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Abstract 
Proper accentuation and phrasing make the syntactic and seman-
tic structure of the message more transparent to the listener. 
Therefore a good modeling of prosody in a TTS system has to be 
structured into appropriate levels. The implemented prosodic 
hierarchy should guide the listeners’ attention and help in 
support of the comprehension process. Since prosody functions 
as a distractor, it is very important to build the prosody module 
in a TTS system very carefully. With the goal towards 
improvements of naturalness a concept of a selective 
hierarchical approach of prominence disambiguation and 
symbolic modeling will be introduced. The selective statistically 
based prominence disambiguation and prediction concept will be 
discussed and the implementation of the neural network (NN) 
module for prediction of symbolic tags into a multilingual TTS 
system introduced. We’ll conclude with prediction results and a 
suitability test of the introduced selective approach based on 
preliminary acoustical tests performed in a multilingual TTS. 

Introduction 
Accentuation, as one of the important parameters in 
speech prosody, concerns the assignment of prosodic 
prominence. As to the factors governing the assignment of 
accents to words and the influence of syntactic factors, 
two positions have been advocated. One is that there is no 
predictable relation between syntactic structure and the 
distribution of accents (Bolinger, 1972). The second is, 
according to Chomsky and Halle (1968) that the 
distribution of accents in English is completely 
determined by grammatical properties, and the cases to 
which this does not apply are anomalous, i.e., are not 
governed by rules. 
For the Slovenian language studies of such kind have not 
yet been performed and the rule-based approach isn’t an 
appropriate (best-suited) solution to choose (Gros, 2000). 
Therefore – we decided to design an open environment in 
disambiguation and prediction of accents based on 
statistical (acoustical) analysis of a large speech corpus – 
a data driven approach with learning capability was 
chosen. 
Besides phrasing, prominence – referring to the strength 
of relation between elements within a given domain – is 
one of the most important parameters of speech prosody 
to model. A speaker uses prominence to mark those parts 
that are important in his message, and the listener uses 
(the perceived) prominence in order to know which parts 
are of special interest for the perceived message. 
Structuring the message is not only the benefit of 
prominence; applying appropriately varying levels of 
prominence also increases the naturalness and the 
comprehensibility of speech (Streefkerk, 2002). On the 
other hand poor prosody is worse than no prosody, since it 
functions as a distractor (Terken & Collier, 1998). Our 
concept therefore is based on hierarchy and selectivity to 
avoid degradation in the comprehension process and 

increase the quality (naturalness) of produced synthesized 
speech. In our opinion it is very important to design 
prosody modeling into a TTS system based on a 
hierarchical concept, where the more subtle changes in 
prominence can be decomposed into appropriate levels. 
The so-called corpuses (data) driven approaches nowa-
days seem to be the appropriate solution for hierarchical 
prosody modeling. They allow prosodic regularities to be 
automatically extracted from a prosodic database of 
natural speech and contribute essential to adaptation 
processes in a multilingual TTS system. 

Data-driven approach 
One of the most crucial tasks in data-driven prominence 
prediction (modeling) is the procedure of labeling the 
corpus with appropriate symbolic tags. Prosodic labeling 
based on perceptual tests is very time consuming and 
prone to inconsistency. Therefore automatically 
approaches in the labeling processes are favorable. 
As automatic approaches usually depend on some manual 
examination and eventual corrections (verification) it 
seems to be appropriate approaching the problem of 
labeling with a semi-automatic method. In our approach 
of selective prominence labeling we applied a graphical 
environment, which we already designed for the semi-
automatic phrase break labeling (Stergar et al., 2003). The 
tool was designed to simplify the labeler decisions and 
support the classification of different classes of breaks. 

The corpus 
The corpus used for prominence modeling consists of app. 
1200 sentences in the Slovenian language (approx. three 
hours of speech). The selection of the text was 
emphasized for the broad coverage of sentences in the 
Slovenian language with the main concern towards the 
best coverage of concatenation segments. 
The audio database recordings were created in a studio 
environment with a male speaker reading aloud isolated 
sentences in the Slovenian language (44.1 kHz, 16 bit). 
The whole corpus was designed using a selection of 
clauses from a 31 million word corpus in the Slovenian 
language. The major parts of the clauses covered daily-
published news and Slovenian literature; the minority 
consisted of clauses taken from Slovenian poetry. 
First, sentences not shorter then 15 and not longer than 25 
words were preselected from the major corpus. Then, four 
different text corpora were generated and analyzed 
statistically (approximately 5000 sentences per corpus). 
The selection of sentences for the final corpus was based 
on a two-stage process. In the first stage an analysis based 
on statistical criteria was performed. In the second stage 
the final text was chosen based on the results of the first 
stage. In the final corpus 1200 sentences remained. 
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The statistically analyzed corpora had similar unit statis-
tics, although the distribution of units was not the same. 
Three of the four corpora included many foreign names 
(clauses gathered predominantly from newspapers) that 
we replaced with Slovenian ones, trying to avoid 
influencing the statistic of non-uniform units. The corpus 
with the minimum changes of the non-uniform units after 
foreign name replacements was chosen as our final corpus 
(Rojc & Kačič, 2000). 

