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Abstract 
For the present work, we introduce and evaluate a novel Bayesian syntactic shallow parser that is able to perform robust detection of 
pairs of subject-object and subject-direct object-indirect object for a given verb, in a natural language sentence. The shallow parser 
infers on the correct subject-object pairs based on knowledge provided by Bayesian network learning from annotated text corpora. The 
DELOS corpus, a collection of economic domain texts that has been automatically annotated using various morphological and 
syntactic tools was used as training material. Our shallow parser makes use of limited linguistic input. More specifically, we consider 
only part of speech tagging, the voice and the mood of the verb as well as the head word of a noun phrase. For the task of detecting the 
head word of a phrase we used a sentence boundary detector. Identifying the head word of a noun phrase, i.e. the word that holds the 
morphological information (case, number) of the whole phrase, also proves to be very helpful for our task as its morphological tag is 
all the information that is needed regarding the phrase. The evaluation of the proposed method was performed against three other 
machine learning techniques, namely naïve Bayes, k-Nearest Neighbor and Support Vector Machines, methods that have been 
previously applied to natural language processing tasks with satisfactory results. The experimental outcomes portray a satisfactory 
performance of our proposed shallow parser, which reaches almost 92 per cent in terms of precision. 
 
 

1. Introduction 
Throughout the recent years, there has been an increasing 
interest in corpus-based natural language processing using 
machine learning approaches. Numerous algorithms have 
been applied to large corpora, aiming at extracting the 
essential syntactic or semantic information rather than 
deriving a detailed syntactic-semantic analysis of each 
sentence. As manual construction of resources containing 
linguistic information is laborious and time consuming, 
the recent trend is the mining of such information 
automatically from textual corpus data. This task of 
identifying and extracting the key parts of information 
from a sentence is called shallow parsing. Characteristic 
examples of shallow parsing tasks include the 
identification of noun phrases, text chunking that 
recognizes the type of a phrase, the extraction of subject, 
main verb and object, etc. The majority of previous 
approaches to syntactic information acquisition have 
made use of sophisticated linguistic resources and pre-
processing tools (syntactic treebanks, wide coverage 
parsers etc.). As, for the majority of languages (including 
Modern Greek), such resources are not yet available, 
acquiring the necessary information by deploying as 
limited linguistic resources as possible appears to be very 
challenging. For the present work, preprocessing of the 
input corpus reaches merely the stage of elementary 
intrasentential, non-embedded phrase chunking. 
The present work introduces a novel, Bayesian shallow 
parser that learns pairs of subject-verb-object and subject-
verb-direct object-indirect object from large corpora. This 
work was funded under the DELOS project (EPETII-
98LE-24), which deals with the construction of a lexicon 
of economic terminology for Modern Greek (MG). We 
applied the proposed method to large economic corpora 
(approximately a hundred Megabytes of raw text) in order 
to enrich the syntactic information of a verb’s lexical 
entry. Apart from the lexical value of the syntactic 
information, the shallow parser outcome could also 

provide consequential information to dialogue systems, 
since they determine the agent and the receiver of an 
action. Furthermore, shallow parsing is essential for 
dialogue systems since it does not require high 
computational effort, thus it allows for making dialogue 
flow quicker. Current spoken dialogue systems employ 
simple linguistic processing techniques due to the real 
time performance constraint. Therefore, we conclude that 
our approach provides a tool for the instant detection of 
subject-verb-object, which is considered essential to the 
efficiency of the dialogue. 
The structure of the paper is as follows: Section 2 
introduces the linguistic resources used in our task, while 
Section 3 provides a discussion on Bayesian networks. 
Section 4 presents the implementation issues and Section 
5 concludes with the experimental results. 

