
Retrieving Annotated Corpora for Corpus Annotation

Yoshida Kyôsuke∗, Hashimoto Taiichi∗, Tokunaga Takenobu∗, Tanaka Hozumi∗

∗ Department of Computer Science, Tokyo Institute of Technology
Tokyo MeguroÔokayama 2-12-1, Japan

{rincho, taiichi, take, tanaka}@cl.cs.titech.ac.jp

Abstract
This paper introduces a toolBonsaiwhich supports human in annotating corpora with morphosyntactic information, and in retrieving
syntactic structures stored in the database. Integrating annotation and retrieval enables users to annotate a new instance while looking
back at the already annotated sentences which share the similar morphosyntactic structure. We focus on the retrieval part of the system,
and describe a method to decompose a large input query into smaller ones in order to gain retrieval efficiency. The proposed method is
evaluated with the Penn Treebank corpus, showing significant improvements.

1. Introduction

Statistical approach has been a main stream of natural
language processing research for the last decade, and it con-
tributed to improved performance of natural language pro-
cessing systems, particularly in morphological and syntac-
tic analysis. Large scale language resources, such as an-
notated corpora, played a key role in achieving these im-
provements. The size of corpora is important factor for re-
liable estimation of various parameters of statistical mod-
els. However, enlarging the corpus size while keeping its
quality is not an easy task. The richer information we put
in corpora, the more difficult it becomes to keep the anno-
tation consistency, since annotating rich information gen-
erally requires human intervention. To obtain both large
size and consistency of corpora, we need a tool supporting
humans in building annotated corpora (Cunningham et al.,
2003; Plaehn and Brants, 2000).

We are developingBonsai, a tool which supports hu-
mans in annotating corpora with morphosyntactic informa-
tion, and helps to retrieve syntactic structures stored in the
database. Integrating annotation and retrieval enables users
to annotate a new instance while looking back at the already
annotated sentences sharing similar morphosyntactic struc-
ture. With help of such confirmation, it becomes easier to
keep consistency of corpora.

Note that we aim to realize structure-based retrieval in-
stead of string-based one like a UNIX command “grep”.
String-based retrieval would be powerful enough for anno-
tation at morphological level, but we do not believe it is
enough for syntactic level annotation. Structure-based re-
trieval would be a great help when annotators think of mul-
tiple candidate structures for a sentence to annotate.

In this paper, we focus on the retrieval part of our sys-
tem, in particular, its efficiency in retrieving target syntactic
structures. Section 2. describes the database structure for
storing syntactically annotated corpora, and section 3. pro-
poses an efficient retrieval method. Our system uses Struc-
tured Query Language (SQL), and achieves fast retrieval by
decomposing large queries into small ones based on node
frequency. Section 4. describes experiments conducted to
evaluate the proposed method, and Section 5. concludes the
paper and looks at the future work.

2. Database Structure
Since we adopt context free grammar to annotate syn-

tactic information, each sentence is represented as a tree
with nonterminal symbols as its intermediate nodes, and
terminal symbols (words) as its leaf nodes as shown in Fig-
ure 1.

S
(0.1, 4.3)

NP-SBJ
(0.2, 1.1)

VP
(1.2, 4.2)

“I”
(0.3, 1.0)

NP
(2.1, 4.1)

“have”
(1.3, 2.0)

“a”
(2.2, 3.0)

“pen”
(3.1, 4.0)

 0 1 2 3 4

Figure 1: Example of an annotated sentence

Yoshikawa proposed a method to store and retrieve
XML documents efficiently by using the relational database
(RDB) (Yoshikawa et al., 2001). We use Yoshikawa’s
method to store tree structures in the database. Since an
XML document is represented as a tree, their method is
also applicable for storing syntactic trees in the database.

Yoshikawa’s method uses a location index to represent
hierarchical relations between nodes. The location index of
a node is represented in terms of a pair of decimal numbers
as shown in Figure 1. The integer part of a location index
designates an index to a place between leaf nodes starting
from 0. A pair of the decimal parts denotes a range of leaf
nodes which is dominated by the node. For example, an in-
dex “(0.x, 1.y)” of a node means that this node dominates
the leftmost leaf, i.e. a leaf between boundary indexes 0 and
1. The decimal part of a location index represent hierarchi-
cal relation between nodes. The decimal part is assigned
by traversing a tree. When descending, the decimal place
of the left number increments until a leaf node. The right
number of the leaf node is assigned to 0, and the decimal
place of the right number increments with ascending the
tree.

Using this indexing method, hierarchical relation of
two nodes can be calculated by comparing their location

 1775



indexes. For example, given nodesN1 = (l1, r1) and
N2 = (l2, r2), the relationsl1 < l2 andr2 < r1 suggest
that N1 properly dominatesN2, and the relationr1 < l2
suggests thatN1 locates at the left ofN2 and so on.

