
A pattern extraction workbench combining multiple linguistic levels

Magnus Merkel & Andreas Lange

Department of Computer and Information Science,
Linköping University

S581 83 Linköping, Sweden,
{mme,anlan}@ida.liu.se

Abstract
In this paper an interactive pattern extraction workbench, I*Pex, is presented. The workbench comes in a graphical environment and is
designed to be used in an incremental and interactive fashion with the user. Patterns can be constructed to work in combination
involving specifications on several linguistic levels simultaneously, from the character level using regular expressions, parts of speech
and dependency relations to semantic roles. The input text format is based on XCES XML format.

1. Introduction
A notorious problem for customizing information

extraction applications regards the extent on which
patterns can be reused or easily adapted for new domains
and new tasks. As designing patterns for semantic
annotation and extraction is a tedious task, attempts at
making this process more efficient and easier to complete
is a necessary step towards better IE applications.

Several attempts at finding a flexible and generic
approach to address the problems of creating patterns for
IE have been made. Within the TIPSTER framework the
Common Pattern Specification Language (CPSL) was
developed and used in applications such as Doug Appelt’s
TextPro (Appelt & Martin 1999). In work with the GATE
architecture a Java Pattern Annotation Engine (JAPE)
was developed and used in several IE systems, for
example SOCIS (Cunningham et al. 2000). JAPE is built
on CPSL with some modifications. Both CPSL and JAPE
handle pure text files using rules based on regular
expressions. Interesting work on making the process of
customisation in IE systems more efficient have been
made in the Proteus project where example-based
strategies for pattern building were used (Yangarber &
Grishman 1997). The interactive approach to pattern
extraction described in this paper provides the user with
the possiblity to test and evaluate patterns giving the user
immediate visual feedback on the performance of existing
and new patterns for a particular task.

2. I*Pex
In this paper we present a pattern extraction

workbench called I*Pex, which is part of a series of tools
that share the features of being highly interactive and
intended to use in an incremental fashion where each step
can be tested and verified in user-friendly environments.
Other tools in the series so far are mostly concerned with
multilingual data extraction through word alignment
techniques (cf. Ahrenberg et al., 2003, Merkel et al.
2003). The tools all share the feature that input documents
have been analysed by a functional dependency grammar
parser, in this case Connexor’s Machinese Syntax
(Tapanainen & Järvinen 1997), and converted into an
XML notation partially based on the XCES Corpus
Encoding Standard (XCES 2000). However, it is not
necessarily restricted to one type of grammatical analysis

tool as long as the XML mark-up adheres to the XML
notation specified in the DTD.

In the following we make an attempt at describing the
functionality of I*Pex as well as providing some examples
of how it can be used. The tool has primarily been applied
on Swedish text materials, but there is nothing in the
architecture that prevents it from being applied to other
languages as long as the XML-mark-up complies with the
document type definition. The first stage in working with
I*Pex concerns the tagging of the input documents, which
is performed by Connexor’s Machinese Syntax parser.
The tagging information from Machinese Syntax is
relatively rich, involving not only stemming and POS
information but also morphological features, syntactic
functions and functional dependencies. The XML format
that is used is to some extent based on the XCES standard,
which gives the following analysis for a sentence such as
Senast den 16 december skickar skattemyndigheten ut
slutskattebeskedet.(Eng. Transl: At the latest December 16 the
tax authorities will send out the final tax result.:

<s id="s3"> <w id="w29" relpos="1" base="sen"
func="advl" fa=">5" stag="AH" pos="ADV"
msd="<Sup>"> Senast </w>
 <w id="w30" relpos="2" base="den" func="det"
fa=">4" stag=">N" pos="DET"
msd="SG+NOM"> den</w>
<w id="w31" relpos="3" base="16" func="attr"
fa=">4" stag=">N" pos="NUM"
msd="NOM+<Card>"> 16</w>
<w id="w32" relpos="4" base=" december "
func="advl" fa=">5" stag="NH" pos="N"
msd="SG+NOM"> december </w>
<w id="w33" relpos="5" base="skicka" func="main"
fa=">0" stag="MV" pos="V" msd="PRES">
skickar </w>
<w id="w34" relpos="6" base="skatte#myndighet"
func="subj" fa=">5" stag="NH" pos="N"
msd="SG+NOM"> skattemyndigheten </w>
<w id="w35" relpos="7" base="ut" func="advl"
fa=">5" stag="AH" pos="ADV"> ut </w>
<w id="w36" relpos="8" base="sluts#katte#besked"
func="obj" fa=">5" stag="NH" pos="N"
msd="SG+NOM"> slutskattebeskedet </w>
<w id="w37" relpos="9" base="." stag="INTERP"
pos="INTERP" msd="Period">.</w></s>

Figure 1. XML mark-up after syntactic tagging.

