
FreeLing: An Open-Source Suite of Language Analyzers

Xavier Carreras, Isaac Chao, Lluı́s Padró, Muntsa Padró

TALP Research Center
Universitat Politècnica de Catalunya

C/ Jordi Girona 1-3
08034 Barcelona, Spain�

carreras,ichao,padro,mpadro � @lsi.upc.es
Abstract

Basic language processing such as tokenizing, morphological analyzers, lemmatizing, PoS tagging, chunking, etc. is a need for most
NL applications such as Machine Translation, Summarization, Dialogue systems, etc. A large part of the effort required to develop such
applications is devoted to the adaptation of existing software resources to the platform, programming language, format or API of the final
system.
In LREC’02, we presented the object architecture that we are currently using (Carreras and Padró, 2002), which enables the quick and
easy integration of basic language analyzers in any NLP application. Now we present a suite of analysis tools based on that architecture,
which is distributed under Lesser General Public License (LGPL) (Free Software Foundation, 1999). The first release of the suite will
include morphological analyzer and Part-of-Speech tagger for English, Spanish, and Catalan.

1. Introduction
Basic language processing such as tokenizing, morpho-

logical analyzers, lemmatizing, PoS tagging, chunking, etc.
is a need for most NL applications such as Machine Trans-
lation, Summarization, Dialogue systems, etc.

This dependence turns basic language analyzers into
very valuable resources for any research or development in
NLP field, and the lack of disponibility of state of the art
systems constitutes a severe bottleneck to a faster progress
in the area, either for research or development goals.

Additionally, a large part of the effort required to de-
velop NLP systems is devoted to the adaptation of existing
software resources to the platform, programming language,
format or API of the final application.

Thus, we believe that steps should be taken towards
general availability of basic NLP tools and resources, which
may be used without restrictions, which would enable faster
advances and more portable systems in our area.

1.1. Free Software
In recent years, Free Software has became world-

wide known and its usage ratio is growing every day,
being its most well-known representative the Linux op-
erating system. Free Software is a concept related
to freedom, not price. The Free Software Foundation
(http://www.gnu.org) defines a piece of software
may be considered free if users are free to run, copy, dis-
tribute, study, change and improve the software.

Although traditional software developers claim that this
model is not viable, there are in fact clear advantatges of
this approach for users, as well as lots of business opportu-
nities for innovative software companies: On the one hand,
both users and developers benefit from improvements made
by people worldwide, which leads to a higher quality soft-
ware. On the other hand, the fact that the code is open and

This research has been partially funded by the Spanish Re-
search Department (TIC2000-0335-C03-02, TIC2000-1735-C02-
02), by the European Comission (IST-2001-34460), and by the
Catalan Research Department (CIRIT 1999SGR-150).

free does not eliminate the commercial activity of software
companies, though it does change it in favour of the con-
sumer: Software development companies can not sell off-
the-shelf unguaranteed software as they traditionally do,
but they can provide many services associated to that soft-
ware: Installation, maintenance, customization, on-demand
extension, technical support, or any other added-value ac-
tivity related to the software.

This alternative bussiness model may be inconvenient
for a few large software factories, but are good news for
many medium or small sized software companies, who may
find a new enterprise model in software engineering. Obvi-
oulsy, they are good news also for users, who may finally
exert their right to choose in a competitive market.

In this paper, we present a suite of analysis tools based
on the architecture of (Carreras and Padró, 2002). This
suite is distributed as free software under Lesser General
Public License (LGPL) (Free Software Foundation, 1999).
The first release of the suite includes morphological ana-
lyzer and Part-of-Speech tagger for English, Spanish, and
Catalan, though we plan to continue extending its fuction-
alities, and expect that the tool will benefit from NLP com-
munity contributions.

2. Setting
In (Carreras and Padró, 2002) we presented a client-

server architecture aiming to solve two crucial require-
ments to integrate language analyzers in NLP applica-
tions: Reusability and efficiency. The architecture was an
evolved version of the analyzers presented in (Carmona
et al., 1998). It consisted of a client-server approach, in
which NLP applications are seen as having two layers: A
basic linguistic service layer which provides analysis ser-
vices (morphological, tagging, parsing, ...), and an applica-
tion layer which, acting as a client, requests services from
the analyzers.

