

The Workshop Programme

8:00 – 8:15 Welcome

8:15 – 8:45 I. Alegria, M. Aranzabe, A. Ezeiza, N. Ezeiza, R. Urizar

Robustness and customization in an analyzer/lemmatizer for Basque

8:45 – 9:15 M. O. Dzikovska, James F. Allen, Mary D. Swift

Finding the balance between generic and domain-specific knowledge: a parser
customization strategy

9 :15 – 9 :45 David M. de Matos, Nuno J. Marnede

Data-driven application configuration

9 :45 – 10 :00 Break

10 :00 – 10:30 Svetlana Sheremetyva, Alexsei Pervuchin, Vladislav Trotsenko, Alexej Tkachev

Towards Saving on Software Customization

10:30 – 11:00 Maria Nava

Resource integration and customization for automatic hypertext information
retrieval in a corporate setting

11:00 – 11:30 Patrice Lopez, Christine Fay-Vanier and Azim Roussanaly

Lexicalized Grammar Specialization for Restricted Applicative Languages

11:30 – 11:45 Break

11:45 – 12:15 Hurskainen Arvi

A Versatile Knowledge Management Package

12:15 – 12:45 Remi Zajac
Challenges in MT customization on closed and open text styles

12:45 – 13:15 Anju Saxena and Lars Borin
Locating and reusing sundry NLP flotsam in an e-learning application

13:15 – 13:30 Closing discussion

Workshop Organisers

Federica Busa The Net Planet, S.p.A.
Robert Knippen LingoMotors, Inc.
Evelyne Viegas Microsoft Corporation
Antonio Sanfilippo Sra International

Workshop Programme Committee

Saliha Azzam Microsoft Corporation
Federica Busa The Net Planet, S.p.A.
Robert Knippen LingoMotors Inc.
Connie Parkes Dictaphone
Antonio Sanfilippo Sra International
Evelyne Viegas Microsoft Corporation
Piek Vossen Irion Technologies
Remi Zajac Systran Corporation

Table of Contents

Alegria, M. Aranzabe, A. Ezeiza, N. Ezeiza, R. Urizar
Robustness and customization in an analyzer/lemmatizer for Basque...1

M. O. Dzikovska, James F. Allen, Mary D. Swift
Finding the balance between generic and domain-specific knowledge: a parser customization
strategy...7

David M. de Matos, Nuno J. Marnede
Data-driven application configuration...12

Patrice Lopez, Christine Fay-Vanier and Azim Roussanaly
Lexicalized Grammar Specialization for Restricted Applicative Languages.....................................17

Svetlana Sheremetyva, Alexsei Pervuchin, Vladislav Trotsenko, Alexej Tkachev
Towards Saving on Software Customization..23

Maria Nava Resource integration and customization for automatic hypertext information retrieval
in a corporate setting..31

Hurskainen Arvi
A Versatile Knowledge Management Package...36

Remi Zajac
Challenges in MT customization on closed and open text styles..41

Anju Saxena and Lars Borin
Locating and reusing sundry NLP flotsam in an e-learning application...45

Author Index

Alegria, I..1
Allen, James F...7
Aranzabe, M..1
Arvi, Hurskainen ..36
Borin, Lars ...45
de Matos, David M. ...12
Dzikovska, M. O...7
Ezeiza, A ..1
Ezeiza, N...1
Fay-Vanier, Christine ...17
Lopez, Patrice..17
Maria, Nava ..31
Marnede, Nuno J. ...12
Pervuchin, Alexsei..23
Roussanaly, Azim...17
Saxena, Anju ..45
Sheremetyva, Svetlana..23
Swift, Mary D..7
Tkachev, Alexej..23
Trotsenko, Vladislav...23
Urizar, R...1
Zajac, Remi ...41

Robustness and customisation in an analyser/lemmatiser
for Basque

Alegria I., Aranzabe M., Ezeiza A., Ezeiza N., Urizar R.

Informatika Fakultatea

649 P.K. E-20080 Donostia. Basque Country.
{i.alegria, jipecran}@si.ehu.es

Abstract
This paper describes the work carried out to improve the robustness of the morphological analyser/generator for Basque which can be
adapted to several domains and variants of the language. This analyser is used as a lemmatiser in several IR applications such as an
Intranet search engine.
We present an enhanced analyser that deals not only with standard words but also with linguistic variants (including dialectal variants
and competence errors) and words, whose lemmas are not included in the lexicon, by relaxing the constraints of the standard analyser.
In addition to this, a user’s lexicon can be added to the system in order to customise the tool. This user’s lexicon can be obtained by
means of a semiautomatic process.

1. Introduction
The starting point of this research is a general

morphological analyser/generator described in (Alegria et
al., 1996), which reported 95% of coverage. This poor
result was due (at least partially) to the recent
standardisation and the widespread dialectal use of
Basque.

Although in some systems lemmas corresponding to
unknown words are included in the main lexicon in a
previous step, this solution is not satisfactory if we want to
build a flexible system. We decided that it was necessary
to manage a user’s lexicon, for linguistic variants and
forms whose lemmas were not in the lexicon, if we
wanted to develop a comprehensive or adapted analyser.

However, the enhancement of coverage leads, in some
cases, to produce overgeneration, and, consequently, to
increase ambiguity. Although this ambiguity is not real, it
causes poor results (lower precision) in applications based
on morphology or lemmatisation. Another important issue
was the improvement of precision. We studied the results
of the analyser and saw that most errors (50%-75%) were
made when dealing with proper names. Therefore, we
propose some solutions to avoid about 50% of the errors.

2. Architecture of the morphological
analyser

Morfeus is a robust morphological analyser for
Basque. It is a basic tool for current and future work on
NLP of Basque. Some of the tools based on it are a tagger
(Ezeiza et al., 1998), an Intranet search engine (Aizpurua
et al., 2000) and an assistant for verse making (et al.,
2001).

The analyser is based on the two-level formalism. The
two-level model of computational morphology was
proposed by Koskenniemi (Koskenniemi, 1983) and has
had widespread acceptance due mostly to its general
applicability, declarativeness of rules and clear separation
of linguistic knowledge and program.

This tool is implemented using lexical transducers. A
lexical transducer (Karttunen, 1994) is a finite-state
automaton that maps inflected surface forms to lexical
forms, and can be considered an evolution of the two-level
morphology. The tool used for the implementation is the

fst library of Inxight1 (Karttunen and Bessley, 1992;
Karttunen, 1993; Karttunen et al., 1996). A detailed
description of the transducers can be found in (Alegria et
al., 2001).

We have defined the architecture of the analyser using
three main modules (Schiller (Schiller, 1996) and others
propose only two levels):
1. The standard analyser that uses a general lexicon and

a user’s lexicons. This module is able to analyse/
generate standard language word-forms. In our
applications for Basque we defined about 75,000
entries in the general lexicon, more than 130 patterns
of morphotactics and two rule systems in cascade, the
first one for long-distance dependencies among
morphemes and the second for morphophonological
changes. The three elements are compiled together in
the standard transducer. To deal with the user’s
lexicon the general transducer described below is
used.

2. The analysis and normalization of linguistic variants
(dialectal uses and competence errors). Due to non-
standard or dialectal uses of the language and
competence errors, the standard morphology is not
enough to offer good results when analysing real text
corpora. This problem becomes critical in languages
like Basque in which standardisation is in process and
dialectal forms are still of widespread use. For this
process the standard transducer is extended with new
lexical entries and phonological rules producing the
enhanced transducer.

