
Probabilistic Detection of Context-Sensitive Spelling Errors

Johnny Bigert

Department of Numerical Analysis and Computer Science
Royal Institute of Technology, Stockholm, Sweden

johnny@kth.se

Abstract
This article focuses on the evaluation of a novel algorithm for the detection of context-sensitive spelling errors. We present a fully
automatic evaluation procedure with no requirements of manual work or resources annotated with spelling errors. The evaluation method
is applicable to any language and tag set, and is easily adaptable to other NLP systems such as taggers and parsers.

1. Introduction

Algorithms for the detection of misspelled words have been
known since the early days of computer science. The pro-
gram would simply look up a word in a dictionary, and
if not present there, it was probably misspelled. Unfor-
tunately, not all misspelled words result in an unknown
word. Misspelled words resulting in existing words are
called context-sensitive spelling errors, since a context is
required to detect an error. Clearly, these errors are much
more difficult than normal spelling errors since they require
at least a basic analysis of the surrounding text.

Several approaches have been proposed to address
context-sensitive spelling errors. To detect commonly con-
fused words (e.g. there, they’re, their), methods using
confusion sets have been proposed (Golding and Roth,
1996). These use a limited set of errors, either manually
constructed or obtained automatically. Context-sensitive
spelling errors due to words outside the confusion set will
not be processed. The algorithm proposed here is able to
process and detect any misspelled word.

Other methods use statistical information, such as part-
of-speech (PoS) trigram frequencies (Golding and Schabes,
1996) or transition probabilities and error likelihoods from
PoS taggers (Atwell, 1987). These suffer from the problem
of sparse data. Since the size of the corpus is limited, we
will always face previously unseen grammatical construc-
tions. The proposed method mitigates the effect of sparse
data by preprocessing the corpus and extracting extra infor-
mation on PoS tags.

Full parsing would be the ideal solution to detect
context-sensitive spelling errors. The words that do not fit
into the grammar are misplaced. To achieve reasonable ac-
curacy for a full parser, extensive amounts of manual work
is required. Furthermore, the processing of the text will be
difficult if there are several errors in the same region since
the parser will have little or no context to base its analysis
upon. The method proposed here requires much less man-
ual work and is extremely robust to multiple errors.

The main contribution of this article is a new approach
to fully automated evaluation procedures. Furthermore, we
provide some refinements of a novel detection algorithm
for context-sensitive spelling errors (Bigert and Knutsson,
2002). Nevertheless, the focus here is the evaluation proce-
dure.

2. Detection of Spelling Errors
This section describes the algorithm detecting context-
sensitive spelling errors. The algorithm is divided into two
parts: a statistical part and a transformation part. For ad-
ditional details, we refer to the discussion concerning a
preliminary version of the algorithm (Bigert and Knutsson,
2002). Nevertheless, a few improvements and simplifica-
tions have been made (e.g. the inclusion of different mea-
sures) and those are described here.

2.1. Statistical Information

The first, statistical part of the algorithm uses PoS tag n-
gram frequency information, gathered from a corpus of the
target language. To simplify the exposition of the algo-
rithm, we will use PoS tag trigrams in this discussion, al-
though the discussion is applicable to PoS tag n-grams of
any size.

The general observation is that a grammatical construc-
tion is probably malformed if it contains previously unseen
trigrams. Unfortunately, human language is very produc-
tive, and new, unseen grammatical constructs will arise. To
address this problem, we broaden the concept of a PoS tag
trigram.

Two PoS tags that are used in similar syntactic contexts
are said to be close. We want to use this closeness, or dis-
tance, between tags to mitigate the effect of rare trigrams
due to the productivity of the language.

We calculate the distance between two tags by using the
frequencies of PoS tag trigrams obtained from the corpus.
Given two tags t and r, we look up the frequencies for the
trigrams (t1, t, t2) and (t1, r, t2). Naturally, if either t or
r is more frequent than the other, the trigram frequencies
will be higher and thus, we have to compensate for the tag
frequencies. We obtain Pt(t1, t2) = freq(t1, t, t2)/freq(t).

From this, we can apply a number of similarity mea-
sures from the work of Lee (1999), e.g. the L1 norm:
L1(Pt, Pr) =

∑
t1,t2

|Pt(t1, t2) − Pr(t1, t2)|, where the
sum is over all tag pairs t1, t2 in the tag set. We see that the
distance increases when the trigrams differ in frequencies
and that the maximum distance 2 is obtained when the uses
of the tags are disjoint. The minimum distance 0 is obtained
when the PoS tag contexts are identical, which occurs when
t = r.

