
Functional Requirements for an Interlinear Text Editor

Baden Hughes1, Catherine Bow1 and Steven Bird1,2

1Department of Computer Science and Software Engineering, University of Melbourne, Victoria 3010, Australia
{badenh, cbow, sb}@cs.mu.oz.au

2Linguistic Data Consortium, University of Pennsylvania, Philadelphia PA 19104-2653, USA
sb@ldc.upenn.edu

Abstract
Interlinear text has long been considered a valuable format in the presentation of multilingual data, and a variety of software tools
have facilitated the creation and processing of such texts by researchers. Despite the diversity of tools, a common core of editorial
functionality is provided. Identifying these core functions has important implications for software engineers who seek to efficiently build
tools that support interlinear text editing. While few applications are specifically designed for the creation or manipulation of interlinear
text, a number of tools offer varying degrees of incidental support for this modality. In this paper we provide a comprehensive set of
critieria upon which the derivation of functional criteria can be based. We describe the basis on which a group of tools was selected for
investigation, along with the evaluation criteria. Finally we consolidate our findings into a functional specification for the development
of software applications for the editing of interlinear text.

1. Introduction

Interlinear text typically consists of a row of source text an-
notated with one or more rows of morphosyntactic analy-
sis and translation. Vertical alignment represents the corre-
spondence between the elements of each row. An example
of a line of interlinear text is given below.

Comment
how

trouvez-vous
find.2PL-you.PL

mes
my.PL

lunettes
glass.PL

de
of

soleil?
sun
What do you think of my sunglasses?

The rows of an interlinear text can represent many differ-
ent information types: orthographic, phonemic, phonetic
and prosodic forms; morphemes and morphosyntactic cate-
gories; word-level and phrase-level translations into one or
more languages; and any kind of analytical coding or com-
mentary. Commentary is especially diverse, ranging from
cultural notes and cross references to other sources of in-
formation that aid the interpretation of the text, to queries
about a detail of the transcription and notes on what should
be checked in the next meeting with a language consultant.
The alignment between the various rows may be morph-by-
morph, word-by-word, or even phrase-by-phrase.

Interlinear text is well suited to representation using XML.
In previous work (Bow, Hughes and Bird (2003); Hughes,
Bird and Bow (2003)) we proposed a model for this expres-
sion and explored the flexibility of XML-based interlinear
text. While a number of researchers have adopted the mod-
els advocated, at the time of writing there is not an interlin-
ear text editing tool which natively supports this format.

In this paper we survey existing tools which enable the cre-
ation, editing or presentation of interlinear text, with the
view to aggregating a set of functional requirements for an
interlinear text editor and corresponding API. In particular
we describe the basis on which a group of tools was se-
lected for investigation, and describe the evaluation criteria.

In considering current implementations of tools which en-
able the creation, editing or presentation of interlinear text,
a formal set of criteria is needed in order to determine the
class of applications to be evaluated in depth. These initial
criteria are technically, rather than linguistically oriented.
Having selected a group of applications for evaluation, we
turn to the establishment of linguistically-grounded evalu-
ation criteria. Building on previous work, we define the
evaluation criteria from a functional perspective. Having
described our methodology, selected and evaluated the ap-
plications, we turn to the primary objective of the paper,
reporting a set of functional requirements for an interlin-
ear text tool and API. Drawing on the evaluation phase,
we identify a list of commonly implemented functions for
working with interlinear text, and the possible degrees of
granularity at which these can be implemented. In conclu-
sion, we review the results of our evaluation in the light
of other similarly motivated but more narrowly focused ef-
forts.

