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Abstract
The CGN corpus (Oostdijk, 2000) (Corpus Gesproken Nederlands/Corpus Spoken Dutch) is a large speech corpus of contemporary
Dutch as spoken in Belgium (3.3 million words) and in the Netherlands (5.6 million words). Due to its size, manual phonemic annotation
was limited to 10% of the data and automatic systems were used to complement this data. This paper describes the automatic generation
of the phonemic annotations and the corresponding segmentations. First, we detail the processes used to generate possible pronunciations
for each sentence and to select to most likely one. Next, we identify the remaining difficulties when handling the CGN data and explain
how we solved them. We conclude with an evaluation of the quality of the resulting transcriptions and segmentations.

1. Introduction
The CGN corpus (Oostdijk, 2000) (Corpus Gesproken

Nederlands/Corpus Spoken Dutch) is a large speech corpus
of contemporary Dutch as spoken in Belgium (3.3 million
words) and in the Netherlands (5.6 million words). The
audio data are enriched with several transcriptions and seg-
mentations: orthography, part-of-speech tags and automat-
ically generated phonemic transcriptions with correspond-
ing segmentations are available for the whole corpus. Syn-
tactic annotations, manually verified phonemic transcrip-
tions and word segmentations are provided for 10% of the
data (the core corpus), while prosodic labeling was carried
out on 5% of the data. In this paper, we describe the meth-
ods and techniques used to create the automatically gener-
ated phonemic transcriptions and segmentations for the Bel-
gian (Flemish) part of the database.

First, we outline the process of automatically generating
phonemic transcriptions with their corresponding segmen-
tations. Next, we identify the remaining difficulties when
handling the CGN data and explain how we solved them.
We conclude with an evaluation of the quality of the result-
ing transcriptions and segmentations.

2. From Orthography to Pronounciation
The orthographic annotations in CGN are enriched with

various markers providing the following information:[?v]
foreign word, [?a] incomplete (broken-off) word,[?x] ill-
understood word (educated guess from the transcriber),[?u]
onomatopoeia or mispronunciation,[?z] Dutch word pro-
nounced with a strong regional accent, and[?d] dialect
word. The presence of capitals and digits provides further
information on the function of the word and its possible pro-
nunciations. Abbreviations are written in all capitals with
no dots in between, while numbers that are part of abbre-
viations (e.g. BBC1) are transcribed with digits. Capitals
are also used to mark proper nouns (e.g. ‘New York’) or ti-
tles of books, movies, songs and so on (e.g. ‘The?v Deer?v
Hunter?v’). Note that foreign proper nouns are not marked
with a?v, whereas titles are. Sentences end with a punctua-
tion mark, but do not start with a capital.

Based on the orthographic input, all plausible pronunci-
ations of the sentences are automatically generated and the
acoustically best matching phonemic sequence is selected.