The measure will give us a list of similarities between
every pair of tags t and r. Suitably normalized to values in

 1633

[0, 1], where 1 represents the closest distance (e.g. the dis-
tance from a tag to itself), we can use the values as probabil-
ities. Thus, if p is L1(Pt, Pr) normalized (i.e. the distance
between t and r), p can be seen as the probability of retain-
ing grammaticality when replacing a word having PoS tag
t with a word having PoS tag r.

Now, given a rare trigram (t1, t, t2), we attempt to re-
place one (or more) of the tags with another tag close in
distance. For example, if replacing t with r, we obtain
(t1, r, t2). To penalize the tag change, we multiply the fre-
quency of the new trigram with the probability p of the tag
change. Now, if the penalized frequency is high (as defined
by an arbitrary threshold e), the grammatical construction is
most probably correct and the low frequency was originally
due to a rare tag. If all attempted tag replacements result in
low frequencies, the trigram is probably not grammatical
and is marked as an error.

2.2. Phrase Transformations

Most false alarms occur near the beginning or end of a
phrase constituent. There, a trigram covers two phrases and
the productivity of the language gives rise to almost any
combination of PoS tags. Furthermore, rare phrase con-
structions often produce rare PoS tag trigrams. Normally,
the simplest (or shortest) form of a phrase is the most com-
mon, e.g. the menis a more common type of NP than the
little green men. Thus, when faced with a potential error
as described in the previous subsection, we will identify all
adjacent phrases and try to simplify. Hopefully, the rare
trigram is due to a rare combination of phrases.

We attempt to transform a phrase to a simpler form by
replacing it with a more common phrase of the same type.
Since we try to retain the inflectional information of the
phrase, the new sentence will most probably be grammat-
ical. For example: an error is detected near the words are
old are in All paintings that are old are for sale. The NP
all paintings that are oldis reduced to the paintingsand the
sentence becomes The paintings are for sale, avoiding the
rare construction.

The sentence resulting from the phrase transformation
is fed to the algorithm in the previous section. If the new
sentence is not erroneous, it is probably grammatically cor-
rect. If all phrase transformations fail (are reported as er-
rors), there is probably a grammatical error and this is re-
ported to the user. Rare PoS tag trigrams also occur fre-
quently near a clause beginning or end. We decided not
to look for errors in trigrams that cross a clause boundary.
Hence, the largest unit is not a sentence but a clause.

3. Automatic Evaluation
An important objective in the design of an evaluation of a
complex system is to minimize the amount of manual work.
Due to the many parameters of the proposed algorithm, we
required a fully automatic evaluation process as close as
possible to the situation in which the algorithm is normally
used. Clearly, we could produce or use an already existing
resource with annotated spelling errors. To produce such a
resource would be time-consuming and error-prone. Fur-
thermore, vast amounts of data would be necessary to eval-
uate the many parameters.

The evaluation procedure described here is fully auto-
mated and requires no resources annotated with errors. Fur-
thermore, it is portable to any language and tag set (given
a dictionary in that language) and produces reproducible
evaluations. The procedure can easily be adapted to eval-
uate other NLP systems, such as robustness in parsers and
taggers (Bigert et al., 2003b) or the performance of spelling
and grammar checkers.

3.1. Missplel and AutoEval

The normal use of the algorithm is a human writer produc-
ing text containing context-sensitive spelling errors. Hence,
we wanted to simulate this process.

To produce spelling errors closely resembling those of a
human writer, we used a freeware application called MIS-
SPLEL (Bigert et al., 2003a). MISSPLEL was configured
to produce keyboard mistype errors resulting in an existing
word with a change in PoS tag. For example, to be or not
to becould be misspelled to be or not to me. This results
in a PoS tag change from verb to pronoun and clearly, a
context-sensitive spelling error difficult to detect.

The results were gathered using another application
called AUTOEVAL (Bigert et al., 2003a), devised to sim-
plify the design of evaluations. AUTOEVAL handled input,
output, data gathering and processing through a simple ten
line script.

3.2. Evaluation Method

The parser used here was GTA (Knutsson et al., 2003), a
rule-based shallow parser for Swedish. GTA also identi-
fied the clause boundaries. The parsing accuracy of GTA
is about 88.7% and 88.3% for the clause identification. We
used 15 000 words of written Swedish from the SUC cor-
pus (Ejerhed et al., 1992).