2. Corpus and Linguistic Preprocessing 
The DELOS Corpus (Kermanidis, Fakotakis and 
Kokkinakis 2002) is a collection of economic domain 
texts of approximately five million words and of varying 
genre (press reportage, news, articles, interviews and 
scientific studies). It has been automatically annotated 
from the ground up: morphological tagging on DELOS 
was performed by an analyzer for Modern Greek based on 
Koskenniemi's two-level morphology model and utilizes a 
lexicon of more than 60,000 lemmata (Sgarbas, Fakotakis 
and Kokkinakis 2000). The provided information includes 
Part-Of-Speech (POS) tagging for all words, case tagging 
for nouns, adjectives and pronouns, voice tagging for 
verbs, type tagging for verbs (distinguishing between 
personal and impersonal verb types), type tagging for 
pronouns (distinguishing among relative, interrogative 
and the rest of the pronouns) and type tagging for 
conjunctions (distinguishing between coordinating and 
subordinating conjunctions). Precision and recall values in 
pos tagging reach 84-88% and 95-98% respectively. 
Concerning some key morphological features, case 
tagging reaches an accuracy exceeding 94%, and voice 
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tagging for verbs 84%. Further (phrase structure) 
information is obtained automatically by the chunker 
described in detail in Stamatatos, Fakotakis and 
Kokkinakis (2000). Noun (NP), verb (VP), prepositional 
(PP), adverbial phrases (ADP) and conjunctions (CON) 
are detected via multi-pass parsing. The chunker is based 
on a small keyword lexicon containing some 450 
keywords (articles, pronouns, etc.) and a suffix lexicon of 
300 of the most common word suffixes in Modern Greek. 
Smaller phrases (simple NPs, PPs and VPs) are formed in 
the first passes, while later passes combine smaller 
phrases to form more complex structures (ADPs, CONs, 
coordinate structures, attachment of genitives to the 
preceding phrase). As reported in Stamatatos et al. (2000), 
the precision of the chunker reaches 94.5% and recall 
89.5% when tested on a corpus of 200,000 words of the 
Modern Greek newspaper ΤΟ ΒΗΜΑ (The Tribune). The 
phrase headword is identified next. Noun phrase 
headwords are detected based on a set of empirical rules: 
scanning through the constituents, the head-word is, in the 
following priority, the noun, adjective or numeral. 
Regarding the case, the priority is: nominative, accusative, 
genitive. In case the noun phrase does not contain any of 
the above pos categories, the head-word is any word 
starting with a capital letter. For verb phrases, the 
headword is the main verb, unless they are introduced by 
a conjunction in which case the conjunction is the 
headword. For prepositional phrases it is the preposition 
introducing them and for adverbial phrases it is the first 
word of the phrase. 

3. Bayesian Networks 
Classification is a fundamental concept in the fields of 
data mining and pattern recognition that requires the 
construction of a function that assigns a target or class 
label to a given example, described by a set of attributes. 
This function is referred to as a classifier. Given a set of 
pre-classified instances, numerous machine learning 
algorithms such as neural networks, decision trees, rules 
and graphical models, attempt to induce a classifier, able 
to generalize over the training data. 
While Bayesian graphical models were known for being a 
powerful mechanism for knowledge representation and 
reasoning under conditions of uncertainty, is was only 
after the introduction of the so-called naïve Bayesian 
classifier (Duda and Hart, 1973; Langley, Iba and 
Thomson, 1992) that they were regarded as classifiers, 
with a prediction performance similar to state-of-the-art 
classifiers. The naïve Bayesian classifier performs 
inference by applying Bayes rule to compute the posterior 
probability of a class C, given a particular vector of input 
variables Ai. It then outputs the class whose posterior 
probability is the highest. Regarding its computational 
cost, inference in naïve Bayes is feasible, due to two 
assumptions, yet often unrealistic for real world 
applications: 
• All the attributes Ai are conditionally independent of 

each other, given the classification variable. 
• All other attributes are directly dependent on the class 

variable. 
Despite the fact that naïve Bayes performs well, it is 
obviously counterintuitive to ignore the correlation of the 
variables in some domains. As an example, consider the 

credit card fraud detection problem (Heckerman, 1995). It 
would be hard to assume that the age or the sex of a 
person who is suspect for being involved in a credit card 
fraud is uncorrelated with the purchase of gas or 
jewellery. 
Bayesian networks (Pearl, 1988) provide a comprehensive 
means for effective representation of independence 
assumptions. They are capable of effectively coping with 
the non-realistic naïve Bayes restriction, since they allow 
stating conditional independence assumptions that apply 
to all or to subsets of the variables. A Bayesian network is 
consisted of a qualitative and quantitative portion, namely 
its structure and its conditional probability distributions 
respectively. Given a set of attributes A={A1,…,Ak}, where 
each variable Ai could take values from a finite set, a 
Bayesian network describes the probability distribution 
over this set of variables. We use capital letters as X,Y to 
denote variables and lower case as x,y, to denote values 
taken by these variables. Formally, a Bayesian network is 
an annotated directed acyclic graph (DAG) that encodes a 
joint probability distribution. We denote a network B as a 
pair B=<S,P> (Pearl, 1988) where S is a DAG whose 
nodes correspond to the attributes of A. P refers to the set 
of probability distributions that quantifies the network. S 
embeds the following conditional independence 
assumption: 
Each variable Ai is independent of its non-descendants 
given its parent nodes. 
P includes information about the probability distribution 
of a value ai of variable Ai, given the values of its 
immediate predecessors in the graph, which are also 
called parents. This probability distribution is stored in a 
table, which is called conditional probability table. The 
unique joint probability distribution over A that a network 
B describes, can be computed using: 

