
The CLaRK System: XML-based Corpora Development System for Rapid
Prototyping

Kiril Simov, Alexander Simov, Hristo Ganev, Krasimira Ivanova, Ilko Grigorov

BulTreeBank Project
http://www.BulTreeBank.org

Linguistic Modelling Laboratory, Bulgarian Academy of Sciences
Acad. G. Bonchev St. 25A, 1113 Sofia, Bulgaria

kivs@bultreebank.org, alex@bultreebank.org,
ico@bultreebank.org, krassy v@bultreebank.org, ilko@bultreebank.org

Abstract
The paper presents the CLaRK System as a tool for the creation of XML-based corpora and a platform for rapid prototyping. The system
provides a set of basic tools for processing XML documents. These tools include: tokenizers, regular grammars, constraints; remove,
insert, extract, sort, transformation operations. Additionally, the system is equipped with a macro language which allows the creation of
tools sequences. The macro language includes a set of control operators for guiding the application of the tools in the macro. Usually,
a tool or a macro works over a single document changing it or producing a new document. In some cases processing of more than one
document is necessary — in iterative statistics for treebank transformation, stand-off annotation, etc. For such processing the macro
language allows a dynamic change of the processed documents.

1. Introduction

Many NLP tasks require the creation of manually anno-
tated corpora. The same is true for more standardized cor-
pora of less-processed languages. In this case, any support
for (semi)automatic solution of some subtasks during the
creation of the corpus is valuable. For some of the standard
tasks there are ready (off-the-shelf) solutions that can be
used, but for considerable problems there is not a standard
solution because the problem is specific for the correspond-
ing corpus. On the other hand, the corpus creators can find
a solution during the annotation (for example, a new rule
for disambiguation in a certain context). Many solutions
of this kind are never implemented due to several reasons:
the annotation system does not allow introduction of new
kinds of rules or the implementation of new software mod-
ules is unfeasible. The CLaRK System presented here was
designed to provide the user with a possibility for the cre-
ation of new processing tools on-the-fly, in the process of
annotation.

The CLaRK System is an XML-based system for de-
veloping and exploration of text corpora. One of the main
purposes which stands behind the design of the system is
reducing the human labor during the creation of language
resources. The system offers different facilities for encod-
ing some regularities and dependencies in order different
processing procedures to be run semi or full automatically.

For its work the system relies on the following key tech-
nologies: XML technology; Unicode; Regular Cascaded
Grammars; Constraints over XML Documents. The archi-
tecture of CLaRK system is based on a Unicode XML Ed-
itor, which is the main interface to the system. Besides the
XML language itself, the system supports an XPath lan-
guage processor for navigation in documents and an XSLT
engine for transformation of XML documents. Addition-
ally to the standard way of XSL transformations applica-
tion, there is a mechanism for applying locally transforma-
tions to XML elements, and their content and incorporating

the results back in the source document.

CLaRK is based on a Unicode encoding of the text in-
side the system. For the purposes of segmenting the text in
a sensible way there is a mechanism for creating of a hier-
archy of tokenizers. They can be attached to the elements
in the DTDs and in this way different tokenizers can be re-
sponsible for different parts of the documents.

The basic mechanism of CLaRK for linguistic process-
ing of text corpora is the cascaded regular grammar pro-
cessor. The main challenge to the grammars in question is
how to apply them on XML encoding of the linguistic in-
formation. The system offers a solution using the XPath
language for constructing the input word to the grammar
and an XML encoding of the recognized word categories.

Several mechanisms for imposing constraints over
XML documents are available. They cannot be stated
within the standard XML technology. The constraints are
used in two modes: checking the validity of a document
regarding a set of constraints; supporting the linguist in
his/her work during the building of a corpus. The first
mode allows the creation of constraints for the validation
of a corpus according to given requirements. The second
mode helps the underlying strategy for minimization of the
human labor.

These basic tools can be combined in procedures via a
macro language. Thus a sequence of processing steps can
be done without the intervention of the user. The macro
language is structured at two levels. At the first level all
processing steps are carried out on a single document. At
the second level different processing steps could work on
different documents. At each of these levels the macro lan-
guage provides IF-THEN and GOTO operators which en-
sure conditional application of the corresponding process-
ing. Equipped with these macro language the system pro-
vides an environment for construction of processing mod-
ule on-the-fly. The user can write appropriate annotation
tools to facilitate the work or just to construct a prototype

 235

to prove some new idea, before going to invest much time
in its implementation.

In this paper we first describe the basic tools, then the
macro language and then provide examples of application
of the system features, outlined above.

2. Basic Tools of the System
In this section we present some of the basic tools of the

CLaRK System for processing corpora. They include tok-
enization, (cascaded) regular grammars, constraints, trans-
formation, remove, insert operations.

