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Abstract
Performing accurate Named Entity (NE) classification (NEC) has recently become a central issue in many NLP applications, such
as Information Extraction and Question Answering, among others. Most state-of-the-art NEC systems use coarse-grained MUC-style
datasets for performing the NEC task reducing it to distinguish among LOCATION, PERSON, ORGANIZATION and so. There is,
however, a growing interest on using finer-grained classification sets. This paper describes a methodology that applies Machine Learning

techniques for a finer-grained classification of NEs that have been previously classified as locations by a NERC system.

1. Introduction

Performing accurate Named Entity (NE) recognition
(NER), classification (NEC) and disambiguation (NED)
has recently become a central issue in many basic NLP
tasks, as co-reference resolution, document linking or topic
detection, currently present in most NLP applications such
as Automatic Summarization, Question Answering, Doc-
ument Classification and Filtering, and Information Ex-
traction among others. Most state-of-the-art NEC systems
use coarse-grained MUC-style datasets for performing the
classification task reducing it to distinguish among LOCA-
TION, PERSON, ORGANIZATION and so. There is, how-
ever, currently, a growing interest on going beyond using
finer-grained classification sets. (Sekine et al, 2002), for
instance, use an extended NE hierarchy of 150 types, while
(Manov et al, 2003) use 97 classes for the location sub-
ontology. Although some of the efforts in this direction are
devoted to the general classification problem, as in (Mann,
2002), or are devoted to the personal name disambiguation
problem, as in (Mann, 2003), most work has been done de-
veloping tools and resources related to the management of
geographical references. Among others, these efforts have
been applied to:

e (semi) automatic building of large-scale geographical
gazetteers from corpora, ontologies and other lexical
resources, as the Alexandria Digital Library Gazetteer
(ADLP) covering about 5 million of geographical
terms, or the Metacarta GazDB (Axelrod, 2003).

e Finer grained forms of NEC, as the Perseus system
(Smith et al, 2001) for geographical NEs.

¢ Grounding of geographical NEs, i.e. mapping a ge-
ographical NE to its appropriate physical (spatial) lo-

cation (coordinates, area, etc.), as in (Leidner et al,
2003).

Many different techniques have been applied for such
purposes, from knowledge intensive to empirical/statistical
approaches, using strong or weak supervised learning or
bootstrapping.

What is presented here is a system that applies Ma-
chine Learning techniques for a finer grained classification
of NEs that have been previously classified as locations by
a general purpose NERC system.

The core of our system is an Inductive Logic Program-
ming (ILP) learner that learns, from a set of positive and
negative examples, a ranked list of rules to obtain a binary
classifier for each geographical class. Both natural geo-
graphical entities (Sea, Mountain, River, etc.) and political
or organizational divisions (Country, State, Province, City,
etc.) are considered. Our learner (we have used Quinlan’s
FOIL (Quinlan, 1990)) follows a supervised schema, so a
training set has been collected and automatically tagged.
What has to be learned is the dependence of the different
types of location on the context of their occurrences.

After this introduction the paper is organized as fol-
lows. Section 2 describes the method applied to classify
geographical NEs. Section 3 shows the obtained results us-
ing this method. Section 4 states some conclusions and fur-
ther work.

2. Approach

In the system presented here, the following approach
has been applied:

e Firstly, an initial set of sources of highly confident
classified resources has been selected. We have used
the MUC6 Reference Gazetteer complemented with
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location names extracted from five different web sites
(see Table 1). The information extracted includes not
only the basic terminological information (i.e. lists of
tagged NEs) but also some spatial relations (e.g. states
in a country, islands in a sea, etc.). Up to 133,744 ge-
ographical names classified into 18 classes have been
extracted in this way (with a very irregular distribu-
tion, from 117,598 cities to only 3 forests). Table 2
shows the number of names per class.

http://www.world-gazetteer.com/
http://people.depauw.edu/djp/
http://www.worldatlas.com/
http://en.wikipedia.org/
http://www.gazeteer.com/

Table 1: Web sites used to extract the gazetteer.

| Classes | Number |
Airport 729
City 117,598
Country 303
Country-zone 220
Desert 43
Forest 3
Gulf 22
Island 917
Island-sea 698
Lake 47
Mountains 27
Peak 2,218
Port 4,641
Province 5,331
River 333
Sea 45
State 530
\olcano 39
Total 133,744

Table 2: Number of geographical names per class.

