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Abstract
People, when processing human-to-human communication, utilize everything they can in order to understand that communication, in-
cluding speech and information such as the time and location of an interlocutor’s gesture and gaze. Speech and gesture are known to
exhibit a synchronous relationship in human communication; however, the precise nature of that relationship requires further investiga-
tion. The construction of computer models of multimodal human communication would be enabled by the availability of multimodal
communication corpora annotated with synchronized gesture and speech features. To investigate the temporal relationships of these
knowledge sources, we have collected and are annotating several multimodal corpora with time-aligned features. Forced alignment be-
tween a speech file and its transcription is a crucial part of multimodal corpus production. This paper investigates a number of factors that
may contribute to highly accurate forced alignments to support the rapid production of these multimodal corpora including the acoustic
model, the match between the speech used for training the system and that to be force aligned, the amount of data used to train the ASR
system, the availability of speaker adaptation, and the duration of alignment segments.

1. Introduction
Natural human communication is a rich interaction in-

volving a variety of auditory and visual channels (Quek
et al., 2002). To investigate the relationships among these
channels in dialog (e.g., words, prosody, head position,
gaze, and gesture), we have collected and are annotat-
ing several multimodal corpora with time-aligned features
from several channels. Human dialogs were videotaped us-
ing a set of cameras that were both temporally and spa-
tially calibrated (see http://vislab.cs.wright.edu/KDI/) and
audio recorded using unidirectional boom mounted micro-
phones. These dialogs were recorded in a somewhat noisy
laboratory environment and contain much speech overlap.
Gestures and other visual features of each interlocutor are
tracked algorithmically from the video, and the speech is
transcribed and time-aligned. The elements of the cor-
pus, such as word boundaries, 3D hand position, and other
gesture features, such as effort and holds, are being tem-
porally aligned to support measurement studies and data-
driven modeling of multimodal communication.

With the availability of synchronized multimodal cor-
pora, relationships among the different channels can be
studied. Our initial efforts have focused on the relationship
between gesture and spoken words within this framework.
There are two reasons for selecting word-level, rather than
phoneme-level granularity in the audio data. First, gesture
tends to be super-segmental and so it is more likely to be
related to longer stretches of speech (i.e., syllables, words,
and phrases) than with the finer structure of words. Sec-
ond, the video sampling rate is much lower than for speech.
Therefore, we have focused on the time-alignment of au-
dio segments at the syllable level and above. For exam-
ple, given a corpus of temporally aligned words, speech re-
pair components (e.g., the reparandum, editing phrase, and
alteration), and gesture patterns, we were able to develop
a deeper understanding of how gestures are used to mark
speech repairs (Chen et al., 2002).

Word alignments can be obtained either by manual or
automatic alignment. Manual alignment is extremely time
consuming, although potentially more accurate than a fully
automatic method. Hence, a semi-automatic procedure is
widely used. This typically involves an initial forced align-

ment of a speech transcription to its audio file using an
HMM-based automatic speech recognition (ASR) system,
followed by a manual human check-and-repair step. For
large scale corpus production, reducing human effort is of
particular concern. The quality of the initial forced align-
ment directly impacts the amount of human effort required
in the second step. If fewer and smaller errors are made
initially, then less human effort is required.

There have been surprisingly few studies investigating
the impact of the ASR system on forced alignment accu-
racy. Many times public availability of a system is the
deciding factor for selecting it for forced alignments (e.g.,
the Aligner tool (Wightman and Talkin, 1997) was used to
prepare the Variation in Conversation (ViC) corpus (Pitt
et al., 2003), and the ISIP ASR system with a mono-phone
acoustic model (Sundaram et al., 2000)) was used to pro-
duce the German Broadcast News corpus (Eickeler et al.,
2002)). Although ASR systems have often been compared
on word error rate and phonetic alignment accuracy, few
studies have considered word alignment accuracy. Kessens
(Kessens and Strik, 2003) investigated the effect of varying
several properties of an ASR system on phonetic transcrip-
tion accuracy and found that lower word error rates do not
necessarily result in more accurate phonetic transcription.
The question is, does this also hold for word forced align-
ments? Speech recognition systems are constructed to min-
imize word error rate, not to determine the most accurate
time alignment of words to speech. Although it is likely that
more accurate ASR systems would produce more accurate
word forced alignments, this is currently an open question,
especially in light of Kessens’ findings.