Following Yoshikawa’s method, we define the Base ta-
ble which stores the core structure of sentences as shown in
Table 1.

Field Name Description
sentenceID Sentence identifier
nodeID Node identifier
labelID Index to the node label
pathID Index to the path from root node
parentID nodeID of the parent node
nextSibID nodeID of the immediately right sibling
l pos Left location index
r pos Right location index

Table 1: Definition of Base table

3. Retrieving Trees
3.1. Overview of Retrieval

An input query is represented as a tree like the one given
in Figure 2. Here, “∗” denotes a wildcard which matches
any structure. The sentence shown in Figure 1 will be one
of the retrieved outputs for the query in Figure 2. In this
case, the node labeled “have” matches the wildcard in the
query.

VP

* NP

Figure 2: Example of an input query

The system provides two retrieval modes; the exact
matching mode and the partial matching mode. In exact
matching, a retrieved tree should include exactly the same
subtree as the input query. On the other hand, partial match-
ing allows any trees containing the query as a subtree to be
retrieved. For example, both trees given in Figure 3 will be
retrieved by the query in Figure 2 with the partial matching
mode, but only (a) will be retrieved with the exact matching
mode. Note that the subtree rooted in “SBAR-PRP” is an
extra portion matching the input query in partial matching.
Users can select matching mode when issuing a query.

The query in Figure 2 is actually translated into the SQL
query shown in Figure 4, before the search is performed. In
Figure 4, n1, n2 and n3 correspond to nodes “VP”, wildcard
and “NP” respectively. The value of labelID is an index to
the Label table (shown in Figure 5). The values 11 and 3
correspond to “VP” and “NP” respectively. The difference
between exact and partial matching is illustrated in the sec-
ond and third conditions of the “where” clause. The exact
matching translation requires (1) n2 is the leftmost immedi-
ate child of n1, (2) n3 is the immediately next (right) sibling
of n2, and (3) there is no immediately next (right) sibling of

VP

NP

VP

(a) (b)

SBAR

"create"

NP SBARPP

• • •

•

SBAR-PRPNP"emphasize"

"because" S

•

•

"because"•

Figure 3: Exact matching and partial matching

Exact matching
select n1.sentenceID
from tbl n1, tbl n2, tbl n3
where n2.parentID=n1.nodeID

and n2.lpos−n1.l pos=0.1
and n2.nextSibID=n3.nodeID
and n3.nextSibID=NULL
and n1.labelID=11
and n3.labelID=3

Partial matching
select n1.sentenceID
from tbl n1, tbl n2, tbl n3
where n2.parentID = n1.nodeID

and n3.parentID=n1.nodeID
and n2.rpos<n3.l pos
and n1.labelID=11
and n3.labelID=3

Figure 4: SQL translation

n3. These conditions define exactly the same tree as that in
Figure 2. On the contrary, the partial matching translation
requires only (1) n1 is the parent of both n2 and n3, and (2)
n2 locates at the left of n3. The wildcard is realized by not
specifying the labelID of n2.

As shown in Figure 4, nodes to be retrieved are declared
in the “from” clause, and conditions on the nodes and the
relations between them are put in the “where” clause in the
translated SQL query. Therefore a query involving a large
number of nodes generates a longer SQL query. As we will
show in 3.2., we found that the retrieval speed decreased
greatly as the number of nodes in a query increases. It is not
practical to translate all queries into a single SQL query. We
propose a method to decompose an input query into several
subtrees, and translate each subtree into a SQL query.

3.2. Query Size and Retrieval Performance

To find a adequate size of subtrees, we conducted pre-
liminary experiments with the Penn Treebank corpus (Mar-
cus et al., 1993) which consists of 48,884 syntactically an-
notated sentences. All these sentences were stored in the
database as described in Section 2.. Randomly extracted
8,455 subtrees from the whole Treebank were used as in-
put queries. These queries were submitted to the system in
partial matching mode. Since partial matching generally re-
trieves more results than exact matching, and requires more
time. We investigated the influence on the retrieval time of
the number of nodes in an input query, and of the maximum
depth of a query.