To obtain plausible pronunciations for the words, the fol-
lowing techniques and resources were used:
Lexicon lookup: Fonilex (Mertens and Vercammen, 1998)
provides multiple phonemic transcriptions for all frequent
standard Dutch words. For the foreign words we draw on
Comlex (English), Celex (German) and Brulex (French).
If a foreign word is part of more than one of these lexica,
the different phonemic realizations are put in parallel since
the orthography does not specify which foreign language is
used. The same holds for capitalized words (e.g. ‘Hamburg’
which may either be pronounced in a Dutch, German or En-
glish fashion). Furthermore, specific lexica were made for
the most frequent proper nouns (5892 entries), interjections,
frequently used dialect words and items not covered in one
of the other lexica (982 entries).
Compounding, derivation and inflection: As Dutch is
a morphologically productive language, lexica in itself can-
not cover all possible word forms. The pronunciation of
non-trivial compounds and derivations is found by decom-
posing the word into its basic constituents, concatenating
their pronunciations and applying a set of assimilation rules.
In our approach, all decompositions possible based on pure
orthographic constraints are pursued, i.e. no morphotactic
constraints are imposed. So some degree of overgeneration
is introduced (e.g. ‘rijstroken’→ ‘rij’ + ‘stroken’ / ‘rijst’ +
’roken’). This overgeneration rarely resulted in new pronun-
ciation variants and even showed to be useful for handling
Dutch proper nouns and mispronunciations.
Abbreviations and digits: Abbreviations are phonemically
transcribed as the concatenation of the constituent letter
word transcriptions. In case the abbreviation –converted
to lower case– maps to an existing word, the corresponding
word pronunciation is added as well. Frequently occurring
exceptions (e.g. NATO) are added to one of the specific lex-
ica. The pronunciation of numbers inside the abbreviations
is solved with a rule-based system.
Broken-off words: Broken-off words (with broken-off or-
thography) are searched in a grapheme-phoneme aligned
version of the Fonilex database and the pronunciations for
all matching entries are put in parallel.
Strong regional accents:Starting from the standard Dutch
pronunciations, a set of context-dependent rewrite rules are
applied in order to generate a large number of plausible di-
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alect pronunciation variants (cf. infra: assimilation).
Grapheme-to-phoneme system:A grapheme-to-phoneme
(g2p) system was developed as a fall-back. The g2p sys-
tem is based on the Induction Decision Tree (ID3) mech-
anism (Pagel et al., 1998) and trained on the Fonilex
database. More information on the configuration of the g2p
system is given in (Demuynck et al., 2002).
Assimilation: In continuous speech, phonemes at word
boundaries influence each other. These cross-word
phenomena (assimilation, degemination, inserted linking
phonemes, etc.) are handled by a set of rewrite rules of the
form: phoneme sequencec (possibly empty) in the context
l · c · r is or can also be pronounced asc′. These rules are
internally applied to the complete sentence by our speech
recognition system (Demuynck, 2001), resulting in a com-
pact pronunciation network. The set of rules used are a sub-
set of the rules in the Fonilex database (most word-internal
assimilation rules also operate across word boundaries), ex-
tended with rules found in other resources (Verschaeren and
Van Compernolle, 1995).

For the Flemish data in CGN, 68% of the words in the
word list (92540 entries) are directly covered by one of the
lexica. New compounds and inflections derived from the
Fonilex lexicon, broken-off words, and abbreviations ac-
count for 22.5%, 3.5% and 1% repectively. The remaining
words are handled by the g2p system and are distributed
as follows: proper nouns (1.6%), onomatopoeia and mis-
pronunciations (0.9%), dialect words (0.5%), foreign words
(0.4%), and new words or unhandled derivations (1.6%).

3. Automatic Alignment: Viterbi versus
Forward-Backward

Once a pronunciation network is generated for every
sentence, the transcription matching best with the speech
signal is selected automatically. All phonemic alterna-
tives are acoustically scored in a single pass (Viterbi align-
ment) through our speech recognition system using context-
dependent (within- and cross-word) phoneme models and
the most probable one is retained. More details on the recog-
nition system and how it handles pronunciation networks
can be found in (Demuynck, 2001). Details on the acoustic
models will be given in section4.

For the segmentation, one can either use the alignment
provided by the Viterbi pass (maximum likelihood assign-
ment of speech to phonemes) or one can opt for an addi-
tional Forward-Backward pass which optimizes the bound-
aries between phonemes in a least squares sense.

3.1. Viterbi Segmentation

The Viterbi algorithm returns the single best path
through the model given the observed speech signalxT

1 :

sT
1 = arg max

sT
1 ⊂S

T∏
i=1

f(xi | si)p(si | si−1) ,

with sT
1 a sequence of HMM states (one state for each time

frame) which is consistent with the sentence modelS, and
T being the number of time frames. Thus, the Viterbi algo-
rithm results in the segmentation which reaches maximum
likelihood for the given feature vectors.
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Figure 1: Viterbi and Forward-Backward boundaries

3.2. Forward-Backward Segmentation

The Viterbi algorithm only provides us with an approxi-
mation of the optimal boundary position. This is illustrated
in figure 1. The Viterbi algorithm generates the boundary
corresponding to (1), whereas the optimal boundary in a
least squares sense matches with (2). Assuming that hu-
mans more or less follow the same likelihood distribution
when placing boundaries, solution (2) will be closest to the
manual segmentation on average.