e From this initial set we have removed all the NEs be-
longing to more than one class in order to reduce, as
much as possible, the use of contexts corresponding to
ambiguous NEs.

e We have merged the classes with few members and
semantically related (e.g. port and airport, mountain
and peak), dropped out poorly represented classes and
selected a maximum of 500 names per class. In addi-
tion, we have performed a shallow manual revision. A
total of 11 classes remained after this step: mountain
or peak, river, sea, lake, island, desert, port or airport,
city, country, state and province.

e We have looked for the first 500 occurrences of the
members of these lists in the AQUAINT * corpus. A
previous preprocess was carried out including POS
tagging (Brants, 2000) and NERC (Carreras et al.,

1The corpus has been used for our participation in TREC-
2003. More information about AQUAINT corpus can be obtained
at http://www.ldc.upenn.edu/Catalog/docs/LDC2002T31

2003). Restricting the number of names per class and
the number of examples per name is needed for getting
the resulting set as balanced as possible.

e From these corpus we have extracted the context, up
to 10 tokens on each side, of each occurrence as well
as the needed morphological information. This proce-
dure resulted in a total of 110,576 examples (see last
column in Table 4).

With this material we have fed FOIL (Quinlan, 1990)
to learn one classifier for each class. FOIL is a relational
learning system aimed at inductively learning first-order
rules (in prolog format) from positive and negative exam-
ples. By default, FOIL considers the close-world assump-
tion to automatically generate the set of negative examples,
meaning that all non-positive elements are negative ones.
We have used, however, the examples corresponding to
each particular class as positive examples for learning this
class and the examples related to the rest of classes as neg-
ative ones. This experimental setting has proved to provide
better results than the multiclass approach with close-world
assumption. With respect to the background knowledge
used to learn, FOIL requires each of the examples, positive
and negative ones, to be represented as a set of predicates.
For our particular learning problem we have used the fea-
tures presented in table 3 from wich the following set of
propositional predicates has been designed:

e Context predicates:
— diw_z: the ith word in the direction d (right or
left) is z.
— dip_z: the ith POS-tag in the direction d is x.
— dis_x: x is the NE class (LOC, ORG, PER and
MISC) about ith word in the direction d.
e Internal NE predicates:

— zi_x: the ith token of the NE is z (i could be 1 or
0, for the two last tokens of the NE)

In all cases, with the exception of case three, 7 can be
omitted, it means that the information appears in any posi-
tion in the direction d.

| Feature type | Features |
lexical infor- | - Bag of words of positions -5 to +5
mation (NE not included).

- Words in position from -1 to -3.

- Words in position from +1 to +2.

- Two last Tokens included in the NE.
- Bag of POS of positions -5 to +5 (NE

morphological

information not included).
- POS in position from -1 to -3.
- POS in position from +1 to +2.
semantic - NE class of positions -1 to -3.
information - NE class of positions +1 to +2

Table 3: Features used by FOIL.
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3. Experiments

We haved designed a set of three experiments to decide
which predicates are the best to learn to classify geograph-
ical NEs. In these experiments we have only changed the
features related to the NE (i.e. internal predicates as tokens
Z1_Lake and z0_Garda in the case of Lake_Garda), and we
do not have modified context predicates. All the experi-
ments have had the same set of context predicates. The
following experiments have been done:

1. Experiment with all the predicates previously ex-
plained.

2. Experiment only with context predicates.

3. Experimentwith all context predicates and using inter-
nal predicates only for NEs having more than 1 token
(i.e. Lake Garda):

FOIL has learned a set of binary classifiers for each
class. We have used the k-Fold Cross-Validation measure to
evaluate these classifiers. The k parameter means the num-
ber of sets to split the examples, k has been set to 5. We
have balanced the number of examples used to learn the
classifiers taking a treshold of 1200 in classes with many
examples (see column 2 of Table 4).

| Classes | #Examp. (5CV) | #Examp. (total) |
Airport+Port 376 376
City 1,200 25,000
Country 1,200 25,000
Desert 517 517
Island 1,200 7,259
Lake 1,447 1,447
Mountains+Peak 1,186 1,186
Province 1,200 23,399
River 1,200 5,189
Sea 1,200 20,050
State 850 850
Total 11,576 110,273

Table 4: Number of examples used in 5-CV and total.