1
1
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The network of figure 1 encodes a probability distribution 
which is estimated as follows: 
p(A1,A2,A3,A4,A5)=p(A2|A1)p(A3|A1,A4)p(A5|A3) 

 
Figure 1: A general, unrestricted Bayesian network 

A noteworthy remark is that the naïve Bayes classifier is 
actually a simple Bayesian network with a fixed, unique 
structure. The class node is a parent to all attribute nodes 
and there are no arcs between the attribute nodes (figure 
2). This structure captures the two assumptions of naïve 
Bayes. 

 
Figure 2: Naïve Bayesian classifier as a Bayesian network 
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3.1 Learning Bayesian Networks from Data 
There are two practices for determining the structure of a 
Bayesian network. Either manually, by a human domain 
expert who should provide the interconnection of the 
variables, or having the structure determined 
automatically by learning from a set of training examples. 
Regarding the learning of the conditional probability table 
of a network, the same principle applies. The parameters 
of the table could either be provided manually by an 
expert or automatically through a learning procedure. The 
task of manually supplying the parameters is a laborious 
one. Besides, in some applications it is simply infeasible 
for a human expert to know a priori both the structure and 
the conditional probability distributions. The problem of 
finding the most probable network structure from data is 
known to be NP-hard (Mitchell, 1997). The most 
commonly utilized approach is the introduction of a 
scoring metric that evaluates the probability of a candidate 
structure B over the training set D. The two standard 
metrics used to learn networks from data are the Bayesian 
scoring function (Cooper and Herskovits, 1992) and the 
one which is based on the principle of minimal description 
length (MDL) (Suzuki, 1993; Lam and Bacchus, 1994; 
Friedman, Geiger and Goldszmidt, 1997). Nevertheless, 
Heckerman (1995) observed that the two metrics are 
asymptotically equivalent as the sample size increases. 
Furthermore, they prove to be asymptotically correct, 
meaning that with probability one, the learned distribution 
converges to the underlying distribution as the number of 
training instances increases. 

4. Implementation 
As regards training data, we used approximately 10000 
sentences in which the tuples of subject-verb-object and 
subject-verb-direct object-indirect object were manually 
annotated by experienced linguists. The morphological 
information was extracted from the DELOS corpus 
provided that the linguistic tools, described in section 2, 
were applied. Finally, the chunker was incorporated in 
order to mine the phrase boundaries and the head word of 
noun and verb phrases. From the plethora of available 
linguistic information that the DELOS corpus contains, 
the Bayesian shallow parser exploits only part of speech 
tagging, the voice-mood of the verb, the case of the head 
word of a noun phrase as well as the phrase boundaries. 
Upon completion of the annotation procedure, we 
performed Bayesian network learning from data using the 
Bayesian scoring function. Since the population of 
candidate networks that may reflect the probability 
distribution of data becomes cumbersome, a search 
algorithm had to be followed: Initially, the most probable 
forest-structured network is constructed (i.e. a network in 
which every node has at most one parent). A greedy 
search is performed by adding, deleting or reversing the 
arcs randomly. In case that a change results in a more 
probable network, that network is accepted, otherwise 
cancelled. Throughout this process, a repository of 
networks with high probability is maintained. When the 
search reaches a local maximum, a network is randomly 
selected from the repository and the search process is 
activated again. It should be noted that in order to avoid 
the convergence to the previous local maximum the 
network is slightly modified, meaning that we delete some 
arcs. Since the training data set is large we also sub-

sample the data to speed the network evaluation process 
up. During the search, the size of the sub-samples is 
increased. The network complexity is also controlled 
during the search, so that a limited number of arcs is 
allowed in the beginning and as the process progresses, 
more and more arcs are approved. Recall that given two 
nodes X and Y of x and y discrete states each, the 
conditional probability table of a network X Y will store 
at least x·y parameters. It is important to penalize huge 
tables, corresponding to fully-connected networks, which 
is the most naïve way of learning. These two annealing 
schemes (sub-sampling and complexity restrictions) have 
proven to have the effect of avoiding many bad local 
maxima (Heckerman, Geiger and Chickering, 1995). The 
extracted, most probable network is then used in order to 
estimate whether a candidate noun phrase is a subject or 
an object (direct or indirect) for a given verb. 