3. The guesser or analyser of words without lemmas in
the lexicons. In this case the standard transducer is
simplified removing the lexical entries in open
categories (nouns, adjectives, verbs, …), which
constitute the vast majority of the entries, and is
substituted by a general automata to describe any
combination of characters. So, the general transducer
is produced combining this general set of lemmas
with affixes related to open categories and general
rules.

1 Inxight Software, Inc., a Xerox Enterprise Company
(www.inxight.com)

The analyser of non-standard words (steps 2 and 3)
may sometimes produce overgeneration, and it is
important to reduce this ambiguity as soon as possible.

3. Customizing the analyser
In order to deal with unknown words, a general

transducer has been designed to relax the need of lemmas
in the lexicon. This transducer was initially (Alegria et al.,
1997) based on an idea used in a speech synthesis system
(Black et al., 1991) but it has been now simplified. Daciuk
(Daciuk, 2000) proposes a similar way when he describes
the guessing automaton, but the construction of our
automaton is simpler.

The new transducer is the standard one modified in
this way: the lexicon is reduced to affixes corresponding
to open categories and generic lemmas for each open
class, while standard rules remain. There are seven open
classes and the most important ones are: common nouns,
personal names, place nouns, adjectives and lexical verbs.
Grammatical categories and semantic ones (personal
names or place names) are separated because they have
different declension.

So, the standard rule-system is composed of a mini-
lexicon where the generic lemmas are obtained as a result
of combining alphabetical characters and can be expressed
in the lexicon as a cyclic sublexicon with the set of letters
(some constraints are used with capital/non-capital letters
according to the part of speech). In fig. 1 the graph
corresponding to the mini-lexicon is shown.

Figure 1. Simplified graph of the mini-lexicon

This transducer is used in two steps of the analysis:
1. in the standard analysis, in order to analyse

declension and derivation of lemmas in the user's
lexicon.

2. in the analysis without lexicon (called guesser in
taggers).

The user's lexicon is composed of a list of lemmas
along with their parts of speech defined by the users. The
general transducer suggests possible interpretations of the
word, and these lemmas are searched in the user's lexicon.
When any lemma and class given by the general
transducer matches the information on the user's lexicon,
the analyser selects the corresponding interpretation and
gives it as a result.

So, the user’s lexicon is an editable resource which can
be inferred from corpora or be managed on-line by the
user. The use of this lexicon combined with the general
transducer allows to customise the applications and it has
been included successfully in three tools:

1. A spelling corrector for Basque (Aldezabal et al.,
1999) in which for each lemma included in the user's
lexicon any inflected form or derivative is accepted.

2. An Intranet search engine (Aizpurua et al., 2000) in
which lemmatisation plays an important role and
which can be customised when adapted to a special
domain. In this case a semiautomatic process is
carried out. First, the whole analyser (in the three
steps above mentioned) is used to analyse a big
corpus and the possible lemmas obtained by the
guesser. After being sorted by frequency, they are
presented to the user in order to include them in the
user's lexicon2. The site www.zientzia.net, devoted to
scientific documents, was built in this way.

3. A general part-of-speech tagger including
customisation similar to the search engine.

4. Increasing coverage
The analyser was designed with the main objective of

being robust, that is, capable of treating both standard and
non-standard forms in real texts. For this reason, the
morphological analyser has been extended in two ways:
1. The treatment of linguistic variants (dialectal variants

and competence errors) (Aduriz et al., 1994)
2. A two-level mechanism for lemmatisation without

lexicon to deal with unknown words, which has been
explained above

Important features of this design are homogeneity,
modularity and reusability because the different steps are
based on lexical transducers, far from ad hoc solutions,
and these elements can be used in different tools. This
could be considered a variant of constraint relaxation
techniques used in syntax (Stede, 1992), where the first
constraint demands standard language, the second one
combines standard and linguistic variants, and the third
step allows free lemmas in open categories. Only if the
previous steps fail, the results of the next step are included
in the output. Oflazer also uses relaxation techniques in
morphology (Oflazer, 1996).

With this design the obtained coverage is 100% and
precision over 99.5%. The ambiguity measures of the
morphological analyser, taken from a balanced corpus of
about 27,000 tokens and from a news collection of about
9,000, are shown in table 1. These measures have been
obtained using all the morphological features.

Ambiguity Rate Interpretations per

ambiguous token
Interpretations

per token
66.95% 4.38 3.26

Table 1: Ambiguity measures3

However, sometimes overgeneration is produced in

order to improve robustness. Overgeneration increases
ambiguity but often this ambiguity is not real and causes
poor results (low precision) in applications based on
morphology such as spelling correction, morphological
generation or tagging.

2 At this moment it is a not friendly off-line process
3 Ambiguity Rate: #ambiguous_token / #token; Interpretations
per token: #analyses / #token; Interpretations per ambiguous
token: #analyses_ambiguous_token / # ambiguous_token

a-z

a-z
NOUN

VERB

PERSON

PLACE

suffixes of nouns

suffixes of verbs

a-z

a-z
NOUN

VERB

PERSON

PLACE

suffixes of nouns

suffixes of verbs

http://www.zientzia.net/

 Distribution Ambiguity Rate Interpretations per
ambiguous token

Interpretations per
token

Precision

standard 77.90% 80.73% 3.81 3.27 99.73%
variant 1.75% 80.53% 4.23 3.60 92.31%
unknown 2.65% 99.79% 18.05 18.01 98.12%
average 100.00% 66.95% 4.38 3.26 99.61%

Table 2: Ambiguity measures in the output of the analyser

 tokens standard variant unknown other4
corpus1 116,720 76.66% 1.02% 3.28% 19.04%
corpus2 1,288,257 78.44% 0.94% 3.80% 16.82%
corpus3 587,515 74.98% 2.03% 2.92% 20.07%
corpus4 33,232 77.32% 1.42% 4.92% 16.34%
corpus5 148,333 77.91% 1.01% 6.23% 14.85%
corpus6 29,939 60.54% 11.50% 7.90% 20.06%

Table 3: Distribution of tokens in different types of corpora

4 This group represents punctuation marks and other symbols.

5. Decreasing ambiguity
The ambiguity for linguistic variants and unknown

words is higher and the precision measures are poorer, but
they form a small group of the input words (5%-10%) and
the influence on average results is not significant.

The morphological analyser may sometimes
overgenerate analyses of linguistic variants and unknown
lemmas (table 2). Even if most words in texts are analysed
in the first phase (see table 3), the small proportion of
non-standard words constitutes a great amount of the
superfluous interpretations. Yet, the rate of non-standard
words varies depending on the type of corpus.

For instance, corpus3 is a balanced corpus with a high
rate of standard Basque texts. On the contrary, corpus6 is
a subset of texts from corpus3 written mainly in two
dialects. Obviously, this corpus has a higher rate of non-
standard uses. Corpus1 is a compilation of texts from the
Web, and, generally, there is a trend to write these
documents following standard rules of the language.
Finally, corpus2, corpus4 and corpus5 are texts from the
Basque newspaper Euskaldunon Egunkaria, and, even if
the language variant used on them is standard, there is a
relatively high amount of unknown words.

The treatment of non-standard words has been added
to the previously developed analyser for two main
reasons:
1. The average number of interpretations in non-

standard words is significantly higher than in standard
words (see table 2).

