
Evaluating Name-Matching for Coreference Resolution

Olga Uryupina

Computational Linguistics, Saarland University
66041 Saarbrücken, Germany

ourioupi@coli.uni-sb.de

Abstract
In this paper we describe experiments aimed at improving matching techniques for the Coreference Resolution task. Combining algo-
rithms proposed in the literature with our own solutions, we run machine learning experiments and evaluate extensively different features
and feature combinations to find the best settings. These settings do not only show good performance for English data, but should also
be easily adjustable to cover other languages.

1. Introduction
Robust and accurate Coreference Resolution (CR) is es-

sential for many Natural Language Processing tasks, for
example, Question Answering. However, not all types of
anaphors can be successfully resolved by state-of-the-art
CR systems. Typical pronoun resolution algorithms have
an accuracy of up to �� � ��� (Mitkov, 1999) whereas
the performance of the best general coreference resolution
systems is much lower: for example, (Soon et al., 2001)
reported ����� F-score on the MUC-7 test data.

This leads to the conclusion that one should try to im-
prove the resolution for the other major types of anaphors:
proper names and definite noun phrases. Our experiments
address a problem of coreference for named entities, in par-
ticular, anaphoric links between two proper names. Ta-
ble 1 shows several examples of coreferring proper names,
demonstrating typical problems for automatic resolution.

There are several reasons to pay attention to this par-
ticular sub-task. First, proper names represent a high pro-
portion of all the anaphors: identifying correctly all the
anaphoric links between NEs, we achieve 30% recall for
the NP-Coreference task (only full NPs are considered as
markables) in the set-based evaluation (cf. Section 6.2.).

Second, coreference resolution engines are usually not
independent tools — they are integrated into various NLP
applications. For example, a good CR module in a question
answering system would allow us to keep track of entities,
collecting and combining information from different sen-
tences of the text. In this context coreference links between
named entities become very important: they bring together
various facts about real world objects that are likely to be
mentioned in user’s questions.

Third, accurate name matching algorithms can be help-
ful for other tasks. For example, Branting (2002) points out
that they are crucial for Legal Case-Management Systems.

In this paper we present various machine learning ex-
periments evaluating strategies for name matching.

2. Previous Studies
Virtually none of the previous approaches to the corefer-

ence resolution task include any specific machine learning
technique for resolving proper name anaphoric links. 1 The

1An exception is a system described in (Strube et al., 2002),
where two matching strategies have been tested on named entities

Antecedent Anaphor
MCDONALD’S McDonald’s
The Federal Aviation Administration FAA
F-14 F14
CHINA’S Foreign Trade Minister Wu Yi Ms Wu

Table 1: Examples of problematic cases for proper names
coreference resolution

most commonly used matching features for CR in general
are same surface , same head, and contain (an anaphor is a
substring of an antecedent). In our experiments we use the
same surface matching as a baseline.

Soon et al. (2001) introduce the weak string identity
feature (true if an anaphor and an antecedent have the
same surface form after stripping off the determiners).

Strube et al. (2002) propose two minimum edit dis-
tance-based (MED) features. Although useful for German,
they might be not so helpful for English because of its
simpler morphology. To evaluate the role of approximate
matching, we implemented a family of MED-based fea-
tures.

Branting (2002) investigates name matching strate-
gies for Legal Case-Management Systems, proposing tech-
niques for abstracting over NPs and efficient indexing. Al-
though we do some normalisation, following the ideas of
(Branting, 2002) and (Soon et al., 2001), we are not inter-
ested in further generalisation over the markables. Branting
also uses exact and approximate matching and precompiled
abbreviation tables. We do not use any external abbrevia-
tion data, but compute possible abbreviations dynamically.

To sum it up, the commonly used approach is very sim-
ple, and various previous studies show that it can be im-
proved in many different ways. In this work we combine
the ideas proposed in the literature with our own matching
strategies.

3. Data
For our experiments we use the MUC-7 coreference

corpus (Hirschman and Chinchor, 1997). We parsed the
texts with the (Charniak, 2000) parser and collected all the
NPs,2 discarding complex ones (containing an embedded

separately from all the other types of anaphors.
2The MUC-7 scheme covers more types of markables, for ex-

ample, posessive pronouns

 1339

NP). Our estimations show that a system, correctly resolv-
ing all the NPs, would achieve ��� ��� recall and ����

precision on the MUC-7 test data in set-based evaluation.
We only analyse proper names (NPs with NNP-, NNPS-

, or CD-tagged heads). A system, correctly resolving all
those NPs, would have 	���� recall and ���� precision
when evaluated against the NPs part of the MUC-7 data.

