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Abstract 
Recent advances in word sense induction rely on clustering related words. In this paper, instead of using a clustering algorithm, we 
suggest to perform a Singular Value Decomposition (SVD) which can be guaranteed to always find a global optimum. However, in 
order to apply this method to the problem of word sense induction, a semantic interpretation of the dimensions computed by the SVD 
is required. Our finding is that in our specific setting the first dimension relates to semantic similarities between words, and the second 
dimension distinguishes between the two main senses of an ambiguous word. Based on this result we present an algorithm for fully 
unsupervised word sense induction and disambiguation. 
 
 

1. Introduction 
Past work on word senses has concentrated on disam-

biguation, i.e. on choosing among a predefined set of 
senses when given an ambiguous word in context. How-
ever, hardly any work was done on sense induction, that is 
the automatic discovery of the possible senses for a word. 
Only recently a number of papers have been published on 
this topic, among them Pantel & Lin (2002), Neill (2002), 
Dorow & Widdows (2003), and Rapp (2003). 

All these papers rely on the distributional hypothesis, 
i.e. the observation that words with similar meanings tend 
to have similar lexical surroundings. In that they use glo-
bal co-occurrence vectors, i.e. vectors that represent the 
overall behavior of a word in an entire corpus, they also 
have a common limitation: Since most words are semanti-
cally ambiguous, the observed vectors reflect a mixture of 
the contextual behavior of a word’s senses. 

Therefore, when starting from global vectors the task 
of sense induction requires determining the co-occurrence 
vectors of the senses given the co-occurrence vector of an 
ambiguous word. This is a difficult problem that can be 
approached in different ways:  
1. Pantel & Lin (2002) cluster all words in a vocabulary, 

then deduct a word’s co-occurrence vector from the 
centroid of its cluster, and finally look at the similarity 
of the differential vector to other clusters. 

2. Rapp (2003) postulates that the best descriptors for the 
senses of an ambiguous word can be found by looking 
for words whose co-occurrence vectors are as dis-
similar as possible but nevertheless add up to the co-
occurrence vector of the ambiguous word. 

3. A similar approach is to look at the co-occurrence vec-
tors of the, say, 20 strongest first-order associations to 
the ambiguous word, and to cluster the product vectors 
resulting from all 190 possible pairs. The clustering 
works especially well if we consider binary vectors 
and eliminate all vector positions that are not signifi-
cantly associated with the ambiguous word. 

4. Rapp (2004) assumes that the sense distribution of an 
ambiguous word varies with genre. On the basis of 
three corpora from different domains for each word he 
derives three co-occurrence vectors that are considered 
to be different mixes of the underlying senses. He then 
uses independent component analysis to recover the 
vectors of the senses from the observed mixtures. 

However, since reconstructing the sense vectors from 
the mixtures is difficult and often suffers from the sparse 
data problem, the question is if we really need to base our 
work on mixtures or if there is some way to directly ob-
serve the contextual behavior of the senses, thereby 
avoiding the mixing beforehand. For this we suggest two 
possibilities:  
1. Some semantic ambiguities (usually the coarser ones) 

can be resolved by syntactic considerations. For exam-
ple, the word sound can be used as a noun, a verb, or 
an adjective and has a different sense in each case. 
This kind of ambiguity can be taken into account by 
working with a part-of-speech tagged or a parsed cor-
pus and by using different co-occurrence vectors for 
each possible part of speech (Pantel & Lin, 2002). 

2. We can look at local instead of global co-occurrence 
vectors. As can be seen from human performance, in 
almost all cases the local context of an ambiguous 
word is sufficient to disambiguate the word. From this 
observation we conclude that the local context of a 
word usually carries no ambiguities.  
The first approach has already been applied by Pan-

tel & Lin (2002) with reasonably good results for finding 
the main senses of a word. Therefore, in this paper we will 
concentrate on the second approach. It is closely related to 
the one-sense-per-discourse constraint formulated by Gale 
et al. (1992) that has been proven effective in word sense 
disambiguation. The argument here is that in a given dis-
course an ambiguous word usually tends to occur in only a 
single sense. By looking at close neighborhoods instead of 
entire documents we take this position to an extreme. The 
aim of this paper is to show how the one-sense-per-dis-
course constraint, whose application tends to suffer from 
the sparse data problem, can be successfully exploited for 
word sense induction. 