2. There could be multiple lemmas for the same or
similar morphological analysis. This is a problem
when we want to build a lemmatiser. For example, if
bitaminiko (vitaminic) is not in the lexicon the results
of the analysis of bitaminikoaren (from the vitaminic)
as adjective can be multiple: bitamini+ko+aren,
bitaminiko+aren and bitaminikoaren, but the only
right analysis is the second one.

We think that it is important to reduce the ambiguity at
this stage, so that the input of subsequent processes is
more precise. But, we do not use information about

surrounding words because a tagger will be used later.
The process is limited to the word we want to treat, and
we only need to know, in some cases, if the previous
token was a full stop.

This module consists of different methods for
linguistic variants and unknown words, because
overgeneration is produced by different facts in each case,
as will be described below.

5.1. Disambiguation of linguistic variants
In the case of linguistic variants a heuristic tries to

select the lemma that is "nearest" to the standard one
according to the number of non-standard morphemes and
rules applied. It chooses the interpretation that has less
non-standard uses for each POS tag.

For example, analysing the word-form kaletikan
(dialectal form) two possible analyses are obtained:
kale+tik (from the street) and kala+tik (from the cove).
Both analyses have a non-standard morpheme (-tikan) but
the first analysis is more probable because it applies no
other transformation rule and to obtain the second one it
has been necessary to apply another rule at the end of the
lemma to transform kale into kala.

Thus, we must decide which of the analyses need to be
selected or discarded based on the amount of
transformation rules applied to obtain each analysis, but
the enhanced transducer does not detail this information.
The output of the enhanced transducer displays the
normalised lemma/morphemes along with their
corresponding morphological features. In the case of
non-standard morphemes linked in the lexical database to
their normalised form, the analysis details both normalised
and variant morphemes.

Thus, the procedure uses these results to select the
most probable lemmas for each POS tag. The results of
applying this procedure are shown in table 4. The error
rate of the procedure is 1.7%, so the error rate added to the
whole process is 0.03%. It does not mean a significant
drop in overall ambiguity, but it discards 40% of
superfluous analyses.

 Ambiguity Rate Interpretations per
ambiguous token

Interpretations per
token

Precision

before 80.53% 4.23 3.60 92.31%
after 75.35% 2.98 2.49 90.42%

Table 4: Ambiguity measures on linguistic variants before and after the procedure

 Ambiguity Rate Interpretations per

ambiguous token
Interpretations

per token
Precision

initial 99.79% 18.06 18.01 98.12%
typographical 99.58% 8.18 8.15 96.46%
derivational 99.58% 7.94 7.91 96.46%

proper names 85.21% 6.93 6.05 95.94%
statistical 3+2+1 83.33% 3.99 3.49 91.98%

Table 5. Ambiguity measures on unknown words using all the procedures

 Distribution Ambiguity Rate Interpretations per

ambiguous token
Interpretations per

token
Precision

standard 77.90% 80.73% 3.81 3.27 99.73%
variant 1.75% 75.35% 2.98 2.49 90.42%

unknown 2.65% 85.21% 4.06 3.61 93.02%
average 100.00% 66.46% 3.80 2.86 99.43%

Table 6. Ambiguity measures in the output of the improved analyser

However, this heuristic treats every rule equally, but

not all of them have the same probability of being applied.
We think that it could be interesting to use a probabilistic
transducer (Mohri, 1997) to improve the precision
measures of both the analyser and the disambiguation
procedure of variants.

5.2. Disambiguation of unknown words
We have tested several procedures to detect and treat

unknown words using different criteria:
1. Typographical disambiguation. Some analyses are

discarded based on capital letters.
2. Disambiguation of derivational words to

counterbalance overgeneration of the analyser. The
goal of this procedure is to discard one of several
interpretations when the morphological analyser
assigns analyses as derivational and non-derivational
word.

3. Identification and disambiguation of proper names
not included in the lexicon. Some analyses can be
disambiguated when identical lemmas are found in
the same document.

4. Disambiguation based on both statistical and
linguistic information. These statistics relates final
trigrams of characters and POS tags. is used. The
main features of the heuristic are: a) for each POS
tag, leave at least one interpretation; b) assign a
weight to each lemma according to the final trigram
and the POS tag; c) select the lemma according to its
length and weight –best combination of high weight
and short lemma.

These procedures were designed to be applied
consecutively. To decide the order in which they must be
applied, we tried different combinations.

Finally, table 5 shows the best result of applying all
the procedures in cascade.

This treatment has been designed to discard some of
the interpretations of unknown words. Even if unknown
words are only 2%-3% of the words, they constitute 15%-
20% of the analyses. After applying the procedures, they
only represent 3%-4.5% of the analyses, depending on the
combination of procedures we use, and the average
number of interpretations decreases from 18-19 down to
3,5-4,5. The overall results of treating the reference text
are shown in table 8. This has been measured using the
second level tagset both for disambiguation of linguistic
variants and for statistical disambiguation of unknown
words, thus leaving (at least) one lemma per class and
subclass.

Precision decreases in average around 0.2%, even if
the results for unknown words fall from 98% to 93%.
Finally, we want to point out that each combination of the
procedures may be used for different applications.

6. Improving precision
The main reason for these errors is the incremental

architecture of the analyser. The first step in the process,
the standard analyser, causes wrong interpretations,
primarily when very short or very rare lemmas are
involved in the analysis. However, the process stops when
the analyser finds (at least) one interpretation of the word.

A clear example of these misinterpretations is Barak.
This name, when it appears in its base form, is interpreted
as bara, a common noun of very low frequency. When it
appears inflected, i.e. Barak-ek (Barak in ergative case),
the standard analyser assigns no interpretation and the
analyser without lexicon interprets it correctly as a proper
noun.

 Distribution Ambiguity Rate Interpretations per
ambiguous token

Interpretations per
token

Precision

standard 77.88% 81.02% 3.86 3.32 99.88%
variant 1.66% 81.36% 4.40 3.76 96.51%
unknown 2.76% 99.90% 18.20 18.18 98.34%
average 100.00% 67.21% 4.46 3.32 99.80%

Table 7: Ambiguity measures in the output of the analyser

Most of the errors are avoidable enriching the user's

lexicon, but it is necessary to improve the results when
this is not done.

So we must avoid rare and improbable analyses when
a word has an initial capital letter. In order to avoid odd
analyses we have marked short or conflicting lemmas with
low probability as rare in the lexical database. Using this
information, when all the possible interpretations for a
word are marked as rare, the process follows using the
next module. If at the next step the analyser does not find
a non-rare analysis for the word, the word will be tagged
just as the standard analyser did.

In the case of low frequency lemmas, words written
with initial capital letter are also analysed by the guesser
and only proper name interpretations are added to the ones
suggested by the standard analyser.

In order to increase the precision in the analyser of
linguistic variants, we limit the number of rules applied to
obtain the interpretations. If all the interpretations have
been obtained applying a higher value of rules than the
threshold, the word will be treated using the guesser, thus,
discarding the other interpretations.

We have implemented these proposals and the results
are encouraging (see table 7). As a result, we have
avoided 50% of the errors relaxing the constraints of the
morphological analyser.