Using MISSPLEL, we introduced errors randomly in
1%, 2%, 5%, 10% and 20% of the words. To minimize the
influence of chance, we repeated the process 10 times for
each error level, resulting in 50 misspelled texts of 15 000
words each.

Since the algorithm is divided into two parts, statistics
and transformations, we wanted to assess the individual in-
fluence of each part. Thus, each part was turned either on or
off, resulting in four different settings. If the statistics part
was turned off, we simply considered a trigram ungram-
matical if its frequency was below a predetermined thresh-
old e. By turning off both statistics and transformations, we
obtained a simple trigram base-line.

Furthermore, there were several viable PoS tag similar-
ity measures to use in the statistical error detection. Lee
(1999) gives examples of a few, of which we decided to use
Jaccard, Jensen-Shannon, L1, cos and L2.

As stated, the arbitrary threshold e was the limit under
which trigram frequencies are considered ungrammatical.
By setting e to large values, we obtained higher recall from
the algorithm and by setting e to small values, we obtained
higher precision. We used e = 0.25, 0.5, 1, 2, 4 and so forth
up to 512.

The material was scrutinized by the algorithm and the
putative errors were marked. Since the minimum resolution
of the algorithm is a trigram of words/tags, the algorithm

 1634

identified the center of the error, and an error within the
trigram was deemed correctly identified. From this, we see
that the definition of precision and recall will be as follows:

recall =
errors overlapped by any detection

total # of introduced errors
,

precision =
of detections overlapping an error

total # of detections
.

4. Results
The characteristics of the similarity measures coincided
with the findings of Lee (1999), where Jensen-Shannon,
L1 and Jaccard were superior to the other measures and
had very similar performance. For the sake of exposition,
we chose to limit our findings to Jensen-Shannon, which
seemed to have a stable performance over all tests.

The results of the experiments are shown in Figures 1
through 5 corresponding to the percentage of errors in the
text, i.e. 1%, 2%, 5%, 10% and 20%. In each figure, four
graphs are displayed. These are the four combinations of
the statistical method and the transformations turned either
on or off. When the error threshold e is increased, the pre-
cision drops and the recall increases.

5. Discussion
The algorithm is designed to detect context-sensitive
spelling errors. For normal spelling errors and typical
grammatical errors, other more suitable algorithms exist.
Thus, the proposed algorithm is best used in combination
with these to be able to detect all error types in a text. All al-
gorithms will produce false alarms (i.e. correct text marked
as an error), and using more algorithms at the same time
will produce more false alarms. Hence, to be able to use
the proposed method in combination with others, we want
to focus on high precision.

Normally, only a small amount of the spelling errors in
a text are context-sensitive (that is, result in existing words).
Peterson (1986) reports that 16% of the errors may fall into
this category (in English, but the results would be similar
for Swedish), depending on the size of the dictionary. This
is a small fraction of all errors and thus, the 1% and 2%
error levels are the most realistic, and the others are shown
as comparison.

We see from the figures that using both methods (statis-
tics and transformations) obtains the highest precision at
all error levels. Furthermore, both statistics and transfor-
mations contribute to this increase.

We also see that the base-line (no statistics, no transfor-
mations) obtains the highest recall, although at a very low
precision. When the error levels increase, finding errors is
less difficult and the precision increases. This also causes
the base-line to obtain a precision closer to the other meth-
ods. Nevertheless, at the lower (and realistic) error levels,
the proposed method achieves a much higher precision at
the expense of a loss in recall. See e.g. Figure 1 and com-
pare the highest precision of the base-line (precision 23% at
recall 42%) with the proposed method (e.g. precision 50%
at recall 26%). The best precision/recall achieved for the
proposed method is about 57% precision at 20% recall (at
the 1% error level) and about 68% precision at 20% recall

(2% errors). Keep in mind here that we cannot expect to
achieve high recall while keeping reasonable precision due
to the difficult nature of the errors.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

pr
ec

is
io

n
[%

]

recall [%]

trans on, stat on (proposed method)
trans on, stat off
trans off, stat on
trans off, stat off (base−line)

Figure 1: Precision and recall at the 1% error level. The
graphs show the four combinations of the transformations
and statistics part of the algorithm turned either on or off.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

pr
ec

is
io

n
[%

]

recall [%]

trans on, stat on (proposed method)
trans on, stat off
trans off, stat on
trans off, stat off (base−line)

Figure 2: Precision and recall at the 2% error level.

