Retrieving Annotated Corpora for Corpus Annotation

Yoshida Kyosuke', Hashimoto Taiichi*, Tokunaga Takenobu, Tanaka Hozumi*

* Department of ComputerAScience, Tokyo Institute of Technology
Tokyo MeguroOokayama 2-12-1, Japan
{rincho, taiichi, take, tanak&cl.cs.titech.ac.jp

Abstract
This paper introduces a toBonsaiwhich supports human in annotating corpora with morphosyntactic information, and in retrieving
syntactic structures stored in the database. Integrating annotation and retrieval enables users to annotate a new instance while looking
back at the already annotated sentences which share the similar morphosyntactic structure. We focus on the retrieval part of the system,
and describe a method to decompose a large input query into smaller ones in order to gain retrieval efficiency. The proposed method is
evaluated with the Penn Treebank corpus, showing significant improvements.

1. Introduction 2. Database Structure

o _ Since we adopt context free grammar to annotate syn-
Statistical approach has been a main stream of naturghctic information, each sentence is represented as a tree

language processing research for the last decade, and it cofyith nonterminal symbols as its intermediate nodes, and

tributed to improved performance of natural language proyerminal symbols (words) as its leaf nodes as shown in Fig-
cessing systems, particularly in morphological and syntacge 1.

tic analysis. Large scale language resources, such as an-

notated corpora, played a key role in achieving these im- (0.1,54.3)

provements. The size of corpora is important factor for re-

liable estimation of various parameters of statistical mod- NP-SBJ VP

els. However, enlarging the corpus size while keeping its ©.2, L.y (1.2,4.2)

quality is not an easy task. The richer information we put \NP

in corpora, the more difficult it becomes to keep the anno- (2.1,4.1)
tation consistency, since annotating rich information gen- iR /. / \ .
erally requires human intervention. To obtain both large 03 1.0) A5 2250 Gr40)
size and consistency of corpora, we need a tool supporting 0 1 2 3 4
humans in building annotated corpora (Cunningham et al.,

2003; Plaehn and Brants, 2000). Figure 1: Example of an annotated sentence

We are developinggonsai, a tool which supports hu-
mans in annotating corpora with morphosyntactic informa- _ _
tion, and helps to retrieve syntactic structures stored in the Yoshikawa proposed a method to store and retrieve
database. Integrating annotation and retrieval enables usef$/L documents efficiently by using the relational database
to annotate a new instance while looking back at the alread{RDB) (Yoshikawa et al., 2001). We use Yoshikawa's
annotated sentences sharing similar morphosyntactic strug?ethod to store tree structures in the database. Since an
ture. With help of such confirmation, it becomes easier toXML document is represented as a tree, their method is
keep consistency of corpora. also applicable for storing syntactic trees in the database.
. . : . Yoshikawa’s method uses a location index to represent
Note that we aim to realize structure-based retrieval in-_. . , o
)) u » hierarchical relations between nodes. The location index of
stead of string-based one like a UNIX command “grep

.) ‘a node is represented in terms of a pair of decimal numbers
String-based retrieval would be powerful enough for anno- P P

._as shown in Figure 1. The integer part of a location index
tation at morphological level, but we do not believe it is g gerp

: . designates an index to a place between leaf nodes starting
enough for syntactic level annotation. Structure-based re; . .
from 0. A pair of the decimal parts denotes a range of leaf

trieval would be a great help when annotators think of mul- S . .
: : nodes which is dominated by the node. For example, an in-
tiple candidate structures for a sentence to annotate. o - : .
_ _ dex “(0.z, 1.y)" of a node means that this node dominates

In this paper, we focus on the retrieval part of our sys-the leftmost leaf, i.e. a leaf between boundary indexes 0 and
tem, in particular, its efficiency in retrieving target syntactic 1. The decimal part of a location index represent hierarchi-
structures. Section 2. describes the database structure f@é] relation between nodes. The decimal part is assigned
storing syntactically annotated corpora, and section 3. propy traversing a tree. When descending, the decimal place
poses an efficient retrieval method. Our system uses Strugf the left number increments until a leaf node. The right
tured Query Language (SQL), and achieves fast retrieval bjumber of the leaf node is assigned to 0, and the decimal

decomposing large queries into small ones based on nodgace of the right number increments with ascending the
frequency. Section 4. describes experiments conducted f@ee.

evaluate the proposed method, and Section 5. concludes the Using this indexing method, hierarchical relation of
paper and looks at the future work. two nodes can be calculated by comparing their location

1775

indexes. For example, given nodds = (l;,7;) and
Ny = (I3,72), the relationd; < Iy andre < r; suggest :
that N; properly dominatesV,, and the relation; < [VP VP
suggests thal; locates at the left oiV, and so on. /7 \ PN