Transcription, segmentation and labeling 
The phonetic transcription was managed using a two-step 
conversion module. The first step is realized with a rule-
based algorithm. The second step was designed with a 
data-driven approach (NN were used) (Rojc & Kačič, 
2000). 
Pronunciation was derived from the IPA Alphabet. In or-
der to represent the IPA symbols in ASCII characters the 
SAMPA format was widely used. In our grapheme-to-
phoneme conversion module the SAMPA phonetic 
transcription symbols for the Slovenian language were 
used (Kačič & Zemljak, 1999). 
The text corpus was hand-labeled using 13 different 
classes of part-of-speech tags (POS). All tags were 
combined in an environment where tracking and 
correcting tags was simplified for the labelers (Stergar et 
al., 2003). 
The spoken corpus was phonetically transcribed using 
HTK. Entities “sil” and “sp” respectively, denoting the 
silence before and after a sentence and between words 
were determined with a one-state HMM and all phonemes 
with three-state HMM in the HTK environment. 

The prominence disambiguation algorithm 
The current prominence disambiguation algorithm relies 
on adequate phrasing (phrase breaks disambiguation). The 
dissection of clauses (phrasing) is performed with a semi-
automatic procedure introduced in Müller et al. (2002) 
and is based on prediction of symbolic phrase breaks tags 
with POS tags on input of the NN prediction module. The 
method is essentially based on prediction of phrase breaks 
based on acoustic preprocessing of the appropriate corpus 
with HTK as depicted in the simplified work flow 
diagram of the prominence disambiguation algorithm 
(STEP1- STEP3 in Figure 1) (Stergar et al., 2003). This 
tagged corpus was the basics for the data-driven approach 
used in the prominence prediction module. 
Marking and classification of tags represent the first three 
steps in the procedure (algorithm) of prominence 
disambiguation (Figure 1). Once the phrase breaks tags 
have been automatically inserted, the prominent words 
within marked boundaries (inserted tags) have been 
disambiguated. 
Within a prosodic phrase we automatically determine (the 
most) prominent words and classify their prominence. Yet 
two major groups are used for classification. Pitch 
movements (pitch accent) characterize the first group and 
the second group is characterized by prominent words 
emphasized by means of stress (perceptual prosodic 
accent). 
Pitch accent can be reliably detected using the overall 
syllable energy and some measure of pitch variation 
(Sluijter & van Heuven, 1996). As this measure can be 
extracted from pitch changes as from the TILT scheme 

(Taylor, 2000), the features for the first class have been 
determined from the interpolated pitch contour using pitch 
dynamics as the main parameter. 

A selective prominence disambiguation 
approach 

In the used inventory of prominent words we 
differentiated two classes of prominence on the word 
level:  
 perceptual prosodic accent (words being emphasized 

by stress) and 
 pitch accent (words being emphasized by pitch move-

ments). 
Our aim was the selective detection of both classes 
automatically. The hand labeling of prominent words of 
the used database is in progress but is due to a very time 
consuming process proceeding very slowly. 

Pitch dynamics as a measure of prominence 
We processed every utterance and computed our measure 
for pitch changes – pitch dynamics (fD) – for every 
syllable (Stergar & Horvat, 2003): 
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where j is indexing the current syllable and i the 
concerned samples. 

Band pass filtered energy as a measure of 
prominence 
We applied a classical FIR with frequency bounds 
between 500-2000Hz for band pass filtered energy 
calculation. Experiments in Tamburini (2002) for Italian 
and Sluijter & van Heuven (1996) for American English 
and Dutch, (both for male speaker) showed that this band 
of high frequencies is the most suitable. Therefore for 
every utterance we computed RMS of the band pass 
filtered energy (ERMS_B). ERMS can be computed in many 
variations, however in our experiments we used the 
widely used: 

classification/verification of prominent words 

annotation of pauses using HTK
long (SIL) and short pauses (SP)

STEP 1 (automatically)

STEP 2 (by hand)
hand labeling of breaks not marked with 
pauses (usually pitch marked - HL or LH)

STEP 3 (by hand)
classification/verification of pauses

STEP 4 (automatically)
disambiguation of prominent words 

using the statistical disambiguation algorithm

STEP 5 (by hand)
additionally annotation of prominent words 

not detected by the algorithm

STEP 6 (by hand)

 

Figure 1: A simplified work flow diagram of the 
prominence disambiguation algorithm. 
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where j is indexing the current syllable in the 
concerning utterance and i the belonging samples. 

It is evident (in comparing the distribution of energy and 
bandpass filtered energy over syllables) that the distance 
between the energy values being evaluated with the 
Mahalanobis distance measure in the utterance 
significantly increases (Stergar & Horvat, 2003). 