2. Interlinear Text Applications

A set of criteria is needed in order to determine the group
of applications to be evaluated in depth. In applying these
criteria we were able to identify a closed set of applica-
tions on which to conduct comparable evaluation. Compil-
ing an initial list of tools which offer an interlinear mode
for annotation of language data results in over 40 applica-
tion instances. In considering these tools, there are obvious
clusters which provide specialist functionality in one area
or another. In order to efficiently review a number of these
tools in depth, a selection process is required to categorise
these tools. These initial criteria are technically, rather than
linguistically oriented (in contrast to the evaluation crite-
ria specified later). Six selection or exclusion criteria have
been used: (a) end-user applications rather than application
development frameworks; (b) applications which are easily
obtainable at low or zero cost; (c) applications which do not
require a high degree of technical literacy to install and op-

 771



erate; (d) applications which can be used in multiple con-
texts (eg. field research, analysis, data management); (e)
applications which allow unimodal (text) and multimodal
(text, audio, video) input and (f) exclusion of applications
primarily oriented towards presentational formats.

After conducting an assessment of the more than forty ap-
plications which claimed to support an interlinear modal-
ity, a short list of candidates for evaluation was reached:
Shoebox1, Praat2, TASX3, InterTrans4, LinguaLinks5 and
ELAN6. (For efficiency, we will not describe these in detail
but instead refer the reader to the relevant websites for each
application, as well as to the URL listed in the conclusion
for further details.)

3. Evaluation Process

The methodology followed in the evaluation process is to
use real linguistic data, rather than the samples or demo
data which is typically provided with the software. This
process is motivated by two factors: first to ensure that the
applications were capable of handling a single, consistent
set of data as a baseline for comparison, and secondly to
replicate typical usage patterns, that is, the creation and ma-
nipulation of interlinear text drawn from fieldwork-based
linguistic data collection. Where a particular application
was available for more than one platform, as many plat-
forms as available were installed, and evaluation of func-
tionality occurred across the range of installed versions
rather than on a single operating system installation.

Having selected a group of applications for evaluation, we
turn to the establishment of linguistically-grounded evalua-
tion criteria. Building on previous work in which we con-
sidered in depth the nature of interlinear text (Bow, Hughes
and Bird, (2003)) and identified typical linguistic analytical
requirements (Hughes, Bird and Bow, (2003)), we can de-
fine the evaluation criteria from a functional perspective.
In particular, the six main functional groupings used for
evalution used are: (a) general editing functions (e.g. cut,
copy, paste, search, replace); (b) structural segmentation
and alignment (ability to interlinearise at different levels,
and across a range of media); (c) flexible content model
(support for ontology-based annotations, and the ability to
include incomplete or ambiguous annotations, plus struc-
tured and non-structured supplementary notes and observa-
tions, and to add these across segmentation boundaries; (d)
the ability to import and export structured data according to
a formally specified structure and widely supported media
format; (e) the ability to handle non-Roman scripts and/or
Unicode; and (f) the ability to support a customisable pre-
sentation output, e.g. for publishing. For each of these
linguistically-oriented criteria, we considered how each ap-
plication instance meets the functional requirements for an
interlinear text editor and API.

1http://www.sil.org/computing/shoebox
2http://www.praat.org
3http://tasxforce.lili.uni-bielefeld.de
4http://agtk.sourceforge.net
5http://www.ethnologue.com/LLdocs/contents.asp
6http://www.mpi.nl/tools/elan

4. Functional Requirements

Drawing on the evaluation phase, we identify a list of com-
monly implemented functions for working with interlin-
ear text, and the possible degrees of granularity at which
these can be implemented. We note that there are a number
of such functions which were obvious prior to evaluation;
whilst others were discovered during evaluation; still more
were discovered when considering the synthesis of results;
and others we can derive from previous work (eg. Bick-
ford (1997); Kew and McConnel (1997); Maeda and Bird
(2000); Bird et al. (2002); Maeda et al. (2002)) that are
not immediately obvious in any single application instance
evaluated.