Following Yoshikawa’s method, we define the Base ta- 'create” NP "emphasize” NP SBAR-PRP
ble which stores the core structure of sentences as shown in l \ :

Table 1. NP PP SBAR "because" S

Field Name Description

sentencelD Sentence identifier (a) (b)

nodelD Node identifier

labellD Index to the node label Figure 3: Exact matching and partial matching

pathlD Index to the path from root node

parentID nodelD of the parent node

nextSiblD nodelD of the immediately right sibling Exact matching Partial matching

I_pos Left location index select nl.sentencelD select nl.sentencelD

r-pos Right location index from tbl n1, thl n2, tbl n3 from thl n1, tbl n2, tbl n3

. where n2.parentlD=n1.nodelD where n2.parentlD = nl.nodelD
Table 1: Definition of Base table and n2.lpos—n1.lpos=0.1 and n3.parentlD=n1.nodelD
and n2.nextSibID=n3.nodelD and n2.rpos<n3.L_pos
and n3.nextSibID=NULL and nl.labellD=11
L. and nl.labellD=11 and n3.labellD=3
3. Retrieving Trees and n3.labellD=3

3.1. Overview of Retrieval

Aninput query is represented as a tree like the one given
in Figure 2. Here, ¥” denotes a wildcard which matches
any structure. The sentence shown in Figure 1 will be on@3. These conditions define exactly the same tree as that in
of the retrieved outputs for the query in Figure 2. In this Figure 2. On the contrary, the partial matching translation
case, the node labeled “have” matches the wildcard in theequires only (1) nl is the parent of both n2 and n3, and (2)
query. n2 locates at the left of n3. The wildcard is realized by not
specifying the labellD of n2.

VP As shown in Figure 4, nodes to be retrieved are declared
/ \ in the “from” clause, and conditions on the nodes and the
% NP

Figure 4: SQL translation

relations between them are put in the “where” clause in the
translated SQL query. Therefore a query involving a large
number of nodes generates a longer SQL query. As we will
show in 3.2., we found that the retrieval speed decreased
greatly as the number of nodes in a query increases. Itis not
practical to translate all queries into a single SQL query. We
The system provides two retrieval modes; the exacPropose a method to decompose an input query into several
matching mode and the partial matching mode. In exacgubtrees, and translate each subtree into a SQL query.
matching, a retrieved tree should include exactly the same i .
subtree as the input query. On the other hand, partial matcts-2- Query Size and Retrieval Performance
ing allows any trees containing the query as a subtree to be To find a adequate size of subtrees, we conducted pre-
retrieved. For example, both trees given in Figure 3 will beliminary experiments with the Penn Treebank corpus (Mar-
retrieved by the query in Figure 2 with the partial matchingcus et al., 1993) which consists of 48,884 syntactically an-
mode, but only (a) will be retrieved with the exact matchingnotated sentences. All these sentences were stored in the
mode. Note that the subtree rooted in “SBAR-PRP” is andatabase as described in Section 2.. Randomly extracted
extra portion matching the input query in partial matching.8,455 subtrees from the whole Treebank were used as in-
Users can select matching mode when issuing a query. put queries. These queries were submitted to the system in
The query in Figure 2 is actually translated into the SQLpartial matching mode. Since partial matching generally re-
query shown in Figure 4, before the search is performed. litrieves more results than exact matching, and requires more
Figure 4, n1, n2 and n3 correspond to nodes “VP”, wildcardiime. We investigated the influence on the retrieval time of
and “NP” respectively. The value of labellD is an index to the number of nodes in an input query, and of the maximum
the Label table (shown in Figure 5). The values 11 and 3depth of a query.
correspond to “VP” and “NP” respectively. The difference Table 2 shows the relation between the number of nodes
between exact and partial matching is illustrated in the secin a query and the corresponding retrieval time. We can see
ond and third conditions of the “where” clause. The exactthat the average retrieval time significantly increases when
matching translation requires (1) n2 is the leftmost immedithe number of nodes in the input query exceeds 17. Con-
ate child of n1, (2) n3 is the immediately next (right) sibling sidering the maximum retrieval time as well, the next gap
of n2, and (3) there is no immediately next (right) sibling of is found between 12 and 13. The third gap is between 5 and

Figure 2: Example of an input query

1776

No.of Retrieval time [sec] Ave. No. of able. To achieve this, we obtain statistics of the corpus in

nodes Ave. Max. Min. outputs queries advance and use that information for decomposing large
2 204 106 0.001 24,330 65 queries,