The main advantages of this architecture are:

� It enables to use the analyzer as a function call from

 239

any NLP application, not as a separate software pack-
age. This is a crucial issue for modern NLP, specially
for high level application development.� Conversions are performed between application data
structures and server data structures, being unneces-
sary to define data interchange formats between ana-
lyzers, and dramatically reducing the overhead caused
by the reading, writing, parsing, and transmitting of
text-based representations.� The client-server approach enables the interaction
between objects via some standard distributed ob-
ject middleware, such as CORBA (Common Object
Request Broker Architecture) (Object Management
Group, 2001), which makes it possible to distribute
applications over a network, activate several instances
of the same service, if necessary, as well as writ-
ing clients in any programming language and running
them on any platform.

The main drawback of the (Carreras and Padró, 2002)
system was related to its customization: The API of each
analysis server is predefined, and thus clients must adapt to
the server even when the provided service may not cover
exactly their needs.

3. Proposal
We present a suite of basic language analyzers which

aims to be easily integrable in any NLP system, eas-
ily extensible, and highly portable to new languages, and
adaptatable to the needs of any potential client applica-
tion. To make all this possible, a clear and simple ob-
ject oriented architecture is used, and the suite is released
as a free1 (and thus, open-source) software library, under
the Lesser General Public License (LGPL) (Free Software
Foundation, 1999). The package may be obtained from
http://www.lsi.upc.es/˜nlp

The analyzers are provided as libraries following the
(Carreras and Padró, 2002) client–server object architec-
ture. They may be used straightforwardly from any NLP
application requiring their services, or may be accessed re-
motely via CORBA.

The first version of the suite includes the following
functionalities for English, Spanish, and Catalan:

� Tokenization & sentence splitting� Morphological analysis� Multiword recognition� (Naive) proper noun detection� Date-time expression recognition� Currency expression recognition� Numerical expression recognition (numbers, quanti-
ties, percentages, ratios, etc.)� Part-of-Speech tagging. Taggers follow a HMM tri-
gram model, and yield a state-of-the-art accuracy
(over 95% precision).

Chunking as well as Named Entity recogni-
tion/classification is expected to be included in later
releases in the short term.

1Related to freedom, not price. http://www.gnu.org.

3.1. Architecture
The architecture of the system is based on two kinds of

objects: linguistic data objects and processing objects.

3.1.1. Linguistic Data Classes
The basic classes in the library are used to contain lin-

guistic data (such as a word, a PoS tag, a sentence, a doc-
ument...). Any client application must be aware of those
classes in order to be able to provide to each processing
module the right data, and to correctly interpret the module
results.

The linguistic classes supported by the current version
are:

� analysis: A triple � lemma, PoS tag, probability � .� word: A word form with a list of possible analysis.
� sentence: A list of words known to be a complete

sentence.

Figure 1 presents a UML diagram with the linguistic
data classes.

word

-form: string

-analysis_list: list<analysis>

-multiword: list<word>

+get_form(): string

+get_lemma(): string

+get_parole(): string

+set_analysis(list<analysis>): void

+add_analysis(analysis): void

+set_form(string): void

+get_n_analysis(): int

+get_analysis(): list<analysis>

+is_ambiguous(): bool

+is_multiword(): bool

+get_words_mw(): list<word>

sentence is a list of

analysis

-lemma: string

-parole: string

-probability: double

+get_lemma(): string

+get_parole(): string

+get_prob(): double

+set_lemma(string): void

+set_parole(string): void

+set_prob(double): void

+has_prob(): bool

has a list of

a MW is composed by

Figure 1: FreeLing-1.0 Linguistic Data Classes.

In further versions, the linguistic data classes will in-
clude objects such as chunk, parse tree, document, etc.
Also, the contents of already existing objects will be ex-
tended –e.g. the word class could be extended to contain a
list of possible WordNet senses.

3.2. Processing Classes
Apart from classes containing the linguistic data, the li-

brary provides classes able to transform those data:

� tokenizer: Receives plain text and returns a list of
word objects.