I*Pex can be seen as a task-oriented semantic tagger in
that it can assign semantic properties to portions of text
according to the patterns constructed by the user. In I*Pex
there are two principal modes of working with patterns:

 411

1. bottom up (starting with primitive patterns to
more complex patterns);

2. top down (scenario templates that are
instantiated using information assigned by
patterns in the bottom-up approach).

In the first mode simple patterns, for example
identifies all nouns starting with upper-case letters, can be
constructed and named-entity-like patterns distinguishing
between different types of name descriptions could then
be built using the previous patterns. In the second mode,
I*Pex will start out with a number of scenario templates
that are instantiated using the original linguistic
information and the semantic properties assigned by the
patterns specified in mode 1.

Figure 2 Pattern box specifications

The graphical workspace of the workbench is divided

into a number of components: a document browser where
the source documents can be viewed; a pattern box
window where the user can specify and test individual
patterns and pattern boxes, and a graphical display of the
results of applying the patterns. In Figure 2 and 3 a pattern
box “Time & date” is illustrated where patterns for
extracting time and date expressions are specified.

Figure 3 Setting up a pattern for DATE

Normally an I*Pex user loads a project, consisting of

XML marked-up text and several pattern boxes. Some of
the pattern boxes represent reusable basic building blocks
handling expressions, such as generic time and date
recognition, while others are specific to the task in
question. A pattern box is stored as an XML file and
contains several annotation patterns.

Each pattern produces a specific annotation.
Annotation patterns are further divided into search

components. A component searches on multiple levels in
the text, word by word. Complex interactions between
searches are handled by chaining components. A simple
pattern may consist of only one component, for example
one trying to find all nouns starting with an upper-case
letter. A higher level pattern might begin with a
component that tries to find a paragraph based on previous
annotations. It can then continue with components that
only search within specific sentences in this paragraph. In
this way complex searches are nested giving the user a
very powerful search tool, but at the same time providing
the possibility to reuse parts of a complex search later on.

In Figure 4 below, a component for finding DATE
expressions is defined. The user has previously defined a
MONTH tag using a gazetteer holding month names
which is reused with a regular expression “[1-9]|([1,2][0-
9])|30|31”on the word level that finds numbers between 1
and 31. There is also an additional criterion in the POS
field, requiring that the number should be tagged as a
numeral. On the left hand side it is possible to determine
various connections between components, such as range
(sentences, paragraphs) and what to do with items that
match the search conditions. In this particular example,
the numerical expression (1-31) has to be connected to a
MONTH expression and be placed either in the position
exactly before or after the MONTH expression. There are
various other possibilities to set ranges and directions. The
search criterion could be very complex involving several
components tied together in various ways. The result of
the complex pattern in Figure 4 is that expressions like
“30 september” and “14 april” are assigned the semantic
tag DATE.

Figure 4 The Component specification dialog box where
ranges and search criteria can be specified, as well as

combining pattern components to handle more complex
specifications

A user may either choose to run all patterns, the

patterns in a specific pattern box or one selected pattern.
Before a search is executed the relevant patterns are sorted
with regard to their annotational dependencies and then
run in order. The components are compiled to handle
matching efficiently. A finite state machine runs each

 412

pattern, selects components, sets up search ranges and
runs iterators.

The second approach, to run patterns in top down
mode in order to do the traditional IE approach of filling
scenario patterns is also supported in I*Pex. For example,
given that a user wants to pinpoint everything in the text
material that describes events involving sending items
from somebody to somebody at certain times. A scenario
template for such events will involve assigning semantic
roles for SENDER, RECEIVER, OBJECT (being sent),
TIME, START and DESTINATION for example. The
template filling is then performed by placing constraints
on the assignment of these roles using both syntactic and
semantic features specified by the more primitive patterns
described above. An example of such a role is given
below in Figure 5 where I*Pex has identified the fact that
‘the tax authorities’ (skattemyndigheten) is the sender, that
‘the final tax results’ (slutskattebeskedet) is what is being
sent, and that the time for this event is ‘December 16’.