3 1.59 11.3 0.001 9,855 99

4 0.84 11.5 0.002 2,189 168 (1) Label table

5 0.38 10.1 0.002 337 281 bel 2beliD rea

6 0.19 6.42 0.002 65.1 437 S 1106091

7 0.12 1.64 0.003 17.0 611 NP-SBJ 5 94319

8 0.09 1.64 0.003 7.16 762 P 11 179161

9 0.07 1.35 0.004 3.32 860 “Indian” 12501 ! 36

10 0.06 1.31 0.008 1.91 902 _ndian

11 0.05 1.31 0.009 1.36 901 _movie 1820 [

12 007 132 0010 113 869 star 2971 58

13 0.11 3.84 0.012 1.04 801 - - -

14 0.18 936 0.018 1.01 678 (2) P-C table

15 028 455 0041 100 498 Sarent children freq
16 0.56 2.25 0.065 1.00 300 S NP-SBJ VP 41,604
17 194 612 0.27 1.00 140 NP-SBJ “Indian” NP 13
18 751 181 1.09 1.00 47 NP “movie”. “star” 25
19 311 475 802 1.00 10 N
20 161 186 135 1.00 3
21~ 1,108 3,395 298 1.00 23 Figure 5: Example of Label table and P-C table

Table 2: Number of nodes in a query and retrieval time ~ Figure 5 shows examples of a Label table and a P-C
table. A Label table stores relations between labellDs and

node labels together with the frequency of labels appearing

6. This last gap can be explained by a huge number of rein the corpus. A P-C table stores context free rules present
trieved results rather than the complex structure of an inpuih the corpus. The “parent” field and the “children” field
query. correspond to the left hand side symbol and the right hand

Table 3 shows the relation between the maximum deptlside symbols of a context free rule. For example, the first
of a query and the retrieval time. The maximum depth ofrecord of the P-C table in Figure 5 corresponds to a rule “S
a query and the number of nodes in the query correlate to- NP-SBJ, VP". The “freq” field denotes the frequency of
a certain extent, thus queries with depth 7 require longethe rule in the corpus.
retrieval time. Comparing the average number of outputs Using the statistics, we define a frequency of a node
and number of queries in Table 2 and 3, we can see thatrq(n) in a query as follows.Frq(n) of a leaf noden is
queries with depth 7 in Table 3 roughly correspond to thethe frequency of: in the Label table.Frq(n) of an inter-
gueries including more than 13 nodes in Table 2. mediate node is the frequency of the rule in the P-C table,

This observation leads us to a criterion for decomposthe “parent” field of which isa.
ing the input query into a set of subtrees whose number of
nodes ranges between 6 and 12.

Input query

Max. Retrieval time Ave. No. of
depth Ave. Max. Min. outputs queries

1 208 10.63 0.001 19,092 134
2 034 11.33 0.001 609 694
3 0.14 4545 0.002 24.6 2,544
4 0.16 1.64 0.007 38.6 458
5 0.13 1.35 0.007 8.3 760
6 0.16 18.1 0.007 2.0 1,680
7 260 3,394 0.020 1.0 2,185

Table 3: Maximum depth of a query and retrieval time
Figure 6: Decomposing an input query

3.3. Decomposing a Query The decomposition algorithm first finds nodevith the
Based on the preliminary experimental results, we prodeastfrq(n) value, and then identifies a minimum subtree
pose a method to decompose a large query into small subbhat includes node. Whenn is an intermediate node, a
trees consisting of 6 to 12 nodes, and translate them intminimum subtree rooted inis adopted. Figure 6 shows an
SQL queries. In this method, another important factor afinput query example. Supposg is a node with the least
fecting the performance is the order of subqueries whichfrq(n;) value in this query, subtreg becomes the ini-
will be performed sequentially. It is obvious that less thetial subtree. Ifn, is the least frequent node, thenwould
number of retrieved outputs in the earlier queries is preferbe the initial subtree. Note that a minimum subtree cor-

1777

responds to a context free rule and is illustrated as a grathe left-bottom node of the initial subtree in the same man-
triangle in Figure 6. ner.