In our experiments we use the rule induction learner
Ripper (Cohen, 1995). To produce data instances, we pair
the NPs with each other (every NP was paired with all
the preceding ones). This resulted in 20826 (942 positive
and 19884 negative) items for the “dryrun” subcorpus and
18702 (851 positive and 17851 negative) items for the “test-
ing” subcorpus.

4. Computing similarity between proper
names

We decompose our problem into three major sub-tasks:
normalisation, substrings selection, and matching: one can,
for example, compute minimum edit distance (matching)
between the down-cased (normalisation) last nouns (sub-
string) of an anaphor and an antecedent. The resulting
value can be used as a similarity measure between the two.

Below we describe the algorithms we implemented to
tackle these three sub-tasks. Several techniques are lan-
guage specific, whereas others are relatively language inde-
pendent (possibly applicable to any language with an alpha-
betic script). Some algorithms are very fast, some (parser-
based) require more processing, and some (Internet-based)
are very time-consuming. In Section 6. we evaluate “lan-
guage independent” and “fast” settings separately.

Normalisation. We use three normalisation functions:
no case, no punctuation, and no determiner. The first one
transforms a string into lower-case format. The second one
strips off all the punctuation and auxiliary characters, and
the last one strips off the determiner. The first two normali-
sation techniques are relatively language independent. The
third one is obviously language dependent: we need a list of
all the determiners to perform this operation. However, we
believe that such a list can be compiled very quickly for any
particular language. One can combine these functions se-
quentially, producing complex normalising algorithms. For
example, no case&no punctuation of “that F-14” is “that
f14”. Finally, one can use several normalisations for the
same markable to compute values for different features.

Substring selection. Some words in a name are more
informative than others. Therefore it can be reasonable to
compare not the whole strings, but only the most represen-
tative parts of them. We implemented several algorithms
for selecting most informative words.

The last noun algorithm outputs the last noun of the
NP string. It requires a parser (or at least a tagger) and
is language-dependent and moderately time-consuming.

Last is a simple modification of the last noun algorithm.
It outputs the last word of the NP string. Although less
accurate, it is faster and language independent.

First, a counterpart of last, is the first word of the NP.
The rarest algorithm outputs the least frequent word of

the NP string: each word is sent to the AltaVista search en-
gine and then the one that gets the lowest count (number of

matching formula value
MED s ��� in symbols 4
MED s anaph ��� �

�����	 ��
�
�	�
� 1
MED s ante ��� �

�����	 ��
���������� 0.5
MED w ��� in words 1
MED w anaph ��� �

�����	 ��
�
�	�
� 1

MED w ante ��� �
�����	 ��
���������� 0.5

Table 2: Approximate matching functions and their values
for (New York, York).

pages worldwide written in English) is returned. This algo-
rithm is language independent, but very time-consuming.

As an example, the last noun and last substring of
“Lockheed Martin Corp.” is “Corp.”, whereas the first and
rarest substring is “Lockheed”.

It does not make any sense to combine these algorithms
sequentially, as they always output one word. However, one
can use several of them at the same time: for example, our
fast configuration uses both the first and the last algorithms.

Matching. We investigated the following string match-
ing algorithms.

exact match is a boolean function on two strings. It out-
puts 1 if they are identical and 0 otherwise.

approximate match: we implemented a family of algo-
rithms, based on the minimum edit distance measure (Wag-
ner and Fischer, 1974). Given two ordered sequences, the
MED between them is defined as the number of insertions,
deletions, and substitutions, needed to transform one into
the other. We measure the distance between two strings ei-
ther in symbols (MED s) or in words (MED w). In addition
to the bare counts, we normalise our MED values by the
length of an anaphor or an antecedent in symbols (length s)
or in words (length w). The formulas are shown in Table 2.

matched part algorithms are generalisations of com-
monly used contain feature (cf. Section 2.). They rep-
resent the size of the overlap between two NPs. The ba-
sic matched part algorithm computes the number of sym-
bols/words two NPs share. We normalise this count by the
length of an anaphor or an antecedent in the same way as it
is done for the approximate matching.

abbreviation: we have implemented several methods to
resolve abbreviations, all of them comparing an anaphor
(full string) to the last noun of candidate antecedents . The
first algorithm (abbrev1) takes the initial letter of all the
words in a string and produces a word out of them. This
word is compared (by exact match) to the head of the sec-
ond NP. The second algorithm (abbrev2) does the same, but
ignores words, beginning with low-case letters. The algo-
rithm abbrev3 checks whether it is possible to split the head
of the second NP into small units, such that each unit is a
beginning (prefix) of a word in the first NP, and the prefixes
come in the right order (the same as the order of the cor-
responding words). Finally, abbrev4 proceeds in the same
way, but does not allow empty prefixes. The first two al-
gorithms represent the most commonly used abbreviations.
The last two algorithms are more general, allowing for non-
trivial ways of abbreviating. Table 3 shows some examples.