2.1. Tokenizers

The representation of the XML documents inside the
system is based on UNICODE. This allows the represen-
tation of texts in different languages in a natural way. In
XML each text node is considered a sequence of letters
(characters). Unfortunately, that is unacceptable for cor-
pus processing where one usually requires to distinguish
wordforms, punctuation and other tokens in the text. In
order to handle this problem the CLaRK System supports
a user-defined hierarchy of tokenizers. At the very basic
level the user can define a tokenizer in terms of a set of
token types. In this basic tokenizer (known as Primitive to-
kenizer) each token type is defined by a set of UNICODE
symbols. Above this basic level tokenizers the user can de-
fine other tokenizers for which the token types are defined
as regular expressions over the tokens of some other tok-
enizer, the so called parent tokenizer. Tokens in the sys-
tem are used in different processing modules. For each tok-
enizer an alphabetical order over the token types is defined.
At the level of primitive tokenizers the system supports a
means for token normalization. This is important for the
cases when no distinction has to be made between tokens
of different type. Such a case can be the comparison of
tokens (words) containing letters in upper and lower case,
where usually the case should be ignored.

Sometimes in different parts of one document the user
might want to apply different tokenizers. For instance, in
a multilingual corpus the sentences in different languages
will need to be tokenized by different tokenizers. In order
to allow this functionality, the system allows for attaching
tokenizers to the documents via the DTD of the document.
To each DTD the user can attach a tokenizer which will be
used for the tokenization of all textual elements in the doc-
uments corresponding to the DTD. Additionally, the user
can overwrite the DTD tokenizer for some of the elements
attaching to them other tokenizers.

2.2. Cascaded Regular Grammars

The regular grammars in CLaRK System work over to-
ken and element values generated from the content of an
XML document and they incorporate their results back in
the document as an XML mark-up (see (Simov, Kouylekov
and Simov 2002)). The tokens are determined by the cor-
responding tokenizer. The element values are defined with
the help of XPath expressions, which determine the impor-
tant information for each element. In the grammars, the to-
ken and element values are described by token and element
descriptions. These descriptions could contain wildcard

symbols and variables. The variables are shared among the
token descriptions within a regular expression and can be
used for the treatment of phenomena like agreement. The
grammars are applied in cascaded manner. The general idea
underlying the cascaded application is that there is a set of
regular grammars. The grammars in the set are in a par-
ticular order. The input of a given grammar in the set is
either the input string, if the grammar is first in the order,
or the output string of the previous grammar. The evalua-
tion of the regular expressions that defines the rules, can be
guided by the user. We allow the following strategies for
evaluation: ‘longest match’, ‘shortest match’ and several
backtracking strategies. The variables can take as values
arbitrary non-empty strings within a token. Additionally,
the user can define a domain for a certain variable (a set of
permissible values) and a negative domain (a set of values
which are not allowable). If no (positive) domain is defined
then the variable can have any string, which is not presented
in the negative domain, as a value.

2.3. Constraints over XML Documents

In this section we present the three kinds of constraints
which can be imposed over XML documents in the CLaRK
System (see (Simov, Simov and Kouylekov 2003)).

2.3.1. Value Constraints
There are four types of these constraints: parent, all

children, some children, some attributes. In validation
mode all of them check whether the closest surrounding of
the node satisfies some conditions. In information entering
support mode they offer to the user a possibility for entering
information in order to satisfy the constraint.

Parent constraints put additional restrictions over the
possible parent of a node. In the validation mode they are
checked together with the constraints that are imposed in
the DTD. Otherwise, parent constraints apply when the user
inserts a new parent of a node. Then the system tries to cal-
culate which are the possible parents for the node on the
basis of the definitions in the DTD. The parent constraints
reduce the number of the possible choices. All children
constraints check whether the children of a node are among
a list of possible elements. The list of possible elements
can be relative to the context of the node and in this case
they are selected by an XPath expression. If the content
of the node is textual, then it is first tokenized and then
checked whether each token is in a set of tokens, defined
by the constraint. The all children constraints cannot be
used in information entering support mode. Some children
constraints also impose restrictions over the children of a
node, but instead of all children; in this case some of them
are necessary to be members of the possible children, deter-
mined by the constraint. In the mode of user entering infor-
mation the constraints show to the user a list of the possible
values for a new child of the node and he/she has to choose
one. The new value can be incorporated in any position of
the node’s content. Again, if the content is textual, then
it is first tokenized. Similarly, some attribute constraints
impose restrictions on the value of a node’s attribute. The
difference is that in this case the values have to be textual.

The three kinds of constraints, which can be used for

 236

changing the content of the document, are exploitable also
as rules. They become rules when they determine exactly
one value on the basis of the context. In this case the user
is not consulted and the value is entered automatically.