2. Approach 
The basic idea is that we do not cluster the global co-

occurrence vectors of the words (on the basis of an entire 
corpus) but local ones which are based on the contexts of 
a single word. That is, our matrix is derived from the con-
cordance of this word. Also, we do not consider a term/ 
term but a term/context matrix. For each word in our vo-
cabulary we obtain an entire matrix whose context vectors 
when summed up form one global vector. When for all 
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words of a vocabulary such matrices are constructed, by 
putting them together one could speak of a three dimen-
sional array, with two dimensions being the words in the 
corpus and the third dimension being all contexts. 

Let us exemplify this using the ambiguous word palm 
with its tree and hand senses. If we assume that our cor-
pus has six occurrences of palm, i.e. there are six local 
contexts, then we can derive six local co-occurrence vec-
tors for palm. Considering only strong associations to 
palm, these vectors could, for example, look as in table 1. 
 

 arm beach coco-
nut 

fin-
ger 

hand shoul-
der 

tree 

c1 •   • • •  
c2  • •    • 
c3 •    •   
c4   •    • 
c5  • •     
c6 •    • •  

Table 1. Context matrix for the word palm. 
 

The dots in the matrix indicate if the respective word 
occurs in a context or not. We use binary vectors since we 
assume short contexts where words usually occur only 
once. By looking at the matrix it is easy to see that con-
texts c1, c3, and c6 seem to relate to the hand sense of 
palm, whereas contexts c2, c4, and c5 relate to the tree 
sense. Our intuitions can be resembled by using a method 
for computing vector similarities, for example the (binary) 
Jaccard-measure. If we then applied an appropriate clus-
tering algorithm to the context vectors, we would probably 
obtain the two expected clusters, and the words closest to 
the geometric centers of the clusters should be good de-
scriptors for the senses of palm. 

However, as matrices of the above type can be very 
large and extremely sparse, clustering is a difficult task, 
and common algorithms often deliver sub-optimal results 
because they can easily get stuck in local minima. Fortu-
nately, the problems of matrix size and sparseness can be 
minimized by reducing the dimensionality of the matrix. 
An appropriate algebraic method that has the capability to 
reduce the dimensionality of a rectangular or square ma-
trix in an optimal way is SVD. As shown by Landauer & 
Dumais (1997), Schütze (1997), Rapp (2003), and others, 
by reducing the dimensionality a generalization effect is 
achieved that can improve results. As Schütze (1997:190) 
puts it: “The role of SVD is to transform distributional 
matrices in order to bring out generalizations in distribu-
tional patterns that the original matrix does not show due 
to natural randomness in sampling from a corpus.”  

As this method is rather sophisticated, we can not go 
into the details here. Good descriptions can be found in 
Landauer & Dumais (1997), Manning & Schütze (1999), 
and Press et al. (1992). The essence is that by computing 
the singular values of a matrix and by truncating the 
smaller ones, SVD allows to significantly reduce the 
number of columns, thereby (in a least squares sense) op-
timally preserving the euclidean distances (and angles) 
between the lines (Schütze, 1997:191). Alternatively, it is 
also possible to reduce the number of lines thereby pre-
serving the distances between the columns. 

A more or less obvious way to utilize SVD in our set-
ting would involve reducing the number of lines (con-

texts) to, say, 100, and then applying a clustering algo-
rithm to the column vectors of the resulting matrix. This 
approach should work well since it is a strength of SVD to 
reduce the effect of sampling errors and to close gaps in 
the data. However, since our local matrices (based on the 
concordance of a word) are smaller and more sparse than 
the global co-occurrence matrices used in other studies, it 
is probably advisable to use fewer dimensions. Depending 
on the corpus frequency of the given word, we suggest to 
use 50 to 100 dimensions, which compares to 200 or 300 
dimensions used in the literature for co-occurrence matri-
ces of global vectors derived from a full corpus (Rapp, 
2003). 