Again, one cannot combine these algorithms sequen-
tially, but it is possible to use several of them at the same

 1340

(antecedent, anaphor) pair abbrev1 abbrev2 abbrev3 abbrev4
(United States, U.S.) 1 1 1 1
(The Federal Bureau of Investigations, FBI) 0 1 1 0
(The Federal Bureau of Investigations, Bureau) 0 0 1 0
(Silicon, SILIC) 0 0 1 1

Table 3: Example values of the abbreviation functions (assuming full normalization).

np type NP’s article (the, a(n), none)
number number of the head noun (sg, pl, none)
premodifiers NP contains premodifiers (yes, no)
postmodifiers NP contains postmodifiers (yes, no)
appositive NP is a part of an appositive construction (first part, second part, no)
conjunction NP is a conjunction (yes, no)
rarest the AltaVista count for the rarest word (1. . . n)
length s length of the NP string in symbols (1. . . n)
length w length of the NP string in words (1. . . n)

Table 4: NP-based features

time, computing values for different features.

5. Features and Feature Configurations
All the techniques described above help us to build a

feature set. We divide our features into two groups.
NP-based features, computed for both an anaphor and

an antecedent, represent information about a single noun
phrase. The features are represented in Table 4. However,
we do not use all of these features in all the experiments.

Link-based features describe the similarity between
two NP strings. The only exceptions are the sister and dis-
tance features. The sister feature is set to 1 when two NPs
are sister nodes in a parse tree and to 0 otherwise. Two
distance features encode the distance between two named
entities measured in terms of NPs and sentences.

The other features are represented by triples (normali-
sation, substring selection, matching). Not all of them are
useful. For example, the matched part algorithm with any
substring selection would always produce the same values
as exact match with this substring. This observation re-
duces the total number of features dramatically. Overall we
have 135 features: 18 NP-based ones, sister, 2 distances,
and 114 features represented by matching triples.

5.1. Configurations

We want to test such hypotheses as, for example, “Ap-
proximate matching yields better results than exact match-
ing”, comparing the results in the cases when only several
features are used. We call these groups of features configu-
rations. Below we describe some of our configurations:

all: all the features.
baseline: all the NP-based features, sister, distance, ex-

act matching for full NPs, no normalisation
last noun: all the baseline features, all the

(,last noun, exact match) triples.
fast: all the features that do not require Internet counts
faster: all the features that require neither Internet

counts nor parsing (i.e., all the types of matching for full
NP strings and their first and last substrings)

MED only: all the NP-based features, sister, distance,
and all the (, , approximate match) triples.

MED surface only: all the NP-based features, sis-
ter, distance, all the (,no substring selection, approxi-
mate match) triples.

last, first, rarest: rarest count (for the rarest configura-
tion only), length, distance, all the (, no substring sele-
ction, exact match) and (, sub, exact match) triples; sub
is last,. . . correspondingly.

We evaluated 29 different configurations, but, due to the
lack of space, we describe only the most interesting ones.

6. Evaluation
6.1. Cross-validation of Ripper’s classifiers

In this experiment we used only the MUC-7 dry-run
data (30 texts). The experiment was organised as follows.
For each of our 10 cross-validation runs, we reserved 3 texts
for testing. The remaining texts were first used to optimise
Ripper’s S parameter (degree of hypothesis simplification)
by 3-fold cross validation. Finally, we trained Ripper on all
the 27 texts with the best S value and test on the reserved 3
texts. The performance was measured in the standard way
(precision is a ratio of correctly classified links over all the
anaphoric links suggested by Ripper and so on).

The results are presented in Table 5: the upper part
shows the configurations, requiring neither a parser, nor
web counts, the middle part — the ones, requiring only a
parser, and the lower part — the ones, requiring web counts.
All the configurations performed significantly (� � ����,
two-tailed t-test) better than the baseline.

6.2. MUC-style set-based evaluation.

In this experiment we used the dry-run data for train-
ing and 20 MUC-7 test texts for testing. The MUC scoring
program (Vilain et al., 1995) was used for evaluation. The
scorer compares not individual pairs, but whole coreference
chains for estimating the system’s performance. So, we im-
plemented the same resolution algorithm, as the one pro-
posed in (Strube et al., 2002) and (Ng and Cardie, 2002).
For each anaphor, we check the candidate antecedents (pre-
ceding proper names), starting with the closest one and pro-
ceeding backwards. We submit all the pairs to Ripper one
by one. If a pair is classified as a possible coreference