2.3.2. Regular Expression Constraints
In this kind of constraints the selection of nodes, which

the constraints will be applied to, is defined by XPath ex-
pressions. The contents of the selected nodes must match a
description given as a regular expression in the constraint.
This kind of constraints work in validation mode. During
application the selected nodes are split into two sets, con-
taining nodes matching the regular expression and nodes
which do not match. The user can navigate subsequently
through any of these sets of nodes.

These constraints can be used for simulation of XML
Schema constraints over textual nodes. In addition to
checking the content, these constraints - via the XPath ex-
pression - can also determine the context of the elements,
which they will be applied to. In this way they can be used
for imposing regular constraints in addition to these in the
DTD making them more specific on the basis of the sur-
rounding context. This is very useful, for example, when
someone compiles a dictionary. Usually the DTD defines
some very general content model for the elements, but in a
concrete lexical entry a more specific model is realized.

2.3.3. Number Restriction Constraints
Here again the selection is defined as an XPath expres-

sion. On the selected nodes separately another XPath ex-
pression is evaluated and the result from each evaluation is
converted to a number using the rules defined in the XPath
specification. A constraint is satisfied for a node if the cor-
responding numeric result is in a range given by two num-
bers MIN and MAX. The MIN and MAX values can be
dynamically determined for each node by other two XPath
expressions, which return numbers as results. The num-
ber constraints are very appropriate for stating general con-
straints over the whole document. Such constraints include
arbitrary complex XPath expressions in their predicate part
and otherwise they always select the root node if the pred-
icate is satisfied in the document and require that there is
exactly one such element.

2.4. Additional Tools

Another tool in the CLaRK System which can be used
for retrieving information from text corpora is the Statis-
tics tool. This tool is used for counting the number of oc-
currences of certain tokens or/and XML elements within
documents. By XPath expression the user can specify the
location and type of data she/he is interested in. If tokens
are to be counted, then a tokenizer can be specified and fur-
ther more only tokens of certain types can be counted. The
information which is given for each token is: the token it-
self, its type, the number of occurrences and the percentage
from all. The result can be stored as an XML document and
used later for different purposes.

The Sort tool is used for reordering XML structures de-
pending on certain criteria. The structures (nodes) to be
sorted are selected by XPath expressions. The nodes are
compared depending on some related features pointed by

other XPath expressions. The sorting procedure can be per-
formed in different layers, depending on the number of fea-
tures to be compared. Thus, on the first stage nodes are
sorted by the first feature definition (primary sorting). If
any nodes are equal for this criterion, a secondary sorting
can be performed on the basis of a second feature defini-
tion and so on. There are also some options concerning
the feature comparison itself, i.e. sorting order, the treat-
ment of capital and small letters, the treatment of whites-
pace symbols, tokenization and comparison by token types
and others. There is also a possibility the text nodes to be
compared in reverse order, i.e. instead of comparing letters
from left to right, they are compared starting from the end.
This tool can also be very useful for dictionary compila-
tion. The dictionary entries can be grouped and sorted by
any related feature, for example part-of-speech, including
some more specific characteristics.

3. Rapid Prototyping
In the process of corpora creation the user needs to ap-

ply more than one of the above tools and some of them —
even several times. Some of the applications and their order
depend of the result of the previous tool. Thus in order to
facilitate this kind of corpora processing we implemented a
simple macro language able to control the applications of
other tools in the system.

In the CLaRK System most of the tools support a mech-
anism for describing their settings. On the basis of these
descriptions (called queries) a tool can be applied only by
pointing to a certain description record. Each query con-
tains the states of all settings and options which the cor-
responding tool has. In other words, each query has all the
necessary information for applying the tool without any ad-
ditional information or user interaction.

For user convenience and debugging purposes the
queries themselves are represented in XML format. Within
the system they can be treated like ordinary XML docu-
ments having their names and DTD assignments. For each
kind of queries there is a special DTD included in the dis-
tribution package of the system. There the user can see
the required structure for an XML document to serve as a
query.

Each of the basic processors described so far works over
a document and the result of this work is saved in the same
document, or a new document is created.

Once having this kind of queries there is a special tool
for combining and applying them in groups (macros). Dur-
ing application the queries are executed successively and
the result from an application is an input for the next one.
The final result is given by the last query application.