Accurate phonetic alignment is important for acoustic
model training, for constructing an acoustic inventory for
speech synthesis, and for various speech science measure-
ment studies. Hence, research focusing on phonetic align-
ment accuracy has received some attention. See Hosom’s
Ph.D. thesis (Hosom, 2000) for a comprehensive review on
phonetic alignment. Because the aim of word alignment
is to obtain accurate word boundaries, the phonetic distinc-
tions across words has greater importance than the phonetic
distinctions within a word. Hence, there is also a need to
investigate the factors of an ASR system that contribute to
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accurate word alignment.
There are several factors that may affect the quality of

forced alignments that we will investigate in this paper. One
set of factors is related to the ASR system: its model, the
match between the speech used to train the ASR system and
that to be force aligned, the amount of speech used for train-
ing, and the availability of speaker adaptation. Another fac-
tor concerns the duration of speech segments to be aligned.
Our goal is to develop a better understanding of the factors
that contribute to more accurate forced alignments in order
to reduce the amount of tedious manual fixing, as we scale
up multimodal corpus production.

2. Forced Alignment Experiments
For word forced alignments, four major components

of the ASR system are used: the signal processing front-
end, the trained HMM acoustic model, the lexicon, and the
Viterbi decoding module. Across systems, the signal pro-
cessing front-ends are quite similar, and the lexicon is usu-
ally tailored to the specific application prior to forced align-
ment. Although many decoding passes are used in modern
speech recognition systems, only one decoding pass is typ-
ically used for forced alignment. Among the four compo-
nents used for forced alignment, the acoustic model has the
greatest variability across systems and is likely to greatly
impact forced alignment accuracy. Some factors related
to the acoustic model include its modeling capability, the
match between the speech used for training and that to be
force aligned, and the amount of data used to train the ASR
system. We will evaluate the impact of these factors by
measuring the forced alignment accuracy of four different
systems:
Aligner. Wightman (Wightman and Talkin, 1997) con-
structed this forced alignment tool using HTK to produce
both word and phonetic alignments. Aligner’s acoustic
model, a mono-phone HMM model with five Gaussian
mixtures, is trained on seven hours of read speech from
the TIMIT corpus. As a publically available tool, Aligner
is commonly used by many researchers to perform forced
alignments.
WSJ-HTK. To investigate the impact of a more complex
HMM topology and increased training set size holding read
speech constant, we evaluate alignments using an HTK-
based gender independent triphone HMM with eight Gaus-
sian mixtures (16 for silence and short pause models) and
39 cepstral coefficients. The model was trained on 57 hours
of read speech from the Wall Street Journal ASR corpus.
SWB-ISIP. This system is built using the public domain
ASR toolkit developed at Mississippi State. The acoustic
model used is a context dependent model with 16 Gaus-
sian mixtures trained on 60 hours of SwitchBoard 1 (2998
conversation sides) and 20 hours of English CallHome con-
versational speech for the 2000 Hub5 evaluation.
SWB-SRI. This system, built using SRI DECIPHER (Stol-
cke et al., 2000), uses gender-dependent context depen-
dent HMM models with 64 Gaussian mixtures in addition
to 39 cepstral coefficients, Vocal Tract Length Normaliza-
tion, and cepstral mean and variance normalization are used
for each speaker. The acoustic model was developed for
the 2002 Hub5 evaluation and was trained on 160 hours
of SwitchBoard (3094 conversations), 16 hours of English
CallHome conversational speech (100 conversations), and
18 hours of Macrophone read speech.
BN-SRI. This system is like SWB-SRI except that it was
trained on 200 hours of speech from the Broadcast News
ASR corpus, which is made up of largely teleprompted read
speech.