4. Results

The results of the three 5-fold cross-validation exper-
iments are summarized in tables 5, 6 and 7. These ta-
bles contain the following average evaluation measures of
5-fold test sets for each class: precision, recall, ;2 and
the variance of F}. As shown in these tables, experiment
1 achieves the best overall performance with an 0.9553
average measure of Fj. It has produced 613 rules for
all classes (an average of 55.72 rules per class). How-
ever, experiment 1 uses internal predicates that produce
overfitting. These predicates are the last two tokens of
the NE (i.e. z0_York, Z1_New, z York and z_New). Us-
ing these predicates can be useful to capture some relle-
vant features of the NE (i.e. capturing zZ0_River in Col-
orado_River), especially in these classes: airport+port

2F3 is the harmonic mean of recall (p) and precision () (van

i i i _ (B*+Dmp
Rijsbergen, 1979). The Fj3 function formula is: F = Frip

(z1 Airport,z0_Port), desert (z0_Desert), lake (z1_Lake),
mountains+peak (z1_Mount,z0_Peak), river (zO_River) and
sea (z0_Sea, 20_Ocean). Besides, in the case of NEs having
only one token it can affect negatively to the learning rules
(i.e. capturing z0_Sahara in Sahara). Concluding, we can-
not obtain robust rules using internal predicates with NEs
having only one token.

| Classes | Precision | Recall | Fy | varF, |
airport+port 0.7850 | 0.9632 | 0.8509 | 0.0086
city 0.8293 | 0.9475 | 0.8821 | 0.0006
country 0.8796 | 0.9017 | 0.8883 | 0.0014
desert 0.9980 | 0.9942 | 0.9961 | 0.0000
island 0.9908 | 0.9817 | 0.9862 | 0.0000
lake 1.0000 | 1.0000 | 1.0000 | 0.0000
mountains+peak 0.9873 | 0.9601 | 0.9729 | 0.0004
province 0.9341 | 0.9550 | 0.9440 | 0.0003
river 0.9992 | 0.9950 | 0.9971 | 0.0000
sea 1.0000 | 0.9983 | 0.9992 | 0.0000
state 0.9873 | 0.9953 | 0.9912 | 0.0000
Total Avg 0.9446 | 0.9720 | 0.9553 | 0.0011

Table 5: Results of 5-fold cross validation with internal
predicates (Experiment 1).

| Classes | Precision | Recall | Fy | varF, |
airport+port 0.7544 | 0.8222 | 0.7729 | 0.0249
city 0.6460 | 0.8183 | 0.7146 | 0.0007
country 0.6657 | 0.8833 | 0.7557 | 0.0010
desert 0.6271 | 0.7851 | 0.6954 | 0.0009
island 0.7228 | 0.8600 | 0.7839 | 0.0005
lake 0.6107 | 0.8527 | 0.7044 | 0.0008
mountains+peak 0.6552 | 0.6655 | 0.6587 | 0.0118
province 0.6306 | 0.9075 | 0.7391 | 0.0021
river 0.7842 | 0.9108 | 0.8400 | 0.0005
sea 0.7294 | 0.8817 | 0.7959 | 0.0010
state 0.6311 | 0.8188 | 0.7108 | 0.0004
Total Avg 0.6779 | 0.8369 | 0.7429 | 0.0041

Table 6: Results of 5-fold cross validation with only context
predicates (Experiment 2).

| Classes | Precision | Recall |  F, | varF |
airport+port 0.8161 | 0.9082 | 0.8413 | 0.0087
city 0.6975 | 0.8367 | 0.7606 | 0.0003
country 0.7465 | 0.8408 | 0.7894 | 0.0012
desert 0.8201 | 0.7935 | 0.7981 | 0.0055
island 0.7290 | 0.8917 | 0.8004 | 0.0006
lake 1.0000 | 1.0000 | 1.0000 | 0.0000
mountains+peak 0.9791 | 0.9516 | 0.9644 | 0.0008
province 0.6431 | 0.7225 | 0.6803 | 0.1162
river 0.9950 | 0.9908 | 0.9929 | 0.0000
sea 0.9224 | 0.9442 | 0.9311 | 0.0007
state 0.7556 | 0.9059 | 0.8223 | 0.0009
Total Avg 0.8277 | 0.8896 | 0.8528 | 0.0123

Table 7: Results of 5-fold cross validation with reduced
internal predicates (Experiment 3).