For a better control on the process of applying several
queries in one we introduce several conditional operators.
These operators can determine the next query for applica-
tion depending on certain conditions. When a condition for
such an operator is satisfied, the execution continues from
a location defined in the operator. The mechanism for ad-
dressing queries is based on user defined labels. When a
condition is not satisfied the operator is ignored and the
process continues from the position following the opera-
tor. In this way constructions like IF-THEN-ELSE and

 237

WHILE-DO easily can be expressed.
The system supports five types of control operators:

1. IF (XPath): the condition is an XPath expres-
sion which is evaluated on the current working docu-
ment. If the result is a non-empty node-set, non-empty
string, positive number or true boolean value the con-
dition is satisfied;

2. IF NOT (XPath): the same kind of condition as
the previous one but the approving result is negated;

3. IF CHANGED: the condition is satisfied if the preced-
ing operation has changed the current working docu-
ment or has produced a non-empty result document
(depending on the operation);

4. IF NOT CHANGED: the condition is satisfied if ei-
ther the previous operation did not change the working
document or did not produce a non-empty result.

5. GOTO: unconditional changing the execution position.

Each macro defined in the system can have its own
query and can be incorporated in another macro. In this
way some limited form of subroutine can be implemented.

As it was mentioned above, each basic tool runs over
one document and the result is stored either in the same
document or in a different document. Sometimes it is nec-
essary for the different queries in a macro to work over dif-
ferent documents. For instance, the extraction tool extracts
some fragments in a new document and then a transforma-
tion is applied over the new document. In order to support
this we have implemented two kinds of macros in the sys-
tem. The first kind of macros work over a single document.
The second kind of macros allows the different queries in-
cluded in it to work with different set of documents. The
last feature is very important in order one to be able to
implement a prototypical processing over a whole corpus.
This is why we consider CLaRK System as a good platform
for a rapid prototyping: building a system that demonstrates
a feasibility of some idea. In this way someone can con-
struct new processing tools in the course of corpus creation.

4. Applications
At least two examples of the macro language usage will

be demonstrated at the conference: partial parsing and tree-
bank transformation.

The first example contains a special grammar for ex-
plication of the internal structure of maximal chunks: for
instance, the NP groups recognition grammar for Bulgarian
text. First, two cascaded grammars detect several kinds of
maximal NP groups without an explicit internal structure.
The third grammar detects the NPs’ internal structure, i.e.
embedded NPs in the maximal ones. Because of the recur-
sive structure the last grammar has to be applied until it still
detects new NPs. This is done by the usage of conditional
operators.

Another interesting application of the macro language
and the tools of the system is the treebank transformation
(Ule 2003) for error spotting. The idea is to apply statistical

measure over the distribution of context-free-like produc-
tions within context in order to recognize rare cases which
can be errors in treebank. The implementation includes the
following steps: application of the statistical tool for col-
lecting data about the productions in the treebank and their
contexts. Then the statistical measure is calculated for each
production in general and in each specific context via XPath
mathematical functions. The results are stored for each case
as values of some attributes. Then the data is sorted and
the productions which need transformation are determined.
Then the actual transformation is done over the treebank.
The whole process is then repeated several times depend-
ing on some criteria.

These two applications show the potential of the system
for a rapid prototyping by combination of different process-
ing modules in different processing strategies.

5. Conclusion
In this paper we presented the basic tools of the CLaRK

System. Additionally, the macro language of the system is
described. The macro language allows arrangement of the
basic tools and macros in procedures. A set of control op-
erators allows for changing the consequent order of appli-
cation of the tools in the macro. All these advantages turn
the CLaRK system into a powerful prototyping platform.

6. References
Kiril Simov, Zdravko Peev, Milen Kouylekov, Alexander

Simov, Marin Dimitrov, Atanas Kiryakov. 2001. CLaRK
- an XML-based System for Corpora Development. In:
Proc. of the Corpus Linguistics 2001 Conference. pp
558–560.

Kiril Simov, Milen Kouylekov, Alexander Simov. Cas-
caded Regular Grammars over XML Documents. In:
Proc. of the 2nd Workshop on NLP and XML
(NLPXML-2002), Taipei, Taiwan.

Kiril Simov, Alexander Simov, Milen Kouylekov, Kras-
simira Ivanova. CLaRK System: Construction of Tree-
banks. In: Proc. of The First Workshop on Treebanks and
Linguistic Theories (TLT2002), 20th and 21st September
2002, Sozopol, Bulgaria. pages 183-198.

Kiril Simov, Alexander Simov, Milen Kouylekov,
Krasimira Ivanova, Ilko Grigorov, Hristo Ganev. De-
velopment of Corpora within the CLaRK System: The
BulTreeBank Project Experience. In: Proc. of the Demo
Sessions of the 10th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL’03), Budapest, Hungary. 2003.

Kiril Simov, Alexander Simov, Milen Kouylekov. Con-
straints for Corpora Development and Validation. In:
Proc. of the Corpus Linguistics 2003 Conference, pages:
698-705.

Tylman Ule. 2003. Directed Treebank Refinement for
PCFG Parsing. In: Proc. of The Second Workshop on
Treebanks and Linguistic Theories (TLT03). Växjö, Swe-
den.

 238