To find the best possible estimate of the boundary in a
least squares sense the probability function of each bound-
ary must be calculated:

P (b|S, xT
1 ) =

f(xb
1|Sl)f(xT

b+1|Sr)
f(xT

1 |S)
,

with

f(xb
a|Sx) =

∑
sb

a⊂Sx

b∏
i=a

f(xi|si)1/βp(si|si−1)1/β

In the above equations, sentenceS is divided in partSl

left and partSr right of the boundary of interest. The extra
parameterβ compensates for the ill-matched assumption
made by HMMs that the observationsxi are independent.
The optimal value forβ in our experiments was 10, but its
exact value was not at all critical. The same compensation
factor can be found in recognition systems (Demuynck,
2001) as well as in confidence scoring of recognized
words (Wessel et al., 2001) for balancing the contribution
of acoustic and language model. The Forward-Backward
algorithm allows for an efficient calculation of the density
functions for all boundaries in a sentence. Given the
probability density function of each boundary, the least
squares estimateE{b} equals:

E{b} =
T∑

b=1

P (b|S, xT
1 ) b

4. Automatic Channel and Mode Selection
To allow for efficient batch processing of all CGN-data,

a number of difficulties have to be coped with. First, CGN
contains audio data from a wide variety of sources (see ta-
ble 1), resulting in recordings at office (16kHz) and tele-
phone (8kHz) quality of both polished and spontaneous
speech. Since all polished speech is recorded at 16kHz, and
since the additional bandwidth provided by 16kHz record-
ings of spontaneous speech has little effect on the accuracy
of our automatic system, we opted to distinguish between
two modes only: 16kHz polished speech on the one hand
and all remaining speech down-sampled to 8kHz on the
other hand. For both modes, a specific Hidden Markov
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a spontaneous conversations (face-to-face)
b interviews with teachers of Dutch
c spont. telephone dialogs recorded via a switchboard
d spont. telephone dialogs recorded locally (tel. tap)
e empty for the Flemish part of the corpus
f interviews/discussions/debates (broadcast)
g (political) discussions/debates/meetings (non-broadcast)
h lessons recorded in a classroom
i live (e.g. sport) commentaries (broadcast)
j news-reports/reportages (broadcast)
k news (broadcast)
l commentaries/columns/reviews (broadcast)
m ceremonious speeches/sermons
n lectures/seminars
o read speech (books on tape)

Table 1: The different components of CGN

Model was created. During the final handling of the data,
the speech mode for a given audio fragment is determined
automatically: both acoustic models run in parallel and the
model which reports the best acoustic match is selected. To
allow a direct comparison of the acoustic scores, the state
likelihoods for each frame were normalized as follows:

f ′(x | si) = f(x | si)/
∑

k

P (sk)f(x | sk)

with P (sk) the a priori (uni-gram) probability of each state.
See (Demuynck, 2001), page 43 for more details on the
rationale behind this normalization.

A second difficulty is the presence of both mono and
stereo audio files. For stereo recordings, the dominant chan-
nel (left or right) for a given audio fragment and speaker
is selected before the speech mode is determined. For
this channel detection, the 8kHz acoustic model is run on
speech from both the right and the left channel, and the
channel providing the best match is selected.