3. Summary of features
Below a number of the specific features of the I*Pex

workbench are summarized:
• Operates on syntactically annotated source

documents in XML, partially based on the XCES
specification with information on word form,
base form, POS, morpho-syntactic features,
syntactic function and dependency relations.

• Ability to specify patterns that operate on a
combination of linguistic levels, for example, by
combining information on parts-of-speech,
morpho-syntactic features with syntactic
function, and the user could easily specify a
pattern that locates a noun in the definite plural
which in turn functions as a direct object of a
specified verb.

• Patterns are specified in a graphical interface,
where lower-level patterns can be combined by
manipulating objects graphically.

• Patterns related to each other can be stored in
pattern boxes for reuse in other domains and
projects.

• Individual patterns or collections of patterns
(pattern boxes) can be tested on the fly and
results are displayed graphically in the
workbench environment.

• Annotations created by I*Pex are stored as
values of a semantic attribute in a stand-off XML
representation with pointers to the XML source
file holding the original syntactic mark-up.

• Ranges for complex patterns can be specified for
different purposes; some patterns only operate
within a construction (e.g. a noun phrase) others
within a sentence or within a paragraph.

• Gazetteer data can be loaded and utilised within
the patterns.

The system has been developed using iterative
development methods. The first version aimed at handling
tagged text and perform simple searches. In the second
version the search patterns were divided into components.
The third version took care of different search ranges and
made it possible to combine pattern components more
efficiently. The fourth version is the current one. The next
planned version includes an interactive search progress
viewer, similar to a programming environment’s
debugger. This will give the user the possibility to follow
how the search progresses through the text, to see what
matches and what does not. Such functionality will give
the user a better understanding of how different settings
affect the search and insights on how to improve patterns,
tweaking regular expressions and adapting components to
the text and the particular task.

Figure 5. An annotated sentence in the graphical interface where semantic roles for DATE (16 december), SENDER
(skattemyndigheten) and OBJECT (slutskattebeskedet) have been assigned by I*Pex. The six lines at the top are the

original mark-up given by the tagger and the ones below have been added by I*Pex.

 413

4. Acknowledgements
This work has been supported by The Swedish Agency

for Innovation Systems, Vinnova, within the project
”Multimodal interaction for Information Systems”.

5. References
Appelt, D. and D. Martin. 1999. Named entity extraction

from speech: Approach and results using the TextPro
system. In Proceedings of the 1999 DARPA
Broadcast NEWS Workshop, 1999, 51–54;
www.ai.sri.com/~appelt/SRIIENE.HTM.

Ahrenberg, L., M. Merkel & M. Petterstedt. 2003.
Interactive Word Alignment for Language Engineering.
Accepted for publication as project note at The 11th
Conference of the European Chapter of the Association
for Computational Linguistics April 12-17, 2003 Agro
Hotel, Budapest, Hungary (EACL-2003).

Cunningham, H., D. Maynard, & V. Tablan. 2000. JAPE:
a JAVA Annotation Patterns Engine. Research Memo
CS-00-10, Department of Computer Science, University
of Sheffield.

Merkel, M., M. Petterstedt & L. Ahrenberg. 2003.
Interactive Word Alignment for Corpus Linguistics.
Accepted for publication in Proceedings of Corpus
Linguistics 2003. UCREL Technical Paper No 16.

Tapanainen, P. and T. Järvinen, 1997. A non-projective
dependency parser. Proceedings of the 5th Conference
on Applied Natural Language Processing (ANLP’97).

XCES Corpus Encoding Standard for XML, 2000, Vassar
College, Department of Computer Science,
Poughkeepsie NY, http://www.cs.vassar.edu/XCES/.

Yangarber, R. and R. Grishman. 1997. Customization of
Information Extraction Systems. In Proceedings of the
International Workshop on Lexically Driven
Information Extraction, Frascati, Italy.

Figure 6. An overview of the I*Pex graphical environment including the Pattern area, the text area, search results and the
annotated active Sentence area at the top.

 414