7. Conclusions
We have presented the work carried out to improve the

robustness of a morphological analyser and to adapt it to
new domains. We have made a proposal for the
architecture of a morphological analyser combining
different transducers to increase flexibility, coverage and
precision. The design we propose is quite new as far as we
know and we think that our design could be interesting for
the robust treatment of other languages.

On the other hand, we have also defined some local
disambiguation procedures, which don't take into account
the context of the word, so as to discard many of the
overgenerated analysis for non-standard words. The
results of the research are very encouraging.

8. Acknowledgements
This work has been partial supported by the Education

Department of the Government of the Basque Country
(UE1999-2) and the Spanish Science and Technology
Ministry (Hermes research project; 8/DG00141.226-
14247/200).

We would like to thank to Xerox for letting us using
their tools, and also to Ken Beesley and Lauri Karttunen
for their help.

9. References
Aduriz I., I.Alegria, J. M. Arriola, X. Artola, A. Díaz de

Ilarraza, N. Ezeiza, K. Gojenola and M. Maritxalar
1995. Different issues in the design of a
lemmatizer/tagger for Basque. From text to tag
SIGDAT, EACL Workshop.

Aizpurua I., I. Alegria, N. Ezeiza, 2000. GaIn: un
buscador Internet/Intranet avanzado para textos en
euskera. Actas del XVI Congreso de la SEPLN.

Aldezabal I., I. Alegria, O. Ansa, J. Arriola, N. Ezeiza,
1999. Designing spelling correctors for inflected
languages using lexical transducers. Proceedings of
EACL'99, 265-266. Bergen, Norway. 8-12.

Alegria I., M. Aranzabe, A. Ezeiza, N. Ezeiza, R. Urizar,
2001. Using Finite State Technology in Natural
Language Processing of Basque. 6th Conf. on
Implementation and Applications of Automata.
CIAA'2001.

Alegria I., X. Artola, K. Sarasola, M. Urkia, 1996.
Automatic morphological analysis of Basque. Literary
& Linguistic Computing Vol. 11, No. 4: 193-203.
Oxford University Press.

Antworth E.L. 1990. PC-KIMMO: A two-level processor
for morphological analysis. Occasional Publications in
Academic Computing, No. 16, Dallas, Texas.

Arrieta B., X. Arregi, I. Alegria, 2001. An Assistant Tool
For Verse-Making In Basque Based On Two-Level
Morphology. Literary and Linguistic Computing, Vol.
16, No. 1, 2001. Oxford University press.

Black A., J. van de Plassche, B. Williams, 1991. Analysis
of Unknown Words through Morphological
Descomposition. Proceedings of 5th Conference of the
EACL, pp. 101-106.

Ezeiza N., I. Aduriz, I. Alegria, J. M Arriola, R. Urizar,
1998. Combining Stochastic and Rule-Based Methods
for Disambiguation in Agglutinative Languages.
Proceedings of COLING-ACL'98.

Karttunen L., 1993. Finite-State Lexicon Compiler. Xerox
ISTL-NLTT-1993-04-02.

Karttunen L., 1994. Constructing Lexical Transducers,
Proceedings of COLING´94, pp. 406-411.

Karttunen L., 2000. Applications of Finite-State
Transducers in Natural Language Processing.
Proceedings of CIAA-2000. Lecture Notes in Computer
Science. Springer Verlag.

Karttunen L. and K. R. Beesley, 1992. Two-Level Rule
Compiler. Technical Report Xerox ISTL-NLTT-1992-
2.

Karttunen L., J.P. Chanod, G. Grenfenstette, A. Schiller,
1996. Regular Expressions for Language Engineering.
Natural Language Engineering, 2(4): 305:328.

Koskenniemi, K., 1983. Two-level Morphology: A general
Computational Model for Word-Form Recognition and
Production, University of Helsinki, Department of
General Linguistics. Publications 11.

Mohri, M., 1997. Finite-state transducers in language and
speech processing. Computational Linguistics
23(2):269-322.

Oflazer K, C. Guzey, 1994. Spelling Correction in
Agglutinative Languages. Proceedings of ANLP-94.

Oflazer K. 1996. Error-tolerant Finite State Recognition
with Applications to Morphological Analysis and
Spelling Correction. Computational Linguistics 22(1):
73-89.

Schiller A., 1996. Multilingual finite-state noun phrase
extraction. In Workshop on Extended finite state models
of language, ECAI'96, Budapest, Hungary.

Sproat R., 1992. Morphology and Computation. The MIT
Press.

Stede M., 1992. The Search of Robustness in Natural
Language Understanding. Artificial Intelligence Review
6, 383-414.

Finding the balance between generic and domain-specific knowledge: a parser
customization strategy

Myroslava O. Dzikovska, James F. Allen, Mary D. Swift

Computer Science Department
University of Rochester

Rochester, NY, USA, 14627�
myros, james, swift � @cs.rochester.edu

Abstract
Adapting spoken dialogue systems across domains presents a challenge of finding the balance between wide-coverage parsers which can
be easily ported but are slow and inaccurate, and domain-specific parsers which are fast and accurate but lack portability. We propose a
method for customizing a wide-coverage, domain-independent parser to specific domains. We maintain a domain-independent ontology
and define a set of mappings from it into a domain-specific knowledge representation. With this method, we customize the semantic
representations output by the parser for reasoning, and we specialize the lexicon for the domain, resulting in substantial improvement in
parsing speed and accuracy.

1. Introduction

Developers of spoken dialogue systems for multiple do-
mains are faced with the challenge of finding the optimal
balance between domain-independent and domain-specific
parsers. There are wide-coverage parsers (e.g. XTag (Do-
ran et al., 1994), LINGO (Copestake and Flickinger, 2000)
) that are domain-independent and therefore easy to port
to new domains, but they are often not efficient or accu-
rate enough. The typical approach is to hand-craft parsers
specifically for each domain (see for example (Goddeau
et al., 1994)), but the performance gains in accuracy and
efficiency are offset by their lack of portability, requir-
ing additional effort to adapt them to new domains. We
propose an alternative approach to address this challenge
with a method for customizing a wide-coverage, domain-
independent parser developed for spoken dialogue appli-
cations to specific domains. We maintain two ontologies:
domain-independent for the parser, and domain-specific for
the knowledge representation, and define a set of mappings
between domain-specific knowledge sources and the se-
mantic representations output by the parser. This method
improves upon the generic parser output by specifically tai-
loring the semantic representations output by the parser for
use by the reasoning components in the system. We also
use the mappings to specialize the lexicon to the domain,
resulting in substantial improvement in parsing speed and
accuracy.

The customization method described here was devel-
oped in the process of adapting the TRIPS dialogue system
(Allen et al., 2001) to several different domains, such as
a transportation routing system (Allen et al., 1996) and a
medication scheduling adviser. We assume a generic dia-
logue system architecture (Allen et al., 2000) that includes
a speech module, a parser, an interpretation manager (re-
sponsible for contextual processing and dialogue manage-
ment), and a back-end application responsible for the gen-
eral problem-solving behavior of the system.