Finally, the acoustic models have to be adapted to the
specific task. When training acoustic models, the assimi-
lation processes are usually modeled implicitly by making
context dependent models, i.e. not the phonemes but the
phonemes given their left and right contexts (phonemes)
are modeled. For our purpose –the labeling of CGN data–
such implicit modeling of the assimilation processes would
result in inaccurate phonemic labeling, and could possibly
conflict with our explicit set of assimilation rules. Hence,
the same context-dependent rewrite rules as used with the
automatic labeling of the CGN data are activated during
training, assuring maximal consistency between the acous-
tic models and their final use for labeling. Assigning speech
to a certain mode (model) was done manually: data of read-
aloud books and newspaper texts, augmented with a small
set of manually selected recordings from lessons, lectures
and debates in order to have examples of speaker noises and
non-understood words, were used to train the 16kHz pol-
ished speech model. The same data was also down-sampled
to 8kHz and used to train the second acoustic model. De-
tection of the dominant channel for each speaker was done
in advance with existing acoustic models.

The telephone recordings and downsampled data from
some of the other components may be better suited to train
the 8kHz spontaneous speech model. However, the large

a b c d f g h i j k l m n o
ins 5.2 2.3 5.9 8.5 2.5 1.1 2.2 1.6 1.3 1.2 1.3 1.4 2.4 1.1
del 1.9 1.6 1.6 1.6 1.7 1.5 1.6 1.5 1.3 1.5 1.4 1.7 1.7 1.2
sub 6.3 4.7 6.9 7.8 4.5 3.4 3.6 4.0 3.3 2.8 2.6 4.2 3.6 2.4

Table 2: Deviations (in percent) between automatic and
manual phonemic transcription for all components in CGN

type freq. details & relative importance
ins. 1.1% n: 53.6%�: 19.8% j/w: 6.9% l/r: 3.7% t/d: 3.4%
del. 1.2% n: 28.2% h: 23.9%�: 20.3% t/d: 10.7% j: 4.5%
sub. 2.4% inter vowel: 50.5%

long→ corresponding short vowel: 18.8%
short→ corresponding long vowel: 7.6%
�↔ e, E, I : 14.9%

inter consonant: 44.1%
unvoiced→ corresponding voiced: 15.0%
voiced→ corresponding unvoiced: 11.3%
nasals (n, m,8): 9.4%

Table 3: Analysis (comp. o) of the most frequent errors

number of preprocessing steps needed to make this data
suitable for training acoustic models (e.g. removing all data
with overlapping speech from two or more speakers, or with
excessive amounts of background noise) prevented us so
far from creating these models. A later update of the CGN-
corpus may provide new automatic phonemic transcriptions
and segmentations if such ‘matched’ 8kHz model provides
substantially better results.

5. Evaluation

5.1. Channel and Mode Selection

We evaluated the 8/16kHz detection by manually check-
ing whether each speaker in component k was recorded in
the studio or over a telephone line. This selection proved
to be error free. Also the channel selection in stereo
files seemed to work flawlessly, except for some telephone
recordings with substantial crosstalk between the two chan-
nels. The selection of polished or spontaneous speech could
not be evaluated, since both acoustic models were trained
on polished speech only.

5.2. Automatic Phonemic Transcriptions

The automatic phonemic transcription was evaluated by
counting the number of insertions, deletions and substitu-
tions with respect to a hand-checked reference transcription.
The reference transcription was produced by a trained pho-
netician who corrected a baseline transcription generated
by a g2p system different from the one described in sec-
tion 2. Table2 summarizes the results, while table3 gives
an analysis of the most frequent errors for component o.
The other components show very similar patterns.

A detailed study of the contexts in which these errors
occur showed that not every deviation was a mistake on
the side of the automatic system. For example, the auto-
matic transcription typically incorporates more connected
speech effects than its manual counterpart. This might be
due to the fact that human transcribers, having to work at
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comp. Viterbi Forward-Backward
35ms 70ms 100ms 35ms 70ms 100ms