4.1. Requirements Derived from Selection Criteria

A number of functional criteria can be derived from the pro-
cess of selection of candidates for evaluation. We identify
the need for both an end user application as well as a library
for software developers. The end user application should
facilitate work in different phases of a project lifetime, in-
cluding data collection, data analysis, and data manage-
ment. With the emergence of digitized multimodal input, it
is also important for applications to allow unimodal (text)
and multimodal (text, audio, video) input. While much ex-
isting interlinear material is in text format only, the prolif-
eration of multimodal materials requires that a tool be able
to handle alignment of text to other modes, such as audio
and in some cases video. The library for software develop-
ers should be provided in a platform independent manner,
accessible via wrappers for commonly used languages of
implementation. Furthermore, the distribution conditions
of such an application and library would ideally be under
open source conditions - in fact for the library this is almost
essential. Not only does such a distribution model facilitate
the maintenance of software, but also reduces the complex-
ity of licensing administration.

4.2. Requirements Derived from Functional
Evaluation

In addition to the requirements described above, there are
a large number of functional requirements derived from the
process of evaluation.

4.2.1. General Editing Functions

Foundational to any editing function is the notion of how
a region of interlinear text can be selected - here we pro-
pose that this selection can be made of a sequence of one
or more constituents at the level of character, morph, word,
or phrase. Further differentiation is required between a se-
lection of (part of) the content and of the structure in which
the content is embedded. For example it should be possible
select across cell structures to obtain only cell content, or
cell structure, or both.

We find that there are a range of functional requirements
for an interlinear text editor which fall into three main cat-
egories: those related to copy, cut and paste; those related
to search; and those related to replace.

 772



A basic copy, cut and paste function is required - anything
that is selectable can be copied, cut or pasted. In addi-
tion, support for a multi-item clipboard function is com-
mon. More complex functions such as splitting or merging
can be handled by combinations of copy, cut and paste. In
the instance of copy, cut or paste between different levels
of a text, full orthographic support should be provided.

A search function should support for regular expressions,
matching restricted to a particular row of interlinear text,
searching multiple texts, searching within a specified extent
of text/audio/video, searching based on previous searches,
and navigation between results either via an index or within
the data itself.

In the third instance, replace, there are similar require-
ments: replace, replace with support for regular expres-
sions, replace in multiple data files, replace within a se-
lected quantity of text, replace based on previous replace-
ments and optional replacement at a particular location in
the data.

In addition to these requirements, there is also the need for
multiple levels of undo or redo.

4.2.2. Structural Segmentation and Alignment

The most significant issue in this area is the granularity of
segmentation of an interlinear text resource, which impacts
directly on the number of locations to which annotation
can be attached. Minimally we find that an interlinear text
should be segmented at the morph, word, phrase or text
levels. An additional feature which is supported in a num-
ber of tools is for attachment of an annotation to multiple
continuous constituents (eg. morphs or words.) A further
extension is to allow the attachment of commentary to non-
constituents.

In reference to annotations themselves, it is a requirement
that the editing environment and underlying API support
the use of multiple ontologies for linguistic annotation. (Di-
rectly supporting XML namespaces appears the obvious
way to enable this.)

The degree to which text can be combined with audio and
or video is important. Possible variations which should be
supported include: text only, text and audio, text and audio
and video, and text and video. In all of these cases, support
should be provided for separate management of annotation
tiers, as well as support for annotations across a number of
independent instances of text, audio and video through the
use of a URI resolution schema.

4.2.3. Flexible Content Model

A flexible content model is highly desirable, and here we
seek to define some of its dimensions. With regard to anno-
tations themselves, it should be possible to include partial
annotations or free text commentary. A further requirement
is to support third-party commentary in a stand-off mode.
Support is required for annotations based on third-party on-
tologies.

4.2.4. Import and Export

The ability to import and export structured data according
to a formally specified structure and acceptable media for-
mat is an important functional requirement. For maximum
flexibility, the editor application and the API would handle
interlinear text natively in an XML-based format. How-
ever, any new application also needs to retain backwards
compatibility, and as such, it is a requirement that an inter-
linear text editor and API must also handle conversion to
and from formats such as those used by Shoebox, TASX
and ELAN; and to and from formats such as SGML, some
variant of HTML and structured text files. Where possible,
this conversion should be lossless. Yet another desirable
variant would be to support a change management and ver-
sion control system natively in the application and API.