Adapting the spoken dialogue system across domains
results in tension between the representation of generic vs.
specific information in the ontology. To facilitate develop-

ment when porting the parser to new domains, we want to
retain the syntactic and semantic information that is con-
sistent across domains. However, each domain comes with
its own semantic information relevant to the application.
For example, the representation of physical objects for the
transportation domain requires specifying whether an ob-
ject is suitable cargo for a transportation action, such as
different types of food or supplies. In this respect, the dis-
tinctions between, say, oranges and potatoes are irrelevant,
since they are equally good as cargo. These distinctions be-
come highly relevant in the medical domain, where food-
medicine interactions are important. Ideally, we want to
customize the ontology to the domain for the most efficient
reasoning. This becomes ever more important when us-
ing specialized reasoners with pre-defined input representa-
tions, for example, a database query system that must have
specific template slots filled. Thus our goal is to preserve
the language information that is similar across domains,
while addressing specialization issues unique to each do-
main as much as possible, and keeping the development
time spent on custom domain adaptation to a minimum.

To reuse the syntactic information, the AUTOSEM
system(Rosé, 2000) uses a syntactic lexicon COM-
LEX(Macleod et al., 1994) as a source of syntactic infor-
mation, and manually links subcategorization frames in the
lexicon to the domain-specific knowledge representation.
The linking is performed directly from syntactic arguments
(e.g. subject, object ...) to the slots in a frame-like domain
representation output by the parser and used by the reason-
ers. Rosé shows that her approach speeds up the develop-
ment process for developing tutoring systems in multiple
domains.

Our approach introduces an intermediate layer of ab-
straction, a generic ontology for the parser (the LF On-
tology) that is linked to the lexicon and preserved across
domains. The parser uses this ontology to supply mean-
ing representations of the input speech to the interpreta-
tion manager, which handles contextual processing and di-
alogue management and interfaces with the back-end ap-
plication. The domain-specific ontology used for reason-

ing (the KR ontology) is localized in the back-end appli-
cation. We then customize the communication between the
parser/interpretation manager and the back-end application
via a set of mappings between the LF and KR ontologies.
At the same time, the domain-independent ontology pre-
serves semantic information consistent across domains that
can be used by the Interpretation Manager for reasoning or
reference resolution.

This separation allows us to write mappings in seman-
tic terms without addressing the details of the grammar and
subcategorization frames, using a higher level of abstrac-
tion. The developers writing the mappings does not need
to understand details pertaining to syntax such as those in-
cluded in COMLEX subcategorization frames, and can in-
stead use descriptive labels assigned to generic semantic
arguments (e.g. AGENT, THEME etc.). They can also
take advantage of the hierarchical structure in the domain-
independent ontology and write mappings that cover large
classes of words. Finally, the mappings are used to convert
the generic representation into the particular form utilized
by the back-end application, either a frame-like structure or
a predicate logic representation.

2. The Generic Lexicon
The LF ontology is close in structure to linguistic form,

so it can be easily mapped to natural language and used in
multiple domains. It classifies entities (i.e., objects, events
or properties) primarily in terms of argument structure.
Every LF type declares a set of linguistically motivated
thematic arguments, a structure inspired by FRAMENET
(Johnson and Fillmore, 2000), but which covers a number
of areas where FRAMENET is incomplete, such as plan-
ning. We use the LF ontology in conjunction with a generic
grammar covering a wide range of syntactic structures and
requiring minimal changes between domains. For example,
adapting the parser from the transportation to the medical
domain required adding LF types for medical terms (our
generic hierarchy was incomplete in this area) and corre-
sponding vocabulary entries, but we did not need to change
the grammar or existing lexical entries, and we continue to
use the same lexicon in both domains.

The LF types in the LF ontology are organized in a
single-inheritance hierarchy. Obviously, some sort of mul-
tiple inheritance is required, because, for example, a per-
son is a living being, but also a solid physical object (as
opposed to a formless substance such as water). We im-
plement multiple inheritance via semantic feature vectors
associated with each LF type. The features correspond
to basic meaning components and are based on the Eu-
roWordNet (Vossen, 1997) feature system with some addi-
tional features we have found useful across domains. While
the same distinctions can be represented in a multiple in-
heritance hierarchy, a feature-based representation makes
it easy to implement an efficient type-matching algorithm
based on (Miller and Schubert, 1988). More importantly,
using feature vectors allows us to easily change semantic
information associated with a lexical entry, a property uti-
lized during the customization process described below.

Word senses are treated as leaves of the semantic hier-
archy. For every word sense in the lexicon, we specify the

following information:

� Syntactic features such as agreement, morphology,
etc.;

� LF type;

� The subcategorization frame and syntax-semantics
mappings.

To illustrate, consider the verb load in the sense to
fill the container. The LF type definition for LF LOAD
is shown in Figure 1. It specifies generic type restric-
tions on the arguments which are then propagated in the
lexical entries. Intuitively, it defines a loading event in
which an intentional being (AGENT) loads a movable ob-
ject (THEME) into another physical object that can serve as
a container (TO-LOC). The lexicon entry for load is linked
to LF Load and contains two possible mappings from the
syntax to the LF: one in which the THEME is realized
as direct object, corresponding to load the oranges into
the truck, and another in which the THEME is realized as
prepositional complement, corresponding to load the truck
with oranges. The restrictions from the THEME argument
are propagated into the lexicon, and the parser makes use
of them as follows: only objects marked as (mobility mov-
able) are accepted as a direct object or prepositional with
complement of load.

(define-type LF_LOAD
:sem (situation (aspect dynamic)

(cause agentive))
:arguments
(AGENT (phys-obj (intentional +)))
(THEME (phys-obj (mobility movable)))
(TO-LOC (phys-obj (container +)))

)

Figure 1: The LF type definition for LF LOAD. In the lexi-
con, feature vectors from LF arguments are used to generate
selectional restrictions based on mappings between subcat-
egorization frames and LF arguments

The parser produces a flattened and unscoped logical
form using reified events (Davidson, 1967). A simplified
representation showing the semantic content of Load the
oranges into the truck is shown in Figure 2. 1 For every
entity, the full type is written as LF-parent*LF-form, where
the LF-parent is the type defined in the LF ontology, and the
LF-form is the canonical form associated with the word, for
example, LF VEHICLE*truck.

3. The KR customization
To produce domain-specific KR representations from

the generic LF representations, we developed a method to
customize parser output. The current system supports two
knowledge representation formalisms often used by rea-
soners: a frame-like formalism where types have named

1For simplicity, we ignore speech act information in our rep-
resentations

(TYPE e LF LOAD*load)
(AGENT e *YOU*) (THEME e v1) (TO-LOC e v2)
(TYPE v1 LF FOOD*orange)
(TYPE v2 LF VEHICLE*truck)

Figure 2: The LF representation of the sentence load the
oranges into the truck.

(a)
(LF-to-frame-transform load-transform

:pattern (LF_LOAD LOAD)
:arguments (AGENT :ACTOR)

(THEME :CARGO)
(TO-LOC :VEHICLE))

(b) (define-class LOAD
:isa ACTION
:slots
(:ACTOR AGENT)
(:CARGO COMMODITY)
(:VEHICLE (OR TRUCK HELICOPTER)))

(c) [LOAD
:ACTOR [PERSON +YOU+]
:CARGO [ORANGE V1]
:VEHICLE [TRUCK V2]]

Figure 3: LF-to-frame-transform. (a) The transform for
LF LOAD type; (b) the definition of LOAD class that the
transform maps into; (c) The KR frame that results from
applying this transform to the load event representation in
Figure 2.

slots, and a representation that has predicates with posi-
tional arguments. The KR ontology must have subtype sup-
port, and for the lexicon specialization process described
in the next section, type restrictions on the arguments of
frames/predicates, though it need not be so in the most gen-
eral case.