We also evaluated the text without errors (0% error
level). The text actually contained some spelling and style
errors, but these were excluded from the above evalua-
tion. Naturally, the 0% evaluation results depended on the
threshold e, but the general observation was that precision
ranged from 1/2 to 2/3 for reasonable values of e.

Clearly, the performance of the parser and tagger
greatly affects the algorithm. Due to the inherent robust-
ness of the PoS tagger, some spelling errors will not result
in a change in input to the proposed algorithm. For exam-
ple, if we introduce 20% errors, only 12.7% of the tags are
erroneous from the PoS tagger (Bigert et al., 2003b)! This
results in a lowered recall, since some of the errors are just
out of reach for an algorithm working on the output of the
PoS tagger. Nevertheless, this is also the situation in normal
use of the algorithm.

 1635

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

pr
ec

is
io

n
[%

]

recall [%]

trans on, stat on (proposed method)
trans on, stat off
trans off, stat on
trans off, stat off (base−line)

Figure 3: Precision and recall at the 5% error level.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

pr
ec

is
io

n
[%

]

recall [%]

trans on, stat on (proposed method)
trans on, stat off
trans off, stat on
trans off, stat off (base−line)

Figure 4: Precision and recall at the 10% error level.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

pr
ec

is
io

n
[%

]

recall [%]

trans on, stat on (proposed method)
trans on, stat off
trans off, stat on
trans off, stat off (base−line)

Figure 5: Precision and recall at the 20% error level.

6. Conclusions
We have approached the very difficult problem of detecting
context-sensitive spelling errors by using statistical infor-

mation and parser technology. The proposed method re-
quires much less manual work than say a full parser ap-
proach. Furthermore, it is much more robust to ill-formed
or noisy input.

A thorough evaluation was carried out on context-
sensitive spelling errors caused by keyboard mistypes. We
saw that the choice of PoS tag distance measures did not af-
fect the results much (as there were at least three measures
with similar characteristics). The base-line achieved high
recall, but at terrible precision. To achieve high precision,
the proposed method was used. As always, higher precision
was gained at the expense of recall.

We noted that many of the errors were not possible to
detect at all. Having this in mind, the recall and precision
of the algorithm were acceptable, while the manual work
was kept to a minimum. We conclude that the algorithm
could favorably be used with traditional spelling and gram-
mar checkers to more extensively map the spelling errors in
a text.

7. Acknowledgments
Many thanks to my supervisor Viggo Kann, the Royal Insti-
tute of Technology and the Swedish Agency for Innovation
Systems (Vinnova).

8. References
Atwell, E., 1987. How to detect grammatical errors in a text

without parsing it. In Proceedings of the 3rd European
ACL Conference.

Bigert, J., L. Ericson, and A. Solis, 2003a. Missplel and
AutoEval: Two generic tools for automatic evaluation.
In Proceedings of Nodalida 2003. Reykjavik, Iceland.

Bigert, J. and O. Knutsson, 2002. Robust error detection:
A hybrid approach combining unsupervised error detec-
tion and linguistic knowledge. In Proceedings of Ro-
bust Methods in Analysis of Natural language Data (RO-
MAND’02). Frascati, Italy.

Bigert, J., O. Knutsson, and J. Sjöbergh, 2003b. Automatic
evaluation of robustness and degradation in tagging and
parsing. In Proceedings of RANLP 2003. Bovorets, Bul-
garia.

Ejerhed, E., G. Källgren, O. Wennstedt, and M. Åström,
1992. The Linguistic Annotation System of the
Stockholm-Ume̊a Project. Department of Linguistics,
University of Umeå, Sweden.

Golding, A. and D. Roth, 1996. Applying winnow to
context-sensitive spelling correction. In Proceedings of
the International Conference on Machine Learning.

Golding, A. and Y. Schabes, 1996. Combining trigram-
based and feature-based methods for context-sensitive
spelling correction. In A. Joshi and M. Palmer (eds.),
Proceedings of the 34th Annual Meeting of the ACL. San
Francisco.

Knutsson, O., J. Bigert, and V. Kann, 2003. A robust shal-
low parser for Swedish. In Proceedings of Nodalida
2003. Reykjavik, Iceland.

Lee, L., 1999. Measures of distributional similarity. In
Proceedings of the 37th Annual Meeting of the ACL.

Peterson, J., 1986. A note on undetected typing errors.
Communications of the ACM, 29(7):633–637.

 1636