� splitter: Receives a list of word objects and re-
turns a list of sentence objects.

� morfo: Receives a list of sentence objects and
morphologically annotates each word object in the
given sentences. In fact, this class applies a cas-
cade of specialized processors (number detection,
date/time detection, multiword detection, dictionary
search, etc.) each of which is in turn a processing
class:

– locutions: Multiword recognizer.

 240

– dictionary: Dictionary lookup and suffix
handling.

– numbers: Numerical expressions recognizer.
– dates: Date/time expressions recognizer.
– quantities: Ratio and percentage expres-

sions and monetary amount recognizer.
– punts: Punctuation symbol annotator.
– probabilities: Lexical probabilities anno-

tator and unknown words handler.
– np: Proper nouns recognizer.

� tagger: Receives a list of sentence objects and
disambiguates the PoS of each word object in the
given sentences.

Figure 2 presents a UML diagram with the procesing
classes.

The client application is free to decide in which format
wants to input, output or store its linguistic data, and only
has to translate it to the classes described above when in-
teracting with the library. Also, the client application is
free to decide for which processing steps the library is go-
ing to be used –e.g. the application may require a tagger for
Spanish but not for Catalan, or may want to call directly the
morphological analyzer skipping tokenization and splitting
steps, or may want to instance only a date/time expressions
recognizer, without using any other functionality, etc.

3.3. Characteristics
The current version includes the functionalities de-

scribed above for Spanish, Catalan, and English.
The morphological dictionaries2 consist of:

� English: Over 160,000 forms for some 78,000 lem-
mas, obtained from WSJ. The 200 most frequent
forms have been hand-revised. The dictionary may
contain some noise.

� Spanish: About 71,000 forms, contains all closed-
class lemmas plus 5,000 most frequent open-class
lemmas, hand-coded.

� Catalan: About 46,000 forms, contains all closed-class
lemmas plus 5,000 most frequent open-class lemmas,
hand-coded.

The morphological analyzer is expected to cover all
closed category tokens plus over 80% of open–category
tokens of unrestricted text. Nevertheless, unknown words
are handled via conditional probabilities of PoS tags given
word suffixes, following the proposal of (Brants, 2000), so
that the most probable PoS tags are proposed for each word
not included in the morphological dictionary.

The average PoS ambiguity of unknown words may be
controlled adjusting the probability threshold over which a
tag is considered possible for a given word. If the threshold
is set to � , all open tags are assigned to all unknown words,
yielding an ambiguity of 91 tags/word3, and obviously, all

2Morphological data for Spanish and Catalan is hand–coded
by the Centre de Llenguatge i Computació in University of
Barcelona. Visit http://clic.fil.ub.es

3For Spanish and Catalan, the tagset encodes rich morpholog-
ical features (gender, number, time, mode, etc.)

unknown words have their expected tag among those pro-
posed. This is not a good choice, since the large ambiguity
for those words causes the PoS tagger to be slow and unac-
curate.

A more efficient strategy is setting the threshold to a
non-zero value (there is not much difference for values
ranging from ��� ��� to ��� �	�
�	���), which yields an ambigu-
ity for unknown words between �
� � and ���� tags/word, and
a percentage between �	��� ��� and �	��� ��� of unknown words
with the right tag among the proposed.

The PoS tagger is a classical trigram HMM tagger in the
style of (Cutting et al., 1992; Brants, 2000), trained on WSJ
for English, and on 100,000 words of hand-disambiguated
corpus for Spanish and Catalan. The tagger provides a pre-
cision over 95% for all languages.

The system is able to morphologically analyze a text at
a speed near 6,000 words/second in a P4 2.8 GHz processor.
The PoS tagger disambiguates the morphological analyzer
output at a speed of 3,100 words/sec. When performing
both tasks simultaneously on the same processor, the speed
is 2,300 words/sec.

4. Conclusions & Further Work
We have presented an open source client-server lan-

guage analyzers built following the architecture presented
in (Carreras and Padró, 2002). The presented version in-
cludes analyzers for Spanish, Catalan and English.