More and most robust rules have been learned with ex-
periments 2 and 3. These rules have been reported the fol-
lowing measures of F in average 0.7429 and 0.8528 re-
spectively. These latter experiments have produced 4695
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and 2139 rules, respectively, with an average of 426.62 and
194.45 rules per class, respectively. Examples of the best
ranked rules obtained for desert class can be seen in figures
land 2.

One of the advantage of using an ILP system as FOIL is
the readibility of learned rules. This property allows to eas-
ily analyze these rules and modify or remove those which
are considered irrelevant ones. This is the case of rules:

desert(A) :- 1Iw_the(A), rp-RB(A), not(Ip-NN(A)).

desert(A) :- Iw_villages(A).

The following rules can be considered relevant rules:

desert(A) :- l1lw_the(A), not(zO_River(A)), not(z0-Sea(A)),
not(z0_Mountains(A)), not(rs.NNP(A)), not(Is.VB(A)),
not(z0_State(A)), rs.IN(A), not(r1p-IN(A)).

desert(A) :- rw_desert(A).

desert(A) :- rw_desert(A).
desert(A) :- 1Iw_the(A), rp_RB(A), not(Ip-NN(A)).

desert(A) - Ilw_the(A), not(rp-NNP(A)), IpVBN(A), not(ln-NN(A)),
not(rp_VB(A)).
desert(A) :- Ilw_the(A), not(rp_.NNP(A)), not(rpeJI(A)), rpVBZ(A),

not(Ip-JJ(A)), not(r2p_-VBZ(A)).

desert(A) :- lw_the(A), not(Ip-NNS(A)), I3p-RB(A), not(Ip. VBN(A)).
desert(A) not(rp-NNP(A)),  12w.in(A), not(rlp IN(A)), rrNN(A),
not(rp-,(A)), not(rlp-NN(A)).

desert(A) :- lw_the(A), rp-,(A), rp-DT(A), not(r2w_the(A)), not(I2p IN(A)),
not(lw-in(A)).

desert(A) :- lw_the(A), rp-,(A), rp-RB(A), not(I3p-NN(A)), not(rp- VBD(A)).
desert(A) :- lw_desert(A), not(rw_of(A)).

desert(A) :- 12p_IN(A), rw_in(A), not(I3poNNS(A)), not(13p- NN(A)).

Figure 1: First rules obtained with only context predicates
(Experiment 2).

desert(A) 11w_the(A), not(z0.River (A)), not(zQ Sea(A)),
not(z0_-Mountains(A)), not(rp-NNP(A)), not(lp. VB(A)), not(zQ State(A)),
rp-IN(A), not(r1p_IN(A)).

desert(A) :- z0_Valley(A).

desert(A) :- rw_desert(A).

desert(A) :- Ilw_the(A), not(zO-River(A)), not(zO.Sea(A)), not(rs. IN(A)),
Iw_of(A), not(r2p-RB(A)).
desert(A) : not(zO_River(A)), not(z0_Sea(A)), 11w_the(A),
not(z0_Mountains(A)), not(rlp_NN(A)), not(I3p-NN(A)), not(z0.State(A)),
not(r2p_NNP(A)), not(I3s_.LOC(A)), not(rw.an(A)).

desert(A) :- Iw_the(A), not(zO_River(A)), not(z0-Sea(A)), not(rw. of(A)),
12p_IN(A), rs_,(A), not(rs_.(A)), not(r2p_NN(A)).

desert(A) :- lw_south(A), not(I3w_south(A)).

desert(A) :- 11lw_western(A).

desert(A) :- rw_lsrael(A).

desert(A) :- Iw_villages(A).

Figure 2: First rules obtained with internal NE predicates,
but only NEs having more than 1 token (Experiment 3).

5. Conclusionsand Further Work

A system that uses ILP for grained classification of ge-
ographical NEs has been presented. The system has been
applied for learning eleven binary classifiers corresponding
to a set of subclasses of geographical NEs. The experi-
mental set-up consisted of three different experiments that
have been evaluated with 5-fold cross-validation. Although
no direct evaluation on a test corpus has been performed,
we can guess that small variance of F; measure resulting
in most of the classes and experiments is a clear indicator
that we can obtain similar results by training with the whole
training set and testing with a test corpus.

ADLP.

Future work includes:

¢ Evaluating the system on a test corpus.

e Examining the possibility of applying different feature
sets for each class and other types of NEs such as per-
sons or organizations.

o Applying the same methodology for other languages.

e Studying different types of combination of the set of
binary classifiers in order to generate a multiclass clas-
sifier.
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