4.2.5. Non-Roman Scripts

We consider the ability of an interlinear text editing appli-
cation to handle non-Roman scripts and/or Unicode as es-
sential. In particular, we find that many extant tools do not
support Unicode character encoding, which is perhaps sur-
prising given the prevalence of special characters used by
linguists. However, any future tools should minimally sup-
port Unicode (both UTF-8 and UTF-16 encodings). While
Unicode support is valuable, an additional but significantly
more complex requirement is that rendering support for
non-Roman scripts is also available, rather than simply data
entry support. In addition, there is a requirement for sup-
port of interlinear text in horizontal directionality (right-
to-left and left-to-right), and in vertical modality (top-to-
bottom and bottom-to-top).

4.2.6. Presentation Output

The ability to support a customisable presentation output
is a requirement which is not achieved easily by existing
implementations. We find that there are a range of func-
tional requirements for an interlinear text editor in this area,
specifically: the ability to save a selected amount of text as
an image in a range of formats including GIF, JPEG, EPS
and SVG; the ability to generate an interlinear represen-
tation in a number of presentation formats including PDF,
RTF and HTML; the ability to transform native XML based
interlinear text using a range of inbuilt XSL stylesheets de-
rived from common publishers’ requirements; and the abil-
ity to transform native XML based interlinear text based on
a user defined XSL stylesheets or XSLT transformations.

5. Conclusion and Future Work

Interlinear text is a popular format for presenting multilin-
gual data. In this paper we have reported on our study of
several interlinear text editors, and elaborated a comprehen-
sive set of functional requirements. We are in the process
of implementing this functionality in an open source library
and application based on the Annotation Graph Toolkit7

Additional resources, including the survey data is avail-
able.8

7http://agtk.sourceforge.net/
8http://www.cs.mu.oz.au/research/lt/projects/interlinear/

 773



6. References

J. Albert Bickford, 1997. A Rich Model for Presenting In-
terlinear Text. SILEWP 1997-003. SIL Electronic Work-
ing Papers. Summer Institute of Linguistics: Dallas TX.
[http://www.sil.org/silewp/1997/003/]

Steven Bird, Kazuaki Maeda, Xiaoyi Ma, Haejoong Lee,
Beth Randall, and Salim Zayat, 2002. TableTrans, Multi-
Trans, InterTrans and TreeTrans: Diverse Tools Built on the
Annotation Graph Toolkit. Proceedings of the Third Inter-
national Conference on Language Resources and Evalua-
tion, Paris: European Language Resources Association, pp
364-370.

Catherine Bow, Baden Hughes and Steven Bird, 2003. To-
wards a General Model of Interlinear Text. Proceedings of
EMELD Workshop 2003: Digitizing and Annotating Texts
and Field Recordings. LSA Institute: Lansing MI, USA.
July 11-13, 2003.

Baden Hughes, Steven Bird and Catherine Bow, (2003).
Encoding and Presenting Interlinear Text using XML Tech-
nologies. Proceedings of the Australasian Language Tech-
nology Workshop 2003. Melbourne, Australia. December
10, 2003.

Jonathan Kew and Stephen McConnel, 1990. Formatting
interlinear text. Summer Institute of Linguistics Occasional
Publications in Academic Computing 17. Summer Institute
of Linguistics, Dallas TX.

Kazuaki Maeda and Steven Bird, 2000. A Formal Frame-
work for Interlinear Text. Proceedings of the Workshop
on Web-Based Language Documentation and Description,
Philadelphia, December 2000.

Kazuaki Maeda, Steven Bird, Xiaoyi Ma, and Haejoong
Lee, 2002. Creating Annotation Tools with the Annota-
tion Graph Toolkit. Proceedings of the Third International
Conference on Language Resources and Evaluation, Paris:
European Language Resources Association, pp 1914-1921.

7. Acknowledgements

The research reported here is supported by the National
Science Foundation Grant Number 0094934 (Electronic
Metastructure for Endangered Languages Data), Grant
Number BCS-998009 (Talkbank), and Grant Number BCS-
0317826 (Querying Linguistic Databases).

 774