The presented system is completely written in C++, and
distributed under LGPL, which facilitates its portability to
new languages, and the customization to special user needs.
So, we believe that this system will constitute a valuable
resource for NLP community, either for research (all im-
provements made to the analyzers will be available to the
community), or for commercial applications development
(the LGPL license enables the use of the analyzers as a li-
brary component in larger commercial systems).

Future versions of the analyzer library are expected to
provide more functionalities:

� New tasks: Named entity recognition (current np
class is very simple and naive), chunking, semantic
annotation, word sense disambiguation, anaphora and
correference resolution, etc.� Better coverage: Enlarge lexicons for existing lan-
guages, include new languages in the library. Improve
unknown words handling� Different options for the same service (e.g. several
PoS taggers, so the client application may choose the
preferred strategy.)� More language-independent code: the creation of a
new basic analyzer should be performed via configu-
ration files rather than via language dependent code.
For instance: the system should provide a general
date/time recognizer, and creating a module for a new
language would consist on writing some pattern rules
in a configuration file.

5. References
Brants, Thorsten, 2000. Tnt - a statistical part- of-speech

tagger. In Proceedings of the 6th Conference on Applied
Natural Language Processing, ANLP. ACL.

 241

tokenizer

+tokenize(string &): list<word>

splitter

+split(list<word> &,bool): list<sentence>

-end_of_sentence(list<word>::iterator,list<word>&)

morfo

+analyze(list<sentence> &): void

hmm_tagger

+analyze(list<sentence> &): void

-ProbA_log(string,string): double

-ProbB_log(string,word): double

-ProbPi_log(string): double

-FindStates(sentence &): list<emission_states>

locutions

dictionary

+annotate(sentence &): void

+search_form(string &): list<analysis>

-annotate_word(list<word>::iterator): void

numbers

dates

quantities

np

punts

+annotate(sentence &): void

probabilities

+annotate(sentence &): void

automat

-ComputeToken(int,sentence::iterator,sentence &): int

-ResetActions(): void

-StateActions(int,int,int,sentence::iterator): void

-SetMultiwordAnalysis (sentence::iterator): void
-BuildMultiword(sentence &,sentence::iterator,sentence::iterator): sentence::iterator

suffixes

+look_for_suffixes(list<word>::iterator,dictionary &): void

-look_for_suffixes_in_list(multimap<string,sufrule> &,list<word>::iterator,dictionary &): void

-annotate_word(list<word>::iterator): void

-GenerateRoots(multimap<string,sufrule>::iterator,string): vector<string>

-SearchRootsList(vector<string> &,multimap<string,sufrule>::iterator,list<word>::iterator,dictionary &): void

accents

+fix_accentuation(vector<string> &,multimap<string,sufrule>::iterator): vector<string>

accents_es

accents_defaultdates_es

dates_ca

dates_default

numbers_es

numbers_ca

numbers_default

numbers_en

quantities_es

quantities_default

Client Application

FreeLing Library

Figure 2: FreeLing-1.0 Main Processing Classes.

Carmona, J., S. Cervell, L. Màrquez, M.A. Martı́, L. Padró,
R. Placer, H. Rodrı́guez, M. Taulé, and J. Turmo, 1998.
An environment for morphosyntactic processing of unre-
stricted spanish text. In Proceedings of the 1st Interna-
tional Conference on Language Resources and Evalua-
tion, LREC. Granada, Spain.

Carreras, X. and L. Padró, 2002. A flexible distributed ar-
chitecture for natural language analyzers. In Proceed-
ings of the 3rd International Conference on Language
Resources and Evaluation, LREC. Las Palmas de Gran
Canaria, Spain.

Cutting, D., J. Kupiec, J. Pederson, and P. Sibun, 1992. A

practical part–of–speech tagger. In Proceedings of the
3rd Conference on Applied Natural Language Process-
ing, ANLP. ACL.

Free Software Foundation, 1999. Lesser public general li-
cense. License conditions, Free Software Foundation.
See http://www.gnu.org/licenses/licenses.html.

Object Management Group, 2001. Common object re-
quest broker architecture. Technical document, Ob-
ject Management Group. See http://www.omg.org,
http://www.corba.org.

 242