We use two basic transform types to map generic repre-
sentations produced by the parser into the KR representa-
tion: LF-to-frame-transforms, shown in Figure 3, and LF-
to-predicate-transforms, shown in Figure 4.

The LF-to-frame transforms convert LF types into KR
frame structures by specifying the KR frame that the LF
type maps into, and how the arguments are transformed into
the frame slots. These transforms can be simple and name
the slot into which the value is placed, or more elaborate
and specify the operator expression that is applied to the
value. The LF-to-predicate transforms are used to convert
the frame-like LF structures into predicates with positional
arguments. They specify a KR predicate that an LF type
maps into and the expression that is formed.

After the parser produces the logical form, the Interpre-
tation Manager decides which transform to apply to a given
LF with the following algorithm:

� Find all transforms that are consistent with the LF or
its ancestors;

(a)
(LF-to-pred-transform load-transform
:pattern (LF_LOAD

(LOAD *AGENT *THEME *TO-LOC)
))

(b) (define-predicate LOAD
:isa ACTION
:arguments
(1:AGENT 2:COMMODITY
3:(OR TRUCK HELICOPTER)))

(c) (AND (LOAD +YOU+ V1 V2)
(COMMODITY V1) (TRUCK V2))

Figure 4: LF-to-predicate-transform. (a) The transform for
LF LOAD type; (b) the definition of LOAD predicate that
the transform maps into; (c) The KR formula that results
from applying this transform to the load event representa-
tion in Figure 2.

� Select the most specific transform that applies, that
is, the transform that uses only the roles realized in
this particular LF representation, that has all obliga-
tory mappings filled, and for which the types of the
LF arguments are consistent with the type restrictions
on the class arguments;

� If there are several candidates, choose the transform
that uses the most specific LF, and, if there are several
for the same LF, the transform that maps into the most
specific KR class;

� Apply the transform to the LF type and all its argu-
ments to produce the new representation.

For example, the parser produces the logical form in
Figure 2 for load the oranges into the truck. The Interpre-
tation Manager determines that the most specific transform
consistent with the arguments is the load-transform.
If the back-end reasoners use the frame representation, then
we use an LF-to-frame transform and obtain the frame
shown in Figure 3. Alternatively, a system using predi-
cates with positional arguments as its representation uses
an LF-to-predicate transform and obtains the (simplified)
representation shown in Figure 4.

Our examples show the simplest versions of the trans-
forms for exposition purposes. The actual implementa-
tion permits a variety of constructs that we cannot illustrate
due to space limitations, including the application of op-
erators to arguments, default transforms that apply to LF
arguments if no mapping is specified in LF-to-frame trans-
form, and the use of the lexical forms in transforms when
the KR uses similar terms. For example, from the point of
view of the language ontology, medication names have sim-
ilar distributions across syntactic contexts, and therefore
are represented as leaves under the LF DRUG type, e.g.
LF DRUG*prozac, LF DRUG*aspirin. The KR ontology
makes pragmatic distinctions between them (e.g. prescrip-
tion vs. over-the-counter medicines), but uses the names as

leaf types in the hierarchy. We can write a single template
mapping for all LF DRUG children that does the conver-
sion based on the lexical form specified in the entry. This
allows us to convert the generic representation produced by
the parser to a representation that uses the concepts and for-
malism suited to the domain.

4. Specializing the lexicon
The KR customization described above can be imple-

mented as a two-stage process with a generic grammar and
lexicon and a post-processing stage. We also use the map-
pings to speed up the parsing and improve semantic disam-
biguation accuracy by integrating the domain-specific se-
mantic information into the lexicon and grammar.

We pre-process every entry in the lexicon by determin-
ing all possible transforms that apply to its LF. For each
transform, we create a new sense definition identical to the
old generic definition plus a new feature KR-TYPE in the
semantic vector. The value of KR-type is the KR ontol-
ogy class that results from applying this transform to the
entry. Thus, we obtain a (possibly larger) set of entries
which specify the KR class to which they belong. We then
propagate type information into the syntactic arguments,
making tighter selectional restrictions in the lexicon. We
also increase the preference values for the senses for which
mappings were found. This allows us to control the parser
search space better and obtain greater parsing speed and ac-
curacy.

Consider the following example. Given the definition of
the verb load and LF Load in Figure 1, and the definitions
in Figure 3, the algorithm proceeds as follows:

� As part of generating the lexical entry for the verb
load, the system fetches the definition of LF load and
the semantic vectors for it and its arguments;

� Next, the system determines the applicable LF-to-
frame-transform, load-transform;

� Based on the transform, KR-type load is added to the
feature vector of load;

� Since the mapping specifies that the LF argument
THEME maps to KR slot CARGO, and the class def-
inition contains the restriction that cargo should be of
class COMMODITY, KR-type commodity is added to
the feature vector of the THEME argument. Similar
transforms are applied to the rest of the arguments.

As a result, in the lexicon we obtain a new definition of
load with 2 entries corresponding to the same two usages
described in section 2., but with stricter selectional restric-
tions. Now suitable objects or prepositional complements
of load must be not only movable, but also identified as be-
longing to class COMMODITY in our domain. Since sim-
ilar transforms were applied to nouns, oranges, people and
other cargoes will have a KR-type value that is a subtype of
COMMODITY inserted in their semantic feature vectors.

As a result of the specialization process, the number of
distinct lexical entries will increase because there is not a

one-to-one correspondence between the LF and KR ontolo-
gies, and several transforms may apply to the same LF de-
pending on the syntactic arguments that are filled. A new
entry is created for every possible transform, but during
parsing the selectional restrictions propagated into the en-
tries will effectively select the correct definitions. The In-
terpretation Manager thus knows the correct KR types as-
signed to all entities in the logical form output by the parser
and the corresponding transforms, and only needs to apply
them to convert the LF expression into the form used by the
back-end reasoners.

Generic Transportation Medical
of senses 1947 2028 1954
of KR classes - 228 182
of mappings - 113 95

Table 1: Some lexicon statistics in our system

Transportation Medical
of sentences 200 34
Time specialized (sec) 4.35 (870) 2.5 (84)
Time generic (sec) 9.7(1944) 4.3 (146)
Errors specialized 24%(47) 24% (8)
Errors generic 32% (65) 47% (16)

Table 2: Average time per lattice and the sentence error rate
for the grammar specialized by our method compared to our
generic grammar. Numbers in parentheses denote the total
time and error count for the test set.

Lexicon specialization considerably speeds up the pars-
ing process. We conducted an evaluation comparing pars-
ing speed and accuracy on two sets of 50-best speech lat-
tices produced by our speech recognizer: 34 sentences in
the medical domain and 200 sentences in the transporta-
tion domain. Table 1 describes the ontologies used in these
domains. The results presented in Table 2 show that lexi-
con specialization considerably increases parsing speed and
improves disambiguation accuracy. The times represent the
average parsing time per lattice, and the errors are the num-
ber of cases in which the parser selected the incorrect word
sequence out of the alternatives in the lattice 2.

At the same time, the amount of work involved in do-
main customization is relatively small. The generic lexi-
con and grammar stay essentially the same across domains,
and a KR ontology must be defined for the use of back-
end reasoners anyway. We need to write the transforms to
connect the LF and KR ontologies, but as their number is
small compared to the total number of sense entries in the
lexicon and the number of words needed in every domain,

2We considered correct the choices where a different pronoun,
an article or a tense form were substituted. For example can I tell
my doctor and could I tell my doctor were considered equivalent
for purposes of this evaluation. However, we counted as errors the
equally grammatical substitutions that selected a different word
sense, e.g. drive the people vs. get the people

this represents an improvement over hand-crafting custom
lexicons for every domain.