The ASR systems above all use speaker independent
(SI) models, which can be less accurate than an adequately
trained speaker dependent (SD) acoustic model (Anas-
tasakos et al., 1996). Although it is infeasible to construct
a SD acoustic model for each speaker in a large corpus, it
is possible to improve the accuracy of forced alignments by
using speaker adaptation, wherein a small amount of data
from a specific speaker is used to adjust the SI models in or-
der to better represent that speaker. As in embedded train-
ing used for ASR acoustic model refinement, we adapt our
models using the speech to be aligned and its transcription.
This avoids the increased costs associated with collecting
and transcribing extra adaptation data. For this investiga-
tion, the method chosen for offline supervised adaptation
was maximum likelihood linear regression (MLLR), which
is available in HTK and SRI Decipher. Hence, we evaluate
the impact of adaptation on the WSJ-HTK, BN-SRI, and
SWB-SRI systems.

Forced alignment of an entire speech file to its transcrip-
tion has the advantage that it is quite straight forward. How-
ever, there are also several disadvantages. First, speech sys-
tems often have resource bounds (time and/or space) that
make it infeasible to align a large speech file to its tran-
scription. Second, human transcriptions of long speech
segments may contain more errors than those produced
over shorter segments. Third, forced alignments on longer
stretches of speech can produce poorer results (Vereecken
et al., 1997), especially when there is considerable channel
cross talk.

We will investigate the impact of segmentation, acous-
tic model, and adaptation by force aligning reference tran-
scriptions of a subset of the Blood Pressure Corpus, which
is described in detail in Section 2.1. Section 2.2. describes
the setup of the alignment experiments and discusses the
evaluation metrics used in the evaluations. Finally Section
2.3. describes the results of the alignment experiments and
draws some conclusions.

2.1. The Blood Pressure Corpus
The Blood Pressure (BP) Corpus consists of conver-

sational interactions involving ten subjects. Two were fe-
males in their final year of a four-year undergraduate nurs-
ing program who played the role of a health care worker
(HCW) in the scenario. The health care worker discusses
the (hypothetical) elevated blood pressure reading for a pa-
tient and tries to persuade him/her to obtain a follow-up
reading sometime within the next month. The discussions
terminate when either the patient agrees to obtain a follow-
up reading on a specific day or the health-care worker de-
cides that no further efforts would be persuasive. The role
of the patient (P) was played by one of the remaining eight
subjects (four females and four males, ages 18-30 recruited
at the University of Wisconsin Milwaukee). These subjects
were told prior to the session that the hypothetical blood
pressure reading represented an elevated measurement and
that the health care worker would try to convince them to
return for a follow-up visit and that they should be either
relatively easy to convince or relatively hard to convince
(depending on the experimental condition).

In each session, the two subjects sat next to each other
and wore blue smocks over their clothing. Six digital video
cameras were used. For each participant, one of the cam-
eras was focused on his/her face to capture information
about gaze and the other two cameras were calibrated so
that once correspondence between points in the two cam-
eras was established, the 3D positions and velocities of
his/her hands could be obtained. Using a five foot-wide
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prism with a known constellation of points, we are able
to obtain points with typical average errors within 1 mm
in x and y and about 1.5 mm in z (toward the cameras).
The maximal errors are within 4 mm. This has been suf-
ficient for measurements involving conversational gesture
interaction. We used off-the-shelf consumer-grade miniDV
30 frames-per-second cameras in progressive scan. The
audio for each participant was digitally recorded using a
Shure Sm94 unidirectional boom mounted microphone that
was placed at a distance of eight inches from the subjects’
mouths. The video and audio were synchronized using a
movie ‘clapper’ device. The video was digitized on an SGI
workstation and saved in SGI MPEG format. The audio
was initially sampled at 44.1K and then downsampled to
match the sampling rate used to train the corresponding
ASR system.

Transcriptions for each session were prepared by a pro-
fessional transcription service. The audio files were then
segmented in Praat, and the reference transcript for each
segment was stored with the corresponding time interval.
This enabled the transcription to be checked (and updated
when necessary) by listening to each segment with high
quality headphones using the audio channel corresponding
to the speaker.

2.2. Data Preparation

To investigate forced alignments in the BP corpus, we
selected five speech files from this data set corresponding
to five distinct subjects. There was a total of 1, 072 words
to be aligned in these files. Since the speech files in the
multimodal corpus are natural conversations recorded in a
normal laboratory environment, the background noise is not
negligible. Additionally, due to recording conditions there
is considerable channel cross talk in the speech files. Ta-
ble 1 provides pertinent details concerning the speech files
used for the alignment task.