a 26.8% 15.2% 11.4% 26.3% 14.3% 10.7%
b 16.5% 8.0% 5.6% 15.6% 7.4% 5.2%
c 22.4% 8.9% 5.2% 21.9% 8.1% 4.6%
d 23.1% 10.3% 6.4% 22.3% 9.3% 5.6%
f 12.8% 5.7% 4.0% 11.5% 5.1% 3.6%
g 12.2% 4.7% 2.8% 10.6% 3.4% 1.8%
h 15.1% 5.8% 3.3% 13.9% 5.1% 2.8%
i 11.7% 4.9% 3.1% 9.9% 3.9% 2.4%
j 8.0% 2.5% 1.4% 6.3% 1.9% 1.1%
k 8.7% 2.1% 1.1% 6.7% 1.5% 0.9%
l 8.3% 2.4% 1.3% 6.4% 1.9% 0.9%
m 15.2% 6.2% 3.7% 11.7% 4.6% 3.1%
n 14.8% 5.8% 3.3% 14.2% 4.9% 2.6%
o 8.8% 1.7% 0.5% 7.1% 1.1% 0.4%

Table 4: Freq. counts of deviations between automatic and
manual word segmentations for all components in CGN

a considerable speed, sometimes overlook these phenom-
ena not present in the base transcription they were offered.
Some examples are:[1] �-insertion in non-homorganic con-
sonant clusters in code position (‘kalm’ /kAl�m/) (Booij,
1995), [2] homorganic glide insertion between vowels (‘die
een’ /dij�n/), or[3] n-deletion due to nasal assimilation (‘on-
macht’ /=m�xt/). Similarly, phenomena already applied in
the base transcription such as syllable-final n-deletion were
not always undone when not present.

The errors that unambiguously correspond to an error
in the automatic system are mainly due to common dialect
phenomena on the word level not described in the dictio-
nary (e.g. deletion of the final /t/ in frequent words like ‘dat’
and ‘wat’), and low signal quality or overlapping speech. In
fact, when looking at those components with mainly high
quality polished speech (j, k, l, and o), the amount of dis-
agreement between automatic and manual transcription is
very close to what we obtained when comparing two man-
ual annotations made by different phoneticians.

5.3. Word Alignment

The automatic segmentations were evaluated by count-
ing the number of word boundaries for which the devia-
tion between automatic and manual segmentation exceeded
thresholds of 35, 70 and 100ms. Manual segmentation
started from an automatic segmentation produced by the
Viterbi algorithm using acoustic models trained on an older
Dutch database. The persons that made the manual seg-
mentations were instructed to position boundaries so that
each word would sound acoustically acceptable in isola-
tion (Martens et al., 2002). Shared phonemes at the bound-
ary (e.g. he issad) were split in the middle, except for
shared plosives (e.g. stopplease), which were isolated al-
together. Noticeable pauses (> 50 ms) were segmented in
the same way as words, thus producing empty chunks.

We evaluated both the Viterbi and Forward-Backward
segmentation based on automatically generated phonemic
transcription. As can be seen from the results in table4,
the forward-backward method outperforms the Viterbi ap-
proach on all components, giving a 15% reduction in error
counts on average. A detailed analysis showed that more
than half of the remaining 35 msec deviations in the auto-
matic segmentations are transitions to and from noise and

transitions to unvoiced plosives (e.g. 34.5%, 12% and 15%
respectively for component o). Since these boundaries also
show large variation between the corresponding manual seg-
mentations of different correctors, we cannot expect an au-
tomatic system to give more consistent results.

6. Conclusions
We described the system used for the automatic gener-

ation of phonemic transcriptions and segmentation for the
Flemish part of the CGN-corpus. First, different techniques
are applied for the generation of all plausible pronuncia-
tion variants for a given orthographic transcription. Next,
a speech recognition system is employed for selecting the
best matching transcription with corresponding segmenta-
tion. Analysis of the differences between automatically
generated annotations and those made by humans showed
performance levels close to that of human transcribers for
the ‘high quality polished speech’ part of the database. We
also observed that the automatic system was not always to
blame: humans make mistakes too, e.g. due to tiredness
and loss of concentration, phenomena which never trouble
automatic systems. For the ‘spontaneous speech’ parts in
CGN, the results obtained by the automatic system are still
up to standard, but the gap between the automatic system
and human transcribers widens.
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