Table 2 shows the relation between the number of nodes
in a query and the corresponding retrieval time. We can see
that the average retrieval time significantly increases when
the number of nodes in the input query exceeds 17. Con-
sidering the maximum retrieval time as well, the next gap
is found between 12 and 13. The third gap is between 5 and

 1776



No. of Retrieval time [sec] Ave. No. of
nodes Ave. Max. Min. outputs queries
2 2.04 10.6 0.001 24,330 65
3 1.59 11.3 0.001 9,855 99
4 0.84 11.5 0.002 2,189 168
5 0.38 10.1 0.002 337 281
6 0.19 6.42 0.002 65.1 437
7 0.12 1.64 0.003 17.0 611
8 0.09 1.64 0.003 7.16 762
9 0.07 1.35 0.004 3.32 860

10 0.06 1.31 0.008 1.91 902
11 0.05 1.31 0.009 1.36 901
12 0.07 1.32 0.010 1.13 869
13 0.11 3.84 0.012 1.04 801
14 0.18 9.36 0.018 1.01 678
15 0.28 45.5 0.041 1.00 498
16 0.56 2.25 0.065 1.00 300
17 1.94 6.12 0.27 1.00 140
18 7.51 18.1 1.09 1.00 47
19 31.1 47.5 8.02 1.00 10
20 161 186 135 1.00 3
21 ∼ 1,108 3,395 298 1.00 23

Table 2: Number of nodes in a query and retrieval time

6. This last gap can be explained by a huge number of re-
trieved results rather than the complex structure of an input
query.

Table 3 shows the relation between the maximum depth
of a query and the retrieval time. The maximum depth of
a query and the number of nodes in the query correlate to
a certain extent, thus queries with depth 7 require longer
retrieval time. Comparing the average number of outputs
and number of queries in Table 2 and 3, we can see that
queries with depth 7 in Table 3 roughly correspond to the
queries including more than 13 nodes in Table 2.

This observation leads us to a criterion for decompos-
ing the input query into a set of subtrees whose number of
nodes ranges between 6 and 12.

Max. Retrieval time Ave. No. of
depth Ave. Max. Min. outputs queries

1 2.08 10.63 0.001 19,092 134
2 0.34 11.33 0.001 609 694
3 0.14 45.45 0.002 24.6 2,544
4 0.16 1.64 0.007 38.6 458
5 0.13 1.35 0.007 8.3 760
6 0.16 18.1 0.007 2.0 1,680
7 2.60 3,394 0.020 1.0 2,185

Table 3: Maximum depth of a query and retrieval time

3.3. Decomposing a Query

Based on the preliminary experimental results, we pro-
pose a method to decompose a large query into small sub-
trees consisting of 6 to 12 nodes, and translate them into
SQL queries. In this method, another important factor af-
fecting the performance is the order of subqueries which
will be performed sequentially. It is obvious that less the
number of retrieved outputs in the earlier queries is prefer-

able. To achieve this, we obtain statistics of the corpus in
advance and use that information for decomposing large
queries.

(1) Label table

label labelID freq
S 1 106,091
NP-SBJ 2 94,319
VP 11 179,161
“Indian” 12501 36
“movie” 1820 74
“star” 2971 58
· · · · · · · · ·

(2) P-C table

parent children freq
S NP-SBJ, VP 41,604
NP-SBJ “Indian”, NP 13
NP “movie”, “star” 25
· · · · · · · · ·

Figure 5: Example of Label table and P-C table

Figure 5 shows examples of a Label table and a P-C
table. A Label table stores relations between labelIDs and
node labels together with the frequency of labels appearing
in the corpus. A P-C table stores context free rules present
in the corpus. The “parent” field and the “children” field
correspond to the left hand side symbol and the right hand
side symbols of a context free rule. For example, the first
record of the P-C table in Figure 5 corresponds to a rule “S
→ NP-SBJ, VP”. The “freq” field denotes the frequency of
the rule in the corpus.

Using the statistics, we define a frequency of a node
frq(n) in a query as follows.Frq(n) of a leaf noden is
the frequency ofn in the Label table.Frq(n) of an inter-
mediate node is the frequency of the rule in the P-C table,
the “parent” field of which isn.

ni

tit

tj tk

tpt

nj nk

np

...

... ...

Input query

Figure 6: Decomposing an input query

The decomposition algorithm first finds noden with the
leastfrq(n) value, and then identifies a minimum subtree
that includes noden. Whenn is an intermediate node, a
minimum subtree rooted inn is adopted. Figure 6 shows an
input query example. Supposenj is a node with the least
frq(nj) value in this query, subtreetj becomes the ini-
tial subtree. Ifnp is the least frequent node, thentp would
be the initial subtree. Note that a minimum subtree cor-

 1777



responds to a context free rule and is illustrated as a gray
triangle in Figure 6.

We start with this initial subtree, and extend it so as to
have 6 to 12 nodes. The extension is performed by adding
the minimum subtree which shares a node with the initial
subtree. Supposetj in Figure 6 is the initial subtree, possi-
ble extension will be done by addingti or one of subtrees
whose root node is a leaf oftj . Among these, a minimum
subtree which includes a node with the leastfrq value is se-
lected. However, if adding a subtree makes the total number
of nodes exceed 12, that subtree is not selected even though
it has a node with the leastfrq value. The extension con-
tinues while the total number of nodes in the subtree does
not exceeds 12. The resulting subtree is then translated into
a SQL query as described in 3.1..