Dur. % Talk Num.
File ID Gender Cond (sec.) Time Word

green-01 HC1 F H 89.53 76.27 220
green-05 HC2 F E 98.83 78.6 248
red-01 P1 F H 269.74 22.01 262
red-02 P2 M H 188.99 40.14 236
red-05 P5 F H 164.86 19.46 106

Table 1: Attributes of speech files used for the forced align-
ment experiments: file name, subject ID (HC: health care
worker, P: patient) and gender (F: female, M: male), ex-
perimental condition (E: easy to convince, H: hard to con-
vince), speech file duration (Dur. (sec.)), percentage of sub-
ject speaking time (% Talk Time), and the number of words
spoken by the subject.

All forced alignments are scored relative to gold stan-
dard reference alignments. A reference alignment for each
speech file was created by hand fixing an initial automatic
forced alignment generated by the HTK-WSJ system. The
boundaries were adjusted by a Dr. Harper in Praat based on
information provided by the speech waveform, the spectro-
gram, F0, and energy and by listening to the speech using
high quality headphones.

To evaluate the impact of segmentation on alignment
accuracy, we segmented each speech file based on knowl-
edge provided by the manually aligned transcripts. Given
the alignment, silences of a half second of silence or more
were identified in the speech file. These silences break the
file into stretches of speech separated by stretches of si-
lence, as shown in Figure 1. These stretches of speech were
then padded with 0.2 seconds of silence at the beginning

and end to create the segments used for evaluation. Such
a segment is represented by the box in Figure 1. Note that
padding was consistent for all segments except for those
that did not have sufficient silence due to their position at
the beginning or end of a speech file. The average length
of a segment was 3.47 seconds with a standard deviation
of 3.04 seconds; the maximum length segment was 14.89
seconds and the minimum was 0.55 seconds.

Figure 1: The boxed region depicts a speech segment made
up of a stretch of speech padded with 0.2 seconds of silence
at its beginning and end along with its reference transcript.

When an alignment is manually repaired, the process
can be quite time consuming, especially when word bound-
aries are shifted far from where they belong. Hence, to eval-
uate the quality of automatically generated forced align-
ments, we chose a metric based on the extent of the shift for
each word boundary. Since word endings and word begin-
nings may exhibit different patterns, we chose to measure
the distance between the beginning of each word in a forced
alignment and the beginning of that word in the reference
alignment, as well as the distance at the end of the word.
We then calculate the average and standard deviation over
the word beginning boundary shifts (WBBS) and the word
ending boundary shifts (WEBS).

2.3. Results

We first compare the alignment accuracy of Aligner,
WSJ-HTK, BN-SRI, and SWB-SRI on all of the unseg-
mented speech files in Table 1. As can be seen in the first
four rows of Table 2, forced alignments to entire speech
files is highly error prone, even for the stronger models.
This is probably due the considerable channel crosstalk in
this corpus. To get a better understanding of the conditions
leading to poor forced alignments, we divide the results
into two sets based on the percentage of time the channel’s
speaker spends talking (see Table 1): greater than 70% (H)
or less than 50% (L). As can be seen by comparing the next
four rows of the table to the last four rows in Table 2, when
the speech to be force aligned constitutes greater than 70%
of the file, forced alignments are more accurate than when
it constitutes less than 50%. In the latter case, all of the
systems often incorrectly align to the cross talk speech, cre-
ating large boundary shifts. In the former case, SWB-SRI
obtains the most accurate alignments of all the systems.

