
SpeechRecorder – a Universal Platform Independent Multi-Channel Audio
Recording Software

Christoph Draxler, Klaus Jänsch
Institut für Phonetik und Sprachliche Kommunikation

Ludwig-Maximilians-Universität München
Schellingstr. 3, D 80799 Munich

{draxler|klausj}@phonetik.uni-muenchen.de

Abstract
SpeechRecorder is a platform independent audio recording software for speech corpus recordings. It is implemented in Java in a clean
object-oriented design and adheres to established technology standards and document interchange formats. SpeechRecorder allows
Unicode text and multimedia prompts, it supports audio recordings via more than two channels, and it features multiple configurable
screens. Recording sessions are defined by recording scripts written in XML. The recording scripts can be executed manually by the
experimenter, or automatically for unsupervised recordings; progress through the script can be sequential or randomized.
SpeechRecorder is based on URLs to access local and network resources and thus allows recordings via the WWW.

1. Introduction
Todays PCs and laptops are equipped with built-in

hardware for playing and recording high quality audio.
Additionally, there are many audio boards and devices
available that extend the capabilities of the built-in
hardware, e.g. by providing support for higher sample
rates or better quantization, more input channels, or digital
I/O.

The audio hardware is accessed via vendor-specific
drivers. These drivers provide an interface to standard and
potentially platform independent audio libraries, e.g.
Windows Media, QuickTime, or Java Sound API. High-
level audio applications such as recording tools,
annotation editors, or audio players are based on these
audio libraries.

Most commercial audio recording software is tailored
to the requirements of either musicians or signal
processing engineers. As a consequence, this software
does not address the specific needs of recordings for
speech corpora.

Speech recordings, be it field or studio recordings,
require

• sophisticated prompt display,
• flexible recording scripts,
• a choice of different input channels,
• visual and acoustical signal output, and
• an efficient and intuitive user interface.

There are a number of speech recording tools
available, but in general they are platform dependent, they
are inflexible ad-hoc solutions for a particular recording
task, or have severe technological limitations such as text
only prompt display or at most stereo recordings (e.g. [4],
[5], [7], [8], [9]).

The paper is structured as follows: Chapter 2 gives an
overview of the architecture and the key features of
SpeechRecorder. Chapter 3 describes recording scripts.
Chapter 4 discusses the audio library developed at our
institute that provides an additional abstraction layer
above the audio libraries and thus significantly reduces the
complexity of accessing these audio libraries. Finally,
chapter 5 presents projects in which SpeechRecorder has
been successfully used, and chapter 6 gives an outlook on
future work, especially performing recordings via the
WWW.

2. SpeechRecorder
SpeechRecorder is a modern speech recording

software implemented in Java for platform independence.
It was implemented from scratch in a clean object-
oriented design. Its main features are:

• any number of audio input channels
• Unicode text, image or audio prompts for the

speaker
• XML formatted recording scripts and speaker

databases
• support for multiple screens
• support for internationalization.

Access to resources is achieved via URLs. As a
consequence, audio files can be saved to local disks or
network locations.

2.1. Graphical user interface
The graphical user interface of SpeechRecorder

distinguishes between two types of screen displays: a
speaker screen and an experimenter screen. The speaker
screen consists of a recording indicator (don’t speak,
prepare to speak, speak), and two panels for the recording
instructions and the recording prompt (Figure 1).

Figure 1. Speaker screen

The experimenter screen contains the speaker display
in one panel, plus a recording level meter, a graphical
signal display, a recording control button panel, a speaker
database window and a recording script progress panel.
This progress panel lists all items of a recording session. It
is updated whenever an item is recorded, and the

 559

experimenter may interactively select an item by clicking
on the appropriate entry in the list (Figure 2).

Figure 2. Experimenter screen

All interface text is stored in external Unicode
property files so that SpeechRecorder can be localized
easily and without recompiling the application. Currently,
resource files exist for German, English, French, Russian
and Greek.