By adding less frequent nodes as the extension, we ex-
pect less retrieval outputs. The second retrieval is per-
formed against the result of the first retrieval. The second
subquery is generated by extending the first query subtree.
As in the first query, we first find an initial minimum sub-
tree which includes a node with the leastfrq value. In ad-
dition, the minimum subtree should share a node with the
first query subtree. Note that, this shared node is already in-
stantiated to a certain node of a sentence in the corpus, since
we perform the second retrieval against the result of the first
retrieval. This initial minimum subtree is extended in the
same manner as the first subquery. Following subqueries
are generated until they cover the whole input query.

4. Experiments
We conducted experiments to evaluate the proposed

method. Queries are categorized with respect to the num-
ber of nodes, ranging from 13 to 25. Queries with less
than 13 nodes were excluded, because our system does not
decompose such queries. We used 100 queries (subtrees)
in each category which were randomly extracted from the
Penn Treebank corpus.

First, we compare the proposed method with retriev-
ing by a single SQL query without decomposition. Results
are shown in Table 4. For exact matching, the proposed
method keeps constant retrieval time despite the increase in
the number of nodes. In contrast, the retrieval time of the
single SQL method increases significantly for the queries
with more than 16 nodes.

For partial matching, the proposed method shows stable
retrieval time again, but the single SQL method degrades
the retrieval speed when the number of nodes increases.
We aborted in measuring the retrieval time for queries with
more than 19 nodes, because of it took so long time.

To verify the effect of ordering subqueries, another
baseline was introduced, that is, decomposing queries with-
out considering the order of subqueries. According to this
baseline, an input query is decomposed into subtrees from
the root node in top-down manner. This method is labeled
as “Top-down” in Table 4. In the top-down method, a sub-
tree is expanded from the root node by adding a minimum
subtree in depth-first and left-to-right manner. The expan-
sion continues while the number of nodes does not exceed
12. The constraint on the number of nodes is the same as
the proposed method. The next subtree is searched for from

the left-bottom node of the initial subtree in the same man-
ner.

Comparing to the single SQL method, the top-down
method shows stable retrieval time in both exact matching
and partial matching. However, on average, the proposed
method is 3 times faster in exact matching and 5 times faster
in partial matching than the top-down method. According
to the experimental results, we can conclude that decom-
posing and ordering of queries significantly improve the re-
trieval speed.

No. Retrieval time [sec]
of Proposed Single SQL Top-down

node exact partial exact partial exact partial
13 0.060 0.023 0.151 0.642 0.305 0.098
14 0.058 0.039 0.174 2.855 0.398 0.237
15 0.050 0.034 0.386 9.744 0.088 0.121
16 0.035 0.026 1.972 17.70 0.134 0.101
17 0.036 0.027 12.67 189.9 0.159 0.204
18 0.029 0.027 9.800 317.4 0.106 0.088
19 0.034 0.028 41.45 986.4 0.125 0.143
20 0.040 0.109 75.80 N/A 0.074 0.636
21 0.073 0.218 298.3 N/A 0.147 0.988
22 0.058 0.111 787.3 N/A 0.090 0.449
23 0.044 0.048 723.6 N/A 0.094 0.390
24 0.040 0.040 1369 N/A 0.101 0.249
25 0.040 0.041 3395 N/A 0.086 0.280

Table 4: Evaluation results

5. Conclusions and Future Work
In the experiments, we found that the number of nodes

in a query affects the retrieval time. We estimate the op-
timal number of nodes as between 6 and 12 for the Penn
Treebank corpus when decomposing a large query. How-
ever, this parameter might be different for the other corpus.
We need to investigate a method to estimate the optimal
parameters automatically given a corpus.

6. References
H. Cunningham, V. Tablan, K. Bontcheva, and M. Dim-

itrov. 2003. Language engineering tools for collabora-
tive corpus annotation. InProceedings of Corpus Lin-
guistics 2003.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of english: The penn treebank.Computational Linguis-
tics, 19(2).

Oliver Plaehn and Thorsten Brants. 2000. Annotate – an
efficient interactive annotation tool. InProceedings of
the Sixth Conference on Applied Natural Language Pro-
cessing ANLP-2000, Seattle, WA.

Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki
Shimura, and Shunsuke Uemura. 2001. Xrel: A path-
based approach to storage and retrieval of xml documents
using relational database.ACM Transactions on Internet
Technology, 1(1).

 1778