Statistical selective disambiguation 
We used a dynamic threshold value for selective 
distinction of prominent syllables (words). The line of 
demarcation for every utterance we used was computed 
from normal distribution function M(Ψ) using mean value 
and standard deviation (σ) for fD and ERMS_B computation 
respectively: 
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where i is indexing the concerned function, j is 
indexing the concerned syllable within the sentence N 
and N indexing σ for the concerned sentence. 

NN prediction module 
The prediction module we designed is based on a new NN 
structure based on autoassociative classificators 
introduced in Müller et al. (2002), (Figure 2). With the 
used architecture we minimized the problem of 
unbalanced information flow between the forward and 
backward path where many inputs are compressed into a 
single number for classification error. The architecture 
consists of two stages; STAGE 1 and STAGE 2. The first 
stage consists of k different autoassociator models for k 
different classes. Each model is trained only with data 
from the class it represents. The m-dimensional input 

vector x is mapped onto a n-dimensional vector z, with 
n<<m. The NN are trained with the goal that the output 
vector x’ recovers as accurate as possible the original 
input x. Thus an intermediate representation z of the data 
in a lower dimensional space is achieved with the 
compression of x via the matrix w1∈ℜn×m and hence 
decompression of z via matrix w2∈ℜm×n. After training 
for each autoassociator a reconstruction error eREC is 
computed. The distance measure (eREC=(x-x’)2) is 
achieved through a squaring activation function of the 
upper cluster considering the difference between input x 
and x’ achieved using a negative identity matrix -id. The 
result is a high dimensional error information as input into 
the classifier. 
In STAGE 2 these detailed error information is used to 
determine which class (model) a given pattern on input x 
probably belongs to. The classifier is a NN that calculates 
the class conditional probabilities pi = p(x ∈ classi) from 
the reconstruction error vectors of the different 
autoassociator models. 

Experiments 
First the correlation of partially hand-labeled prominent 
words in our database with the automatic labeling 
approach was examined. We compared the overall 
classification of labeled prominent words with the 
introduced selective method to one part of the hand 
labeled database (app. 100 sentences). 
After combining the two automatically selected classes 
(correlation of the two classes was less than 7%) and 
comparing them to the hand-labeled tags we managed to 
identify 66% of all prosodic events (prominent/non-
prominent words) in the hand labeled database. 
Second we conducted some tests with the introduced 
prominence prediction module for perceptual prosodic 
accents and pitch accents respectively as well as overall 
prediction accuracy (Table 1). 
We implemented the NN prediction module into a 
multilingual TTS system to examine the acoustical 
suitability of our selective disambiguation and prediction 
framework (Stergar et al., 2004). 
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Figure 2: Architecture of the autoassociative NN classifier. 
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Table 1: Overall prominence prediction accuracy (%). 

accent type WP NP overall 
combined 49,12 80,68 69,17 
pitch accent 59,17 69,94 67,95 
stress accent 68,33 69,25 69,03 

The acoustical results of our adapted multilingual TTS 
system were presented to a group of 20 non-expert 
listeners. We generated an inventory of 216 test sentences 
not used for the training or validation process. 
During the listening test each sentence was estimated with 
marks from 1-5, with 5 denoting the acoustically most 
pleasant sentence and 1 reserved for unacceptable ones. 
The test performed during a (approx.) 3-hour session 
showed that our approach of additional selective modeling 
of prominence with symbolic tags (using the implemented 
prosody hierarchy) essentially contributes to naturalness 
of the synthesized speech. The average ratings (the 
variances and ratings for each test person are presented in 
(Figure 3) were good-very good. 

Conclusion 
We introduced a framework for a selective approach in 
prominence disambiguation and prediction. The 
prominence disambiguation algorithm was designed on 
the basis of the automatic phrase break disambiguation. 
Within the disambiguated boundaries prominent words 
were marked with a selective statistical approach based on 
normal distribution and dynamic threshold of 
preprocessed prosodic parameters: band-pass energy and 
pitch dynamics. The disambiguation process was 
dismembered into two steps: disambiguation of perceptual 
prosodic accents and disambiguation of pitch accents. 
We performed experiments in prediction of separated and 
combined classes with a sophisticated architecture of NN 
– the autoassociative classificators. The preliminary 
results for prominence prediction are not so promising, 
however better results are expected with a nonselective 
approach when the completely labeled database is 
available. Also indicated by the experiments is the 
separate prediction of classes (Table 1). 
The overall prediction accuracy is confirmed by the 
listening tests that were rated with an overall grade of 
3,28. It seems that the predicted prominence correlates 
with the candidates for prominent words (despite not 
accentuated by the speaker in the training data). 

Nevertheless this assumption requires some additional 
manual examination. 
We conclude that despite of no state-of-the-art prediction 
accuracy, rules were extracted with the NN architecture, 
which enable an accurate prominence prediction for 
Slovenian language. Additionally no distracting 
influences to the intelligibility of the synthesized 
sentences seemed to be perceived. 
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Figure 3: Values and variations of values in the 
acoustical test ratings per test-person. 

 2114