2.2. Architecture
The software consists of five major components.
A recording script manager to load and execute a

recording script. This manager keeps track of the recorded
items, it selects the next recording to be performed, and
progresses through the script. The selection can be
sequential or randomized, and progress through the script
can be manual, e.g. by an experimenter clicking on the
recording control buttons, or automatic, e.g. for
unsupervised recordings.

A recording status class that represents the status of
the current recording item. A recording can be in different
states: idle, waiting, recording, processing, etc. All
components registered with the status object are notified
of a status change.

Prompt viewers present the current prompt item to the
speaker. A prompt item consists of instructions to the
speaker, e.g. “Spell the following word”, a free-form
comment field visible only to the experimenter (e.g. to
display pronunciation hints in IPA or SAM-PA), and the
recording prompt proper. This recording prompt can be
any Unicode text, an image or a pre-recorded or
synthesized audio signal.

A recording control panel contains buttons to start and
stop recordings, to play the current audio signal, and to
step through the recording script.

The SpeechRecorder class is responsible for running
the application: it holds references to the prompt source,
the speaker database and the target directory for the
recordings. All these resources are addressed via URLs so
that they can be held statically in local files or web pages,
or generated dynamically by a web server. For each audio
file, a document is generated to store the descriptive data
for this particular recording, e.g. recording time, date,
duration, prompt text or description, etc.

The entire application is highly configurable, with the
configuration data held in external XML files.

2.3. System requirements
SpeechRecorder requires Java 2 version 1.4. or newer

for the XML handling APIs and a stable implementation
of the Java Sound API libraries (cf. section 4). The
software has been successfully run under Windows 2000
and XP, Mac OS X and Linux.

3. Recording scripts
For every recording session there must exist a

recording script. A recording script is an XML file that
consists of a meta-data section and the script according to
the DTD given in Figure 3.

<!ELEMENT session
 (metadata*, recordingscript)>
<!ATTLIST session id CDATA #REQUIRED>

<!ELEMENT metadata (key, value)+>
<!ELEMENT key (#PCDATA)>
<!ELEMENT value (#PCDATA)*>

<!ELEMENT recordingscript
 (nonrecording | recording)+>
<!ELEMENT nonrecording (mediaitem)>

<!ELEMENT recording
 (recinstructions?,recprompt,reccomment?)>

<!ATTLIST recording
 file CDATA #REQUIRED
 recduration CDATA #REQUIRED
 prerecdelay CDATA #IMPLIED
 postrecdelay CDATA #IMPLIED
 finalsilence CDATA #IMPLIED
 beep CDATA #IMPLIED
 rectype CDATA #IMPLIED>

<!ELEMENT recinstructions (#PCDATA)>
<!ATTLIST recinstructions
 mimetype CDATA #REQUIRED
 src CDATA #IMPLIED>

<!ELEMENT recprompt (mediaitem)>
<!ELEMENT reccomment (#PCDATA)>
<!ELEMENT mediaitem (#PCDATA)*>
<!ATTLIST mediaitem
 mimetype CDATA #REQUIRED
 src CDATA #IMPLIED
 alt CDATA #IMPLIED
 autoplay CDATA #IMPLIED
 modal CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 volume CDATA #IMPLIED>

Figure 3. recording script DTD

The metadata section contains attribute-value pairs
describing the current recording project (place of
recording, project name, institution, equipment used, etc.),
recording data (sample rate, quantization, format, number
of channels, etc.) and which are the same for all recording
sessions.

 560

The recordingscript element consists of non-
recording and recording items. Non-recording items are
used to pass information to the speaker without recording
speech, e.g. welcome and warning messages, or
animations to temporarily distract the speaker during long
recording sessions.