We start with this initial subtree, and extend it so asto Comparing to the single SQL method, the top-down
have 6 to 12 nodes. The extension is performed by addingiethod shows stable retrieval time in both exact matching
the minimum subtree which shares a node with the initialand partial matching. However, on average, the proposed
subtree. Suppogg in Figure 6 is the initial subtree, possi- method is 3 times faster in exact matching and 5 times faster
ble extension will be done by addirig or one of subtrees in partial matching than the top-down method. According
whose root node is a leaf f. Among these, a minimum to the experimental results, we can conclude that decom-
subtree which includes a node with the lefsf value is se- posing and ordering of queries significantly improve the re-
lected. However, if adding a subtree makes the total numbérieval speed.
of nodes exceed 12, that subtree is not selected even though
it has a node with the leagt-¢ value. The extension con- No. Retrieval time [sec]
tinues while the total number of nodes in the subtree does O°f Proposed Single SQL Top-down
not exceeds 12. The resulting subtree is then translated into"°de _exact partial _exact partial exact partial
@50, query as descredn 3 1 oo om o ot o oo

By adding _Iess frequent nodes as the exten3|on,_we ex- 0050 0034 038 9744 0088 0121
pect less rc_atrleval outputs. Thg secoqd retrieval is per- 16 0035 0026 1972 1770 0134 0101
formed against the result of the first retrieval. The second 17 0036 0027 1267 1899 0.159 0.204
subquery is generated by extending the first query subtree. 18 0029 0027 9.800 317.4 0.106 0.088
As in the first query, we first find an initial minimum sub- 19 0.034 0.028 4145 9864 0.125 0.143
tree which includes a node with the ledst; value. In ad- 20 0.040 0.109 75.80 N/A 0.074 0.636
dition, the minimum subtree should share a node with the 21 0.073 0.218 298.3 N/A 0.147 0.988
first query subtree. Note that, this shared node is already in- 22 ~ 0.058 0.111 787.3 N/A 0.090 0.449
stantiated to a certain node of a sentence in the corpus, since 23~ 0.044 0.048 7236 N/A 0.094 0.390
we perform the second retrieval against the result of the first 24 0040 0040 1369 N/A - 0.101 0.249
retrieval. This initial minimum subtree is extended in the 0040 0041 339 N/A_0.086 0.280
same manner as the first subquery. Following subqueries
are generated until they cover the whole input query.

Table 4: Evaluation results

4. Experiments 5. Conclusions and Future Work

We conducted experiments to evaluate the proposed |n the experiments, we found that the number of nodes
method. Queries are categorized with respect to the numn a query affects the retrieval time. We estimate the op-
ber of nodes, ranging from 13 to 25. Queries with lesstimal number of nodes as between 6 and 12 for the Penn
than 13 nodes were excluded, because our system does ngkebank corpus when decomposing a large query. How-
decompose such queries. We used 100 queries (subtregsjer, this parameter might be different for the other corpus.
in each category which were randomly extracted from theye need to investigate a method to estimate the optimal

Penn Treebank corpus. parameters automatically given a corpus.
First, we compare the proposed method with retriev-
ing by a single SQL query without decomposition. Results 6. References

are shown in Table 4. For exact matching, the proposeﬁ|
method keeps constant retrieval time despite the increase in’
the number of nodes. In contrast, the retrieval time of the

single SQL method increases significantly for the queries guistics 2003

Wltrl]:crnopraeriir:llrr;ﬁc?]ci):geihe proposed method shows stablMtChe” P. Marcus, Beatrice Santorini, and Mary Ann
' Marcinkiewicz. 1993. Building a large annotated corpus

retneva! time again, but the single SQL method Qegrades of english: The penn treebankomputational Linguis-
the retrieval speed when the number of nodes increases. . . 19(2)
We aborted in measuring the retrieval time for queries with _ . ™ '

more than 19 nodes, because of it took so long time. Oliver Plaehn and Thorsten Brants. 2000. Annotate — an

To verify the effect of ordering subqueries, another te;flcge_ntthwger?cnve annofnoln (;Ol(\)lllt Iﬁr(l)Eeedmgs OFf)
baseline was introduced, that is, decomposing queries with- € Sixth Lonterence on Applied Natural Language Fro-

out considering the order of subqueries. According to this cessmﬁ_AsLF;]—_iOQ(Sea_trtle,h_/VAl.(A Takevuki
baseline, an input query is decomposed into subtrees froMasatos | Yoshikawa, Toshiyuki Amagasa, Takeyuki

the root node in top-down manner. This method is labeled Shim(;ll’a, and ﬁhunsuke Uerr:jura. . 20?1']‘ Xrlelo:l A path-
as “Top-down” in Table 4. In the top-down method, a sub- ased approach to storage and retrieval of xml documents

tree is expanded from the root node by adding a minimum using relational databas@&CM Transactions on Internet

subtree in depth-first and left-to-right manner. The expan- Technology1(1).
sion continues while the number of nodes does not exceed
12. The constraint on the number of nodes is the same as
the proposed method. The next subtree is searched for from

Cunningham, V. Tablan, K. Bontcheva, and M. Dim-
itrov. 2003. Language engineering tools for collabora-
tive corpus annotation. IRroceedings of Corpus Lin-

1778

