de-selects a unit, e.g., unit F is currently selected. Unit
V is set as query focus.
A symbolic name can be assigned to a selected unit and
published so that other query structures can reference it.
Named queries can be combined and modified freely to
form new queries that can be used by other users. For
example, if the user saved the [F-V] phone pair query of
figure 2 into a library, this could be attached to unit syllx
of figure 4 in one editing step.

 585

Figure 5. Depiction of a possible user interface that is designed to fulfill design constraint specifications.

3.2. Type and Property Editor
The internal behavior of template units is defined
through a type and property interface. For example, a
unit may be required to be a phone such as [A], or a less
specific unit such as a back-vowel, vowel, or any
phone. Types and properties are assigned to a unit by
constructing a logic tree of any breadth or depth.
Required query complexity can thus be captured, see the
right side of figure 5. Operators can be any Boolean or
analog function.
Multiple constraints may be assigned to a single query
unit as well, e.g., a template unit may be specified to be
a fricative or a tremulant. Likewise, temporal
constraints can be specified when appropriate. For
example, the fricative unit in the previous example can
be assigned any number of absolute or relatives time
constraints, e.g., its temporal duration can be required to
be disjoint: a) between 50 ms and 100 ms, or b) greater
than 200 ms, as seen in figure 5, or a certain percentage
of another unit’s or structure’s duration. Quantity of
phonemic units can also be specified, e.g., short, half-
long, or long. Other properties of units, such as part-of-
speech tags, can be assigned to applicable units in a
similar manner.

3.3. User Interface
Figure 5 shows one of many possible designs for an
interface that enables users to generate queries in a high-
level and intuitive manner. While queries are being
formed they can be applied to a database immediately
and the number of matches indicated to the user.
Matches can be passed on to other speech processing
tasks directly, e.g., speech synthesis or recognition
algorithms, without the need for inefficient temporary
file-system operations.

4. Interaction with Server
For the system to be portable and function in a client
independent manner the server performs all
computations. For example, mouse-clicks in graphical
windows, selections via pop-up menus, etc., are relayed
back to the server that keeps track of interface state.
This information is converted into Lisp forms,
compiled, and is passed on to a search engine which

gives immediate feedback to the user. Integration
between the OODB search engine (QuickSig) and the
http server software (cl-http (Mallery, 2003),
portableaserve (Sourceforge, 2002)) is high since both
applications run in the same Lisp application
environment. Inter-application latency is therefore low
and only network delays affect the work rate of users.
The latter can be reduced to a minimum by having the
browser and OODB/http applications run on the same
physical machine.

5. Conclusions
This paper described the design of an advanced user
interface for forming speech database queries. Query
robustness, ease of use, and portability issues are
addressed. Currently we are investigating standard
methods to implement the interface and are considering
portable techniques such as forms, CGI, and client-side
image maps applied to the interface elements, and 2-D
SVG (W3C, 2003) and 3-D OpenGL (Silicon Graphics,
2004) rendering of query templates.

6. Acknowledgements
Funding from the Finnish Academy is gratefully
acknowledged for the project entitled “Integrated
Resources for Speech Technology and Spoken Language
Research in Finland" (project no. 53005).

7. References
Altosaar, T., Millar, B. & Vainio, M. (1999). Relational vs. Object-Oriented

Models for Representing Speech: A Comparison Using ANDOSL Data. In
Proc. of Eurospeech-99 pp. 915-918. Budapest, Hungary.

Altosaar, T. & Vainio, M. (2000). Reduced Impedance Mismatch in Speech
Database Access. In Proc. of the ICSLP-2000. vol. 1. pp. 778-781.
Beijing, China.

Altosaar, T., Object-based Modelling for Representing and Processing
Speech Corpora. Report no. 63 / Helsinki University of Technology,
Laboratory of Acoustics and Audio Signal Processing. Espoo, Finland,
2001.

Hendriks, J. (1990). A Formalism for Speech Database Access. Speech
Communication, 9, pp. 381-388. Elsevier Science Publishers B.V.,
North-Holland.

Mallery, J.C. (2003). CL-HTTP Common Lisp http Server.
ftp://ftp.ai.mit.edu/pub/users/jcma/cl-http/devo/

Silicon Graphics Inc. http://www.opengl.org
Sourceforge (2002). Portable AllegroServe

http://portableaserve.sourceforge.net/
W3C. Scalable Vector Graphics (SVG) 1.0 Specification.

http://www.w3.org/TR/SVG/

 586