Recording items consist of optional recording
instructions and comments, and a mandatory prompt item.
The required recording attributes define the file name
under which a recording is stored and the duration of the
recording in milliseconds. The remaining recording
attributes are optional: prerecdelay specifies how
much earlier the real recordings begin before the
recording start is being signaled to the user. This is used to
record environment noise or to capture barge-in.
postrecdelay specifies how long the recording
continues after the stop button has been pressed. This is
useful to prevent signal truncation due to pressing the stop
button too early. finalsilence indicates whether
recordings can be terminated by pause detection, beep
specifies whether a recording is preceded by an indicator
beep to the speaker. rectype is reserved for future use;
it will specify whether audio or video recordings are
performed.

Non-recording items, recording instructions and
recording prompts are of type mediaitem, i.e. they are
described by a mandatory mimetype attribute and
optional attributes appropriate for the given type, e.g.
volume for audio or video prompts, or width and
height for image and video prompts.

A sample recording script is given in Figure 4.

<?xml version="1.0" encoding="UTF-8"
 standalone="no" ?>
<!DOCTYPE session SYSTEM
"SpeechRecPrompts.dtd">

<session id="BITS Syntheseaufnahmen 2004">
 <metadata>
 <key>DB_Name</key>
 <value>BITS Synthesekorpus 2004</value>
 </metadata>

 <recordingscript>
 <nonrecording>
 <mediaitem mimetype="image/jpeg"
 src="willkommen.jpg"/>
 </nonrecording>

 <recording recduration="6000"
 file="US10031034.wav"
 prerecdelay="500"
 postrecdelay="500">

 <recinstructions mimetype="text/UTF-8">
 Bitte lesen Sie den Text
 </recinstructions>

 <recprompt>
 <mediaitem mimetype="text/UTF-8">
 ATATADEU
 </mediaitem>
 </recprompt>

 </recording>

 </recordingscript>
</session>

Figure 4. Recording script

4. Audio in- and output
Access to audio hardware is implemented in several

layers: on the lowest level, device dependent drivers
establish an interface between the audio device and audio
libraries. On this driver layer, the best-known standards
are SoundBlaster, ASIO (Audio Stream I/O), and ALSA
(Advanced Linux Sound Architecture) drivers. ASIO has
become the de-facto standard for professional audio
boards with multi-channel digital I/O, e.g. Digidesign, M-
Audio, etc. The ASIO drivers can be directly accessed
from programming languages such as C and C++ [10].

On top of the driver layer are the audio and multimedia
libraries such as Windows Media, QuickTime, Java Sound
API, or operating system libraries.

Windows Media is the multimedia library of the
Windows operating system. It is not available for other
platforms.

QuickTime is a library for playing, capturing and
editing multimedia content. QuickTime for Java is an API
to access the QuickTime libraries from Java. However,
because QuickTime is only available for Macintosh and
Windows, the full platform independence of Java cannot
be achieved.

The Java Sound API is a platform independent low-
level audio library. Currently, Windows, Solaris, Linux
and Macintosh are supported. However, ASIO drivers are
not recognized by the standard implementation of the Java
Sound API in J2SE, so that accessing professional audio
boards required expensive and proprietary solutions. The
Java Media Framework, a full multimedia library, uses the
Java Sound API.

4.1. IPSK audio library
For SpeechRecorder, the audio library ipsk.audio

was designed. It provides extensions to Java Sound API
both on the level of device drivers and on the application
programming interface level.

Its distinguishing features are
• Java wrappers for the ASIO drivers, an
• abstraction from the low-level details of the Java

Sound API library, and
• full support for resource access via URLs.

The ASIO drivers support recordings via more than
two channels, digital I/O and higher sample rates and
quantization. The Java wrapper classes in ipsk.audio
provide a seamless integration of these drivers into the
Java Sound API.

The abstraction from the underlying audio libraries is
achieved by providing interface definitions tailored to the
requirements of speech recordings. This abstraction
simplifies the implementation of audio recording
applications, and it allows exchanging audio libraries
against each other.

In ipsk.audio , external media resources are
referred to via URLs.

The ipsk.audio library is also used in
WebTranscribe, a Java re-implementation of the web
based annotation software developed at our lab [2].