 1341

normalisation
no full all features

no parsing, no web counts
baseline 57.8 (63.9) (63.5)
first 62.7 73.5 72.4
last 67.7 71.1 71.9
faster 79.6 82.4 81.2
MED surface only 75.2 82.8 80.4

parsing, no web counts
last noun 78.2 80.2 81.3
MED only 82.1 83.0 83.8
fast 81.4 83.6 83.5

web counts
rarest 78.2 80.3 73.1
all 82.5 82.5 82.1

Table 5: The system’s performance (F-measure) in the 10-
fold cross-validation on the MUC-7 dry-run data.

normalisation
no full all features

no parsing, no web counts
baseline 71.7 (72.7) (71.9)
first 72.4 77.7 75.2
last 71.8 75.9 71.5
faster 75.9 75.3 80.1
MED surface only 77.9 79.3 80.5

parsing, no web counts
last noun 79.4 80.6 79.4
MED only 80.0 79.2 77.7
fast 77.3 78.6 80.4

web counts
rarest 77.6 75.7 76.9
all 77.6 82.5 78.2

Table 6: The system’s performance (F-measure) in the set
evaluation on the MUC-7 test data.

link, we add the anaphor to the coreference chain of the
antecedent and proceed to the next anaphor.

The evaluation results are shown in Table 6. Our base-
line has a relatively high precision (�
���), but very low
recall (�����). All the other configurations, except first
and last have slightly lower precision, but significantly
(� � ����, ��-test) higher recall. We cannot compare the
corresponding F-scores, as the ��-test is not applicable.

7. Discussion and Conclusion.
We decomposed the NE coreference problem into three

sub-tasks: normalisation, substring selection, and match-
ing. Combining different solutions to these sub-tasks we
came up with several feature configurations to be evaluated.

As our experiments show, sophisticated matching algo-
rithms clearly outperform the baseline: the best configu-
ration in our first experiment yields an error reduction of
61%. However, tuning these algorithms to achieve the best
performance is not a trivial task.

The substring selection is useful provided it is done
properly, as in the last noun configuration. The Internet-
based substring selection (rarest) is only slightly worse.
Unfortunately, similar techniques (first and last) can bring

only moderate advantage over the baseline. So, if we want
to investigate the CR task in other languages, where parsing
resources are less reliable or even non-existent, we should
try another solution, instead of the substring selection: ei-
ther use several substrings at the same time (faster), or im-
prove the other parts of our matching algorithms (MED).

All the sophisticated matching functions improve the
performance to some extent, although abbreviations seem
to be almost useless. The most important function is ap-
proximate matching: with the MED features activated,
all the additional improvements do not affect the perfor-
mance significantly, consider the differences in F-measure
for MED only (with the last noun substring selection) and
MED surface only (without any substring selection).

Finally, we could not find a normalisation function out-
performing all the others in all the cases. But the experi-
ments show that it is worth using at least some normalisa-
tion: in almost all the configurations no normalisation re-
sults in a significant drop of the performance. With approx-
imate matching, the normalisation choice does not play an
important role (
� 	� difference in F-measure in the first
experiment, except for the no normalisation case). With ex-
act matching, normalisation becomes more important (up
to ��� difference in the F-measure).

In future we plan to follow two directions. First, we
want to apply our techniques to all the markables (not only
named entities as in present study). Second, we plan to
use the same algorithms for the CR task in another lan-
guages. Finally, once we are able to resolve links between
two proper names, we want to investigate the coreference
between proper and common nouns.

8. References
Branting, L. Karl, 2002. Name-matching algorithms for le-

gal case-management systems. Journal of Information,
Law & Technology, (1).

Charniak, Eugene, 2000. A maximum-entropy-inspired
parser. In Proceedings of NAACL.

Cohen, William W., 1995. Fast effective rule induction. In
Proceedings of ICML.

Hirschman, Lynette and Nancy Chinchor, 1997. Muc-7
coreference task definition. In Proceedings of MUC-7.

Mitkov, Ruslan, 1999. Anaphora resolution: the state of
the art. Technical report, University of Wolverhampton.

Ng, Vincent and Claire Cardie, 2002. Combining sample
selection and error-driven pruning for machine learning
of coreference rules. In Proceedings of EMNLP.

Soon, Wee Meng, Hwee Tou Ng, and Daniel Chung Yong
Lim, 2001. A machine learning approach to coreference
resolution of noun phrases. Computational Linguistics,
27(4):521–544.

Strube, Michael, Stefan Rapp, and Christof Müller, 2002.
The influence of minimum edit distance on reference res-
olution. In Proceedings of EMNLP.

Vilain, Marc, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman, 1995. A model-theoretic
coreference scoring scheme. In Proceedings of MUC-6.

Wagner, Robert A. and Michael J. Fischer, 1974. The
string-to-string correction problem. Journal of the ACM,
21(1):168–173.

 1342