5. Conclusion
The customization method presented here allows the

use of a lexicon and grammar with generic syntactic and se-
mantic representations for improved domain coverage and
portability, while facilitating the specialization of the lex-
icon and the representation produced by the parser to the
needs of a particular domain. With this method we can pro-
duce specialized grammars for more efficient and accurate
parsing, and allow the parser, in cooperation with Interpre-
tation Manager, to produce semantic representations opti-
mally suited for specific reasoners within the domain.

6. Acknowledgments
We would like to thank Carolyn Rosé for her feedback

on this article.
This material is based upon work supported by the Of-

fice of Naval Research under grant number N00014-01-1-
1015 and the Defense Advanced Research Projects Agency
under grant number F30602-98-2-0133. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of ONR or DARPA.

7. References
J. F. Allen, B. W. Miller, E. K. Ringger, and T. Sikorski.

1996. A robust system for natural spoken dialogue. In
Proceedings of the 1996 Annual Meeting of the Associa-
tion for Computational Linguistics (ACL’96).

Allen, Byron, Dzikovska, Ferguson, Galescu, and Stent.
2000. An architecture for a generic dialogue shell.
NLENG: Natural Language Engineering, Cambridge
University Press, 6.

J. Allen, D. Byron, M. Dzikovska, G. Ferguson, L. Galescu,
and A. Stent. 2001. Towards conversational human-
computer interaction. AI Magazine.

Ann Copestake and Dan Flickinger. 2000. An open source
grammar development environment and broad-coverage
English grammar using HPSG. In Proceedings of the
2nd International Conference on Language Resources
and Evaluation, Athens, Greece.

Donald Davidson. 1967. The logical form of action sen-
tences. In Nicholas Rescher, editor, The Logic of Deci-
sion and Action, pages 81–95. University of Pittsburgh
Press, Pittsburgh. Republished in Donald Davidson, Es-
says on Actions and Events, Oxford University Press,
Oxford, 1980.

Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas,
and Martin Zaidel. 1994. XTAG system – a wide cover-
age grammar for English. In Proceedings of the 15th.
International Conference on Computational Linguistics
(COLING 94), volume II, pages 922–928, Kyoto, Japan.

D. Goddeau, E. Brill, J. Glass, C. Pao, M. Phillips,
J. Polifroni, S. Seneff, and V. Zue. 1994.
Galaxy: A human-language interface to on-line
travel information. In Proc. ICSLP ’94, pages
707–710, Yokohama, Japan, September. URL
http://www.sls.lcs.mit.edu/ps/SLSps/icslp94/galaxy.ps.

Christopher Johnson and Charles J Fillmore. 2000. The
framenet tagset for frame-semantic and syntactic coding
of predicate-argument structure. In Proceedings ANLP-
NAACL 2000, Seattle, WA.

C. Macleod, R. Grishman, and A. Meyers. 1994. Creat-
ing a common syntactic dictionary of English. In SNLR:
International Workshop on Sharable Natural Language
Resources, Nara, August.

Stephanie A. Miller and Lenhart K. Schubert. 1988. Using
specialists to accelerate general reasoning. In Tom M.
Smith, Reid G.; Mitchell, editor, Proceedings of the
7th National Conference on Artificial Intelligence, pages
161–165, St. Paul, MN, August. Morgan Kaufmann.

Carolyn Rosé. 2000. A framework for robust semantic in-
terpretation. In Proceedings 1st Meeting of the North
American Chapter of the Association for Computational
Linguistics.

P. Vossen. 1997. Eurowordnet: a multilingual database for
information retrieval. In Proceedings of the Delos work-
shop on Cross-language Information Retrieval, March.

Data-driven application configuration

David M. de Matos and Nuno J. Mamede

L
�
F/INESC-ID/IST - Spoken Language Systems Laboratory

Rua Alves Redol 9, 1000-029 Lisboa, Portugal
david.matos@inesc-id.pt, nuno.mamede@inesc-id.pt

Abstract
Constructing modular applications from existing parts is difficult if there are mismatches due to input or output semantic differences
during module interconnection. In order to minimize the effort of building such applications, and also as a guideline for designing
modular applications from scratch, we propose an architecture in which modules are able to interface with each other without having to
be reprogrammed. The architecture can be completely described using a small number of concepts. These factors allow rapid application
building and reconfiguration with minimal manual intervention, potentiating module reuse and reducing the effort invested in building
new applications.

1. Introduction
When building modular applications, it is possible to

use parts that have been constructed by third parties, that
solve part of the global problem. While this way of work
is desirable because it promotes reuse, reducing the global
development effort, it is all but straightforward: in fact, in-
tegrating foreign modules is almost never a simple task.
The integration effort may become so expensive that it may
seem better to build everything from scratch.

Managing these architectures is, thus, a challenging task
and their complexity can be a serious hurdle when trying to
bring together different components. Although not limited
to the group, this problem also occurs when building natu-
ral language processing (NLP) applications and on various
levels: from file-format handling or network-level commu-
nication to interaction between modules in a large applica-
tion.

Here, we are concerned primarily with the latter aspect,
even though the discussion could be applied to other levels,
e.g. communication issues in a distributed application. We
consider such lower-level aspects transport issues, though,
that may be dealt with separately. Thus, CORBA (OMG,
nda) and similar architectures are not an issue, since what
we are concerned with is the way modules within an appli-
cation exchange data and how to describe the way they do
it.

We have two goals: to define a uniform way for modules
to produce/consume data; and to define a uniform module
interoperability model. We intend for these aspects to be
realized complementarily: the latter will be a consequence
of the former. In aiming at reaching these goals we are also
promoting reuse and easy construction/configuration, since
we provide a way for describing module interfaces for use
with existing resources.

This document is organized as follows: the data model
is defined in section 2.; a working example is presented in
section 3.; and, finally, some concluding remarks and direc-
tions for evolution are presented.

2. Model
This section presents the architectural model. The first

part presents structural aspects; the second part details the

data model; the third part deals with semantics; and the
fourth part details the implied application specification.

2.1. Structural aspects

We consider modular applications in which the modules
exchange data through connections between their ports.
These objects as well as their properties and relationships
are presented here.

Definition 1 (portsets) Let
�

be the set of all modules in
an application. For a module � , the following portsets are
defined: ��� (all output ports); ��� (all input ports); and� �	�
�������� (all ports). In addition, ������������� .
We use ���� to denote the � -th port of � (� ranges over the
corresponding portset).

The definition for connection, while still a structural as-
pect, is better presented below (see def. 6).