However, in the work described here we did not fur-
ther pursue this approach but instead decided to imple-
ment a more innovative method. It has the potential of 
being easier to implement, more elegant, and more accu-
rate, but also rises difficult questions. 

Our claim is that we don’ t need a separate clustering 
algorithm since the process of SVD involves an implicit 
clustering. However, to see this we need to semantically 
interpret the dimensions of the reduced space. This is a 
difficult problem, as can be seen from the following cita-
tion (Schütze, 1997:195): “ I have not been able to find 
good interpretations of the dimensions of the reduced 
SVD-spaces. Apparently, meaningful generalizations can 
only be made about patterns of values that involve all di-
mensions. This is precisely what the clustering techniques 
I have used do.”  

Of course, from algebra we know that the dimension-
ality reduced vectors form an orthonormal basis of the 
vector space (Press et al. 1992:61), which means that all 
column vectors are orthogonal to each other (linearly in-
dependent) and their lengths are 1. 

But what does this mean for the semantic interpreta-
tion of the reduced vectors? One could think that SVD 
collapses those columns of our matrix that correspond to 
the same senses. Therefore, if in the matrix of table 1 we 
reduced the number of columns to two, this would mean 
that one column of the reduced matrix should correspond 
to the columns for arm, finger, hand, and shoulder in the 
original matrix, and the other to beach, coconut, and tree. 
However, this is a misinterpretation of what SVD does. 

What actually happens is that SVD determines the 
main dimensions of our semantic space. In the following 
explanations, for simplicity we assume that the columns of 
our reduced matrix are sorted according to the size of their 
corresponding singular values, i.e. the first column corre-
sponds to the most important dimension, the second to the 
next important dimension, and so on. 

A dimension can be characterized by a scale which is 
best described by its extremes. In our setting, the first di-
mension seems to relate to the contextual similarity to-
wards the given word, i.e. to palm. Therefore, at one end 
of the first dimension’s scale we have words that are 
similar to palm, for example tree or hand, at the other end 
words that are not similar, for example synthesis or volt. 

In determining the second dimension, SVD removes 
the first dimension from the data. What we then find is 
that the extremes of the second dimension’s scale are the 
two meanings of palm, i.e. at one end we find tree and at 
the other we find hand. 

Now if SVD also removes this second dimension from 
the data, one could hope that the third dimension gives us 
further distinctions. For example, given the tree sense of 
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palm, one could distinguish products (palm oil) and names 
(Palm Beach). Or given the hand sense, further distinc-
tions could be body part versus handheld computer. So 
the third and following dimensions would capture the next 
strongest regularities hidden in the data that only become 
visible after removal of the previous dimensions. 

However, since with higher dimensions the effects be-
come less clear and sampling errors tend to dominate, we 
have not yet been able to clearly support this view empiri-
cally. In what follows we therefore restrict our discussion 
to the first and the second dimensions. 

Having formulated interpretations concerning the di-
mensions of the reduced space, the question is for what 
kinds of applications this is of relevance, and in how far 
this view leads to useful practical results. Let us therefore 
briefly look at the computation of semantically similar 
words and then move on to the tasks mentioned in the title 
of the paper, namely word sense induction and word sense 
disambiguation. 

3. Word similarities and sense induction 
Our computations are based on a partially lemmatized 

version of the British National Corpus (BNC) which has 
the function words removed (Rapp, 2002). With partial 
lemmatization we mean that only those words in the cor-
pus have been replaced by their root forms that, according 
to a large lexicon of English, can be unambiguously as-
signed to a stem. This makes the corpus more manageable, 
the computations faster, and reduces the sparse data prob-
lem without introducing errors (other than those resulting 
from errors or omissions in the lexicon). Our vocabulary 
consists of all 374240 different word forms occurring in 
this corpus after lemmatization. 