5. Evaluation 
Concerning the evaluation process, we have developed 
prototype simulation software to be used by linguists in 
order to establish the unbiased behavior of the Bayesian 
shallow parser in real world applications such as the 
DELOS project. We have applied the shallow parser to 
approximately 20000 sentences and arbitrary selected 
about 5000 of them for manual evaluation. Experimental 
results are tabulated in table 1. The limited accuracy of the 
preprocessing tools (e.g. POS tagger, morphological 
analyzer) brings about an error in the performance of our 
method. Therefore, we provide detailed error analysis of 
each unit along with its impact factor in the performance 
of the proposed methodology. 
 

Error type # of sentences Percentage 
Correct 3648 73% 

Errors in case 288 5.7% 
Errors in POS 378 7.5% 
Errors in the 
number of the 

head word 
160 3.2% 

Errors of head 
word 121 2.5% 

Errors of 
Bayesian 

shallow parser 
405 8.1% 

Total 5000 100% 
Table1: Overview of the Bayesian shallow parser 

evaluation outcome 

A close look at table 1 reveals that the error rate appears 
to be approximately 27%. However, almost the 70% of 
those errors (947 cases out of a total of 1352 erroneous 
ones) is caused due to erroneous output of the pre-
processing modules, as regards to the tagging of the head 
word of a noun phrase which is detected (or actually is) as 
subject or object. The most significant influence appears 
to originate from errors referring to the POS, the case, the 
number of the head word or even the identification of the 
head word. Provided error-free output from the other 
linguistic tools, the shallow syntactic parser appears to 
perform robustly. 
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Regarding the evaluation of our Bayesian module in 
contrast to other machine learning algorithms, we applied 
a 10-fold cross validation (Stone, 1974) using three other 
well known methods that have been previously applied to 
various computational linguistics tasks, demonstrating 
significant results (Maragoudakis et al., 2001). More 
respectively, naïve Bayes, k-Nearest Neighbor (k-NN) 
and Support Vector Machines (SVM) have been used in 
addition to our Bayesian shallow parser. The three above 
mentioned methods derive from different theoretical 
backgrounds, varying from probabilistic theory to instance 
based learning and structural risk minimization.  
Three indexes of performance that are commonly used in 
supervised learning tasks have been used, namely 
precision, recall and F-measure. Precision (p) is defined 
as the number of correctly identified pairs of subject-
object of a verb (tp), divided by the number of correctly 
identified pairs, plus the number of incorrectly selected 
cases (fp) for that verb: 

tpp
tp fp

=
+

 

Recall (r) is estimated as the number of correctly 
identified pairs of subject-object of a verb (tp), divided by 
the number of correctly identified pairs plus the number 
of cases the system failed to classify for that verb (fn): 

tpr
tp fn

=
+

 

The F-measure (f) is the harmonic mean of precision and 
recall, calculated as: 

1 11 (1 )f a a
p r

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
, 

where α is a factor which determines the equilibrium of 
precision and recall. A value of α=0.5 is often chosen for 
equal weighting of precision and recall. Figure 3 outlines 
the outcomes of the above mentioned methods. 

 
Figure 3: Precision, Recall and F-measure for all the 

applied machine learning algorithms, using 10-fold cross 
validation. 

Note that, BSP refers to the Bayesian shallow parser, NB 
stands for naïve Bayes, while k-NN and SVM correspond 
to the k-Nearest Neighbor and Support Vector Machines 
respectively. As one may observe, BSP outperforms all 
other methods both in precision and recall, a fact that 
supports our claim that Bayesian networks theory is well 
suited for such applications. More respectively, the 

precision of BSP reaches 92% and the recall metric is 
close to 79%. SVM are slightly inferior than BBN by a 
factor of 9%. The k-NN algorithm is 12% worse, while 
the NB appears to be the most error-prone classifier. This 
may be attributed to the fact that the naïve Bayesian 
classifier is based on clearly over-restrictive assumptions. 
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