 561

4.2. ipsk.audio in SpeechRecorder
In SpeechRecorder, access to audio libraries is

provided by the interface class AudioController.
AudioController provides methods to open and
close a recording session, to record and playback audio
signals, and to convert audio file formats.

Currently, two implementations of the interface exist.
The first is based on the Java Sound API, the second on
QuickTime for Java.

Which audio library to use for a given recording
session is specified in the configuration file. When the
application starts up, it dynamically loads the appropriate
implementation of AudioController.

5. Projects using SpeechRecorder
Early versions of SpeechRecorder have been used in

several smaller in-house projects. The experiences gained
led to an improvement of the software in terms of
reliability, user friendliness, and features.

In the spring of 2003, IPSK recorded non-scripted
speech in cars in a project for Bosch GmbH. The speakers,
who were driving the car, were prompted via pre-recorded
audio prompts so that they could focus on the street and
did not have to read text from a display. The experimenter
on the co-driver seat manually proceeded through the
recording session. For these recordings, SpeechRecorder
was installed on a Sony VAIO running Windows 2000
and a Macintosh PowerBook G3 running Mac OS X. Two
AKG mouse microphones were used, the microphone
amplifiers were L&H Mouse Amp 31. The microphones
were connected to the laptop via an iMic USB audio
adapter.

In July 2003 the IPSK performed recordings for the
IPA in St. Petersburg, Russia [1]. SpeechRecorder was
installed on a Macintosh iBook with the microphones
connected to the laptop via an Emagic 62m USB audio
interface.

Since the summer of 2003, the BITS speech synthesis
corpus is being recorded at the Bavarian Archive for
Speech Signals BAS (www.bas.uni-muenchen.de/
Forschung/BITS). For these recordings, the prompts
are logatomes and phonetically rich sentences. Two
microphones (Beyerdynamic NEM 192 and Neumann
Type TLM) and a laryngograph (PCLX) unit are used.
They are fed via a digital Yamaha O2R sound mixer into
an M-Audio digital audio board in a PC running under
Windows XP [3].

6. Future work
SpeechRecorder has reached a stable state now. We

will perform a public beta test during the summer of 2004
and make the software publicly available later in the year
2004 [6].

Currently, SpeechRecorder is a standalone Java
implementation. It is planned to convert it into a Java
WebStart application so that it can be run directly from
the web.

Finally, SpeechRecorder will be extended to allow
recordings via the web. This poses several new
challenges: 1) slow connections will cause long uploads to
the file server, and care has to be taken that this transfer is
reliable. 2) the audio equipment on the client machine
cannot be known in advance. Basic signal processing will
have to be performed on the client machine to achieve a

minimum standard of signal quality. 3) User privacy and
secure transfer of sensitive data will have to be
considered.

A prototype implementation of SpeechRecorder with
web recording has been successfully tested at IPSK.

7. Acknowledgments
Parts of this work have been supported by the German

Federal Ministry of Education and Research grant no.
01IVB01 (BITS).

8. References
[1] Dioubina, O., Pfitzinger, H.: Illustration of the
Russian language in IPA, to appear.
[2] Draxler, Chr.: WWWTranscribe - a modular
transcription system based on the world wide web, Proc.
of Eurospeech 95, Rhodes
[3] Ellbogen, T.; Steffen, A.; Schiel, F.: The BITS
Speech Synthesis Corpus for German, in: Proc. of LREC
2004, Lisbon
[4] Jameton, O.; Fonollosa, J. A. R.; Richard, G.;
Comeyne, R.; Realisation of the "in-car" recording
platform and installation of the fixed recording platform;
internal report SD212V24; SpeechDat-Car project LE4-
8334; 1999
[5] Audacity: audacity.sourceforge.net
[6] SpeechRecorder: www.bas.uni-muenchen.de/Bas
[7] PeriSpeech: www.nortelnetworks.com
[8] Praat software: www.praat.org
[9] Quikscribe: www.quikscribe.com
[10] ASIO SDK: www.steinberg.net

 562