Next we have to specify how we define a context. 
Since the documents in the BNC are rather long (average 
sample size is 24274 words), it is probably better to 
choose shorter contexts, for example sentences, para-
graphs, or text windows of a fixed size. We decided to use 
text windows of ±20 words around the given word. Since 
function words were removed from our corpus, this corre-
sponds to a larger window size of perhaps ±40 words in 
the original corpus if we assume that roughly every sec-
ond word is a function word. 

Due to space constraints, the following considerations 
and results will be exemplified by only a single test word. 
We chose the word palm which has already been used in 
the previous examples. In our corpus, palm occurs 2054 
times. Note that this occurrence frequency relates to 
several inflected forms of palm (e.g. palms and palming) 
as the corpus has been lemmatized. 

Using the window size of ±20 words we created a con-
cordance of palm, with each line in the concordance re-
lating to one context window. From this concordance we 
computed a term/context-matrix whose binary entries in-
dicate if a word occurs in a particular context. When con-
structing the matrix, for the lines we took all 2054 con-
texts of palm into account, but restricted the columns to 
those words other than palm that have a corpus frequency 
of at least 100 in the lemmatized BNC. The reason for this 
restriction is that the following SVD can be computation-
ally demanding, and that in a previous study the omission 
of infrequent words seemed to have little impact on the re-
sults (Rapp, 2003). The resulting matrix had a size of 
2054 lines � 10610 columns. 

As proposed in other papers (e.g. Landauer & Dumais, 
1997; Rapp, 2003), we considered applying some associa-
tion measure to the matrix entries. However, simply 
adopting the association formulas used elsewhere seemed 
not appropriate, as we are working with a different type of 
matrix that consists of local instead of global vectors. Un-
fortunately, finding the best formula is difficult, as many 
considerations must be taken into account. Possibilities 
include replacing the matrix entries by the association 
strengths of the respective word to palm, or to simply use 
the salience of a word which can, for example, be ex-
pressed by its entropy, by the standard deviation of its 
distribution, or possibly by the logarithm of its inverse fre-
quency. Since we have not yet completed these experi-
ments, the results that we present below are based on the 
unmodified binary matrix. 

We applied the SVD to this matrix and reduced its 
number of columns from 10610 to 2, whereas the number 
of lines remained at 2054. This took only a few seconds of 
computing time, and the singular values that we obtained 
were 62.9 and 25.7 (subsequent values are 22.1 and 19.7). 

Next comes the essential step which is to find out 
about the semantic interpretations of the two computed 
columns. This we did by comparing each of the two col-
umn vectors of the reduced matrix to all column vectors 
(words) of the original binary matrix and by ranking the 
results according to the similarities obtained. As our 
similarity measure we used the well known cosine coeffi-
cient (Rapp, 2003) which computes the cosine of the angle 
between two vectors. 

The resulting ranked word list obtained from the com-
parison with the first vector of the reduced space (first di-
mension) is shown in table 2, and the list relating to the 
second dimension is shown in table 3. For each word, the 
tables show its similarity value (cosine coefficient) and its 
rank among all words in the vocabulary. As we have a 
large vocabulary, we had to restrict the lists to a selection 
of words. As such we took the top 30 words with the 
strongest associative relationship to palm. These first-or-
der associations had been automatically computed using 
the log-likelihood ratio as our association measure and the 
lemmatized BNC as our corpus. The exact procedure is 
described in Rapp (2002). 

 
RK COS WORD  RK COS WORD 

1 0.57 hand  104 0.20 upward 
3 0.45 back  109 0.20 lip 
6 0.42 hands  127 0.19 gently 

10 0.38 tree  134 0.18 facing 
13 0.35 hold  164 0.17 fist 
15 0.33 finger  170 0.17 island 
16 0.32 head  200 0.16 thumb 
21 0.30 eyes  206 0.16 elbow 
53 0.24 arms  243 0.15 slap 
56 0.24 beach  252 0.15 oil 
62 0.23 shoulder  328 0.14 coconut 
63 0.23 mouth  459 0.12 frond 
64 0.23 white  600 0.11 attacker 
90 0.21 skin  611 0.11 Florida 
97 0.21 slowly  633 0.10 breathe 