We next compare the alignment accuracy of all of the
systems using the same speech files segmented as described
in Section 2.2. As can be seen in Table 3, segmented align-
ment results in smaller average word boundary shifts over
all of the models than forced alignments to entire conver-
sation sides. Figure 2 shows the percentage of WBBS that
are less than or equal to a particular threshold in millisec-
onds on the segmented forced alignments (a similar pattern
occurs for WEBS). The curves for the SWB-ISIP, BN-SRI,
and SWB-SRI systems are at top and very close to each
other. The curve for the Aligner tool shows the worst over-
all alignment performance; however, since it is trained on
such a small training set of read speech and its acoustic
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Model Mean WBBS (SD) Mean WEBS (SD)
Aligner 23,516.0 (26,166.7) 23,337.4 (26,060.1)

WSJ-HTK 2,331.5 (10,273.5) 2,228.7 (9,861.3)
BN-SRI 35,609.1 (39,606.9) 35,564.0 (39,558.3)

SWB-SRI 3,915.9 (14,975.1) 4,073.9 (14,929.5)
AlignerH 146.32 (615.91) 116.04 (461.01)

WSJ-HTKH 102.66 (576.81) 109.48 (479.17)
BN-SRIH 45.93 (356.71) 46.64 (351.36)

SWB-SRIH 23.33 (19.90) 62.85 (39.92)
AlignerL 41,623.7 (21,529.1) 41,330.2 (21,523.6)

WSJ-HTKL 4,058.6 (12,429.7) 3,870.8 (12,897.8)
BN-SRIL 63,164.6 (32,310.3) 63,084.0 (32,274.0)

SWB-SRIL 6,932.0 (19,427.6) 7,181.8 (19,331.7)

Table 2: Average WBBS and WEBS in msec. and their
Standard Deviation (SD) given full file alignment.

Model Mean WBBS (SD) Mean WEBS (SD)
Aligner 41.40 (75.89) 44.84 (73.72)

WSJ-HTK 27.90 (41.20) 35.06 (54.22)
BN-SRI 25.08 (39.58) 30.69 (42.16)

SWB-ISIP 25.94 (52.51) 29.69 (51.71)
SWB-SRI 24.32 (27.51) 29.77 (32.99)

Table 3: Average WBBS and WEBS in msec. and their
Standard Deviation (SD) given speech segments and their
transcripts.

model is the most elementary among the systems, this re-
sult is not unexpected. It is clear that factors associated
with the acoustic models, such as the number of Gaussian
mixtures, monophone versus triphone modeling, and train-
ing corpus size, have an impact on alignment accuracy, as
can be seen by the improvements going from Aligner to
WSJ-HTK, and from WSJ-HTK to BN-SRI. In all three
systems, the preponderance of the training data involves
speech produced in a reading task; hence, it is clear that
the sophistication of the model and amount of training data
is central to the improvement. The SWB-SRI, BN-SRI,
and SWB-ISIP models achieved a similar average WBBS
and WEBS; however, SWB-SRI achieved the lowest stan-
dard deviation among the three systems. For BN-SRI, the
greater variability may stem from the poorer match between
the speech used to train the model and the speech to be force
aligned; the speech in our alignment data set involves spon-
taneous conversation. For SWB-ISIP, the greater variabil-
ity may stem from the slightly smaller amount of training
data. Greater accuracy is obtained on this set by using a
high quality acoustic model well trained on conversational
speech of a broad range of speakers.
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Figure 2: The cumulative distribution of WBBS on seg-
mented forced alignments.

Next, we examine the impact of adaptation on WSJ-
HTK, BN-SRI, and SWB-SRI. As can be seen in Table 4,
adaptation has little impact on the the SRI models, although

there is a slight improvement on word endings for WSJ-
HTK, which was trained on lower quantities of training
data generated by reading rather than natural conversation.
There may be much less potential for adaptation to help
when segments are short. In a preliminary study, we found
that WSJ-HTK has a 72% reduction of average WBBS
when aligning entire conversation sides.

Model Mean WBBS (SD) Mean WEBS (SD)
WSJ-HTK 29.24 (45.56) 30.23 (48.85)
BN-SRI 24.29 (39.94) 30.60 (44.60)

SWB-SRI 24.11 (27.56) 29.95 (31.68)

Table 4: Average WBBS and WEBS in msec. and their
Standard Deviation (SD) in adapted models given seg-
mented speech files.

A systematic study was conducted to compare several
ASR systems on a word forced alignment task. From this
study, we found that segmenting the speech files prior to
alignment improves the overall alignment accuracy and that
alignment accuracy is enhanced by using more advanced
acoustic models and more training data matched on speak-
ing style (conversational versus planned) to the data to be
aligned. Speaker adaptation has only a minor effect on
alignment accuracy, possibly due to the small segment size.
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