Table 2. Cosine similarities between the column vectors of 
the original matrix and the first column (first dimension) 
of the reduced matrix. 
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RK COS WORD  RK COS WORD 
1 0.44 hand  35 0.14 thumb 
2 0.33 hands  43 0.12 gently 
3 0.27 finger  50 0.12 fist 
4 0.27 hold  67 0.11 skin 
5 0.26 back  104 0.09 breathe 
6 0.23 facing  111 0.09 attacker 
7 0.23 arms  119 0.08 slap 
8 0.22 upward  374169 -0.12 oil 
9 0.21 head  374177 -0.12 frond 

11 0.19 slowly  374191 -0.13 Florida 
15 0.18 shoulder  374227 -0.19 coconut 
17 0.17 mouth  374232 -0.21 white 
18 0.16 lip  374238 -0.27 island 
24 0.16 elbow  374239 -0.38 beach 
29 0.15 eyes  374240 -0.58 tree 

Table 3. Similarities regarding the second dimension. The 
total number of words in the vocabulary is 374240. 

 
If we look at table 2, we can see that our first dimen-

sion seems to correspond to association strength, as all of 
our 30 test words are among the top 633 in our ranked list 
of altogether 374240 words. Of course, ideally one could 
have hoped that all test words would end up on exactly the 
top 30 positions. But this is unrealistic, as different meth-
ods for computing association strengths (in our case log-
likelihood versus SVD) will always lead to variations in 
results. Also, one should keep in mind that these results 
have been achieved by applying the SVD to a binary co-
occurrence matrix that had not been transformed using 
any association measure. 

When considering the results for the second dimension 
as shown in table 3, we see that 22 of our 30 test words 
are ranked among the top 119, but that 8 are among the 
bottom 72. Interestingly, according to our judgement, all 
of the top words relate to the hand sense of palm, and all 
of the bottom words relate to its tree sense. This is a result 
that is extremely unlikely to occur incidentally. Moreover, 
the best descriptors for the two senses of palm, namely 
hand and tree, are placed at the very first respectively last 
position of our ranked list. From this it becomes clear that 
the second dimension that SVD computed is capable of 
distinguishing between the two main senses of palm. 

4. Word sense disambiguation 
A nice feature of the proposed SVD-based method for 

word sense induction is that it implicitly performs sense 
disambiguation for each of the 2054 contexts of palm. The 
second column in our reduced matrix (i.e. the one that 
distinguishes between the senses) represents the results of 
this disambiguation process. Remember that this vector 
has a length of 2054 so that each value corresponds to one 
of the contexts. If we now assume that a positive value in 
this vector indicates that palm is used in the sense of hand 
in the respective context, and that a negative value indi-
cates the use of palm in the sense of tree, then according 
to our judgment for the first 100 occurrences of palm in 
the BNC we get 87 correct predictions. 

If we want to disambiguate the sense of palm given a 
new context, we can either add this context to our original 
matrix and redo the SVD. Alternatively, there is also the 
possibility of mapping the new context into the reduced 
space, as described in Manning & Schütze (1999:563). 

5. Summary and conclusions 
We have presented a method for fully automatic word 

sense induction and disambiguation from text. It relies on 
the semantic interpretation of a dimensionality reduced 
matrix of contexts. As this is ongoing work, there are 
many open questions: Can the results that have been pre-
sented here for a single example be generalized? Will the 
dimensions that SVD computes always agree with our in-
tuitions? What is the meaning of the third and the follow-
ing dimensions? What happens if several singular values 
are of similar size? What about ambiguous words with 
more than two senses? 

Nevertheless, the simplicity of the approach is surpris-
ing, and SVD has the advantage that it is an analytical 
method that always finds optimal dimensions. If the hy-
pothesis of this paper, namely that SVD dimensions agree 
with human intuitions, can be confirmed, then this could 
be useful for solving many problems in natural language 
processing. Other applications that we have started to ex-
plore include language identification in mixed language 
corpora, text categorization, and part-of-speech induction. 
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