2.2. Data model

Definition 2 (unrestricted grammar) Unrestricted gram-
mars (Lewis and Papadimitriou, 1981, def. 5.2.1.) are
quadruples ������� �"!#�%$&�(') , where � is an alphabet; !
is the set of terminal symbols (!+*,�); ���.-/!�) is the
set of nonterminal symbols; ' is the start symbol; and $
is the set of rules (finite subset of ���102���3-4!�)5�&06)�7��&0).
Direct derivation (eq. 1), derivation (eq. 2), and generated
language (eq. 3) are defined as follows:

8�9
G : iff ;#<��5; �>= � 0 �6� 8@? � :

?) = $&�
8 �
;#< 8@? ; �BA : �C;#< :

? ; �
(1)

;�D 9
G
;#< 9

G EFEFE
9

G
;HGJIK;�D 09

G
;HG (2)

L �M�N)B�/O6;�P(; = ! 0 A ' 09
G
;RQ (3)

! is the union of three disjoint sets (eq. 4): !TS , the keyword
set – the vocabulary for data description; !TU , used for writ-
ing data items; and ! � , used for writing intrinsic syntactic
elements.

!V�/!�S��W!�UB�W! � (4)

Definition 3 (data grammar; type grammar) Consider
port � and two grammars (as in def. 2): X�Y� �@) – for

writing data (the down-turned mark refers to data grammar
entities); and ��Y� �@) – for writing datatypes (the upturned
mark refers to datatype grammar entities).

These grammars must share the keyword set (denoted
by
� � �@) (eq. 5)) and must be such that entities belonging

to
L ����Y� �@)5) describe the datatypes of the entities belonging

to
L �1X�Y� �@)5) . Each of the former entities works as a third

grammar restricting X�Y� �@) : it is used to validate data written
according to the lowermost-level grammar.

X!�S � �@)B���!�S � �@)B� � � �@) (5)

Definition 4 (data; datatype; correctness; validity)
Consider port � : ����� � �@) = L � X�Y� �@)5) denotes the data at
� . We define port datatype, �	� �1� �@) = L �
��Y� �@)5) , as a data
type specification according to

L �FX�Y� �@)5) and
L ����Y� �@)5)

(the third-level entities mentioned before). The following
relation exists between a datastream and its associated
datatype:

�	� �1� �@)������� � �@) (6)

Data is correct if it belongs to the language generated by
the associated grammar: ����� � �@) = L �1X�Y� �@)5) , by definition;
but it may happen that ����� ���2)��= L � X�Y� �@)5) (for some other
port �) – in this case, ����� ���2) would be incorrect according
to X�Y� �@) .

Data is valid if �	� �1� �@)�������� � �@) , i.e., the data stream
follows the datatype definition (besides respecting the un-
derlying grammar’s rules).

The complete discussion of �	� �1� �@) would only be com-
plete taking into account the semantics of

L ����N) , but that is
out of the scope of this document.

Taking into account the definitions in this section, we
now give an example. Consider port � and a data represen-
tation containing the following XML (W3C, 2001a) frag-
ment:

����� � �@)B�
[...]

<class name="nc">dog</class>

[...]

Then the terminal symbol sets would be (at least):

X! � � �@) �3O < � > � = � / � " Q
X!�S � �@) � � � �@)B�/O class � name Q
X!�U � �@)B�/O6;�P(;��= X! � � �@) � � � �@)(Q

Consider a datatype description, for the data represen-
tation above, of which the following XML Document Type
Definition (DTD) fragment is a part:

�	� �1� �@) �
[...]

<!ELEMENT class (#PCDATA)>

<!ATTLIST class name CDATA #REQUIRED>

[...]

Then the terminal symbol sets would be (at least):

�! � � �@) �3O < � > � ! � # � ELEMENT � PCDATA �
ATTLIST � CDATA � REQUIRED Q

�!�S � �@) � � � �@) �3O class � name Q
�!�U � �@) �3O6;�P(;��= �! � � �@) � � � �@)(Q

Thus verifying the grammar pair selection conditions
(def. 3 and eq. 5).

2.3. Semantic aspects

This section deals with semantic aspects and restrictions
that have to be observed when handling connections.

Each module has sole control over its internal seman-
tics, in particular, in what concerns data semantics (defined
by the receiver).

Definition 5 (semantics) Consider port � and some inter-
pretation function � (defined by the module’s inner se-
mantics): ���6� � �@) denotes the semantics required at � for
normal processing behavior; ���6� ������� � �@)5) represents the
data stream’s semantics at � : computed by � (eq. 7). The
data stream’s semantics must subsume the port’s semantics
(eq. 8).

���6� ������� � �@)5)B����������� � �@)5) (7)

���6� � �@)������6� ������� � �@)5) (8)

Although we have no way of knowing how a module
will interpret a piece of data, we can still write the follow-
ing relations if we consider � , the function denoting its ar-
gument’s domain, and � the usual identity operator:

� �	� �1� �@)������� � �@)! �I� ���"�	� �1� �@)5)#���H����������� � �@)%)5)$ (9)

and thus (from 7, 9, and � ’s definition):

���6� ������� � �@)5) = ���"�	� �1� �@)5) (10)

Definition 6 (connection) Consider modules � and % and
ports � �� = � � and � G& = � G . Let predicate '
()% � � �� �*� G&) be
true if a connection exists between the pair. In the seman-
tics domain, the output port’s semantics must subsume the
input’s, i.e., condition 11 must be met.

���6� ��� G&)������6� � � ��) (11)

Definition 7 (semantics mapping function) When estab-
lishing a connection between two ports, � �� and � G& , if
�	� �1� � ��)+����	� �1��� G&) , we need a semantics mapping func-
tion, , �+- G� - & , for translating semantics across the connection
(eq. 12, but also eq. 13). Furthermore, for the ports to be
connectable, the receiving port’s semantics must be sub-
sumed by a transformation of the semantics of the previous
module’s output (cond. 14).

, �+- G� - &/. �	� �1� � ��)102�	� �1��� G&) (12)

, �+- G� - &/. L � X�Y� � ��)5)10 L � X�Y��� G&)5) (13)

���6� ������� ��� G&)5)������6� �", �+- G� - & ������� � � ��)5)5) (14)

It is impossible, however, to guarantee a correct trans-
lation in the semantics domain, since, ultimately, input se-
mantics is defined by the data consumer: we approach se-
mantics conversion through datatype-directed data conver-
sion. Since this conversion uses outside information about
the ontologies of both sender and receiver, , �+- G� - & cannot be
automatically generated solely from the information avail-
able at each end. Nevertheless, , �+- G� - & can be defined exten-
sionally for each �	� �1� �@��) .

We assume that it is always the receiver’s responsibility
to convert the data, since the data producer may be unable
to determine how its results will be used. In the current
discussion, we will also assume that condition 14 always
holds, either because , �+- G� - & can satisfy it or, if that is not the
case, because missing data parts can be supplemented by
defaults when computing ���6� ��� G&) .
2.4. Specifying the application

The model above gives rise to a data-oriented module
interconnection architecture in which modules send/receive
information to/from each other through typed channels that
are uniquely defined by the datatypes at each end-point and
by the corresponding translation function.

Since the architecture is not concerned with the mod-
ules’ inner semantics, all that is needed to describe it com-
pletely are the collections of port datatypes and translation
functions associated with connected ports. These collec-
tions are represented, respectively, by � , the datatype ma-
trix, and by � , the translation matrix.

The datatype matrix is defined for all modules and their
ports. Entries that do not correspond to actual ports are
empty.

�
������� �

�	
 �	� �1� � ���<) EFEFE �	� �1� � ��<)
...

...
�	� �1� � ����) EFEFE �	� �1� � ���)

� �� (15)� ��� � � �C� ���
����� ��� � �)�

����� � <������ � � � �� �= � � 9 �	� �1� � ��)B���
(16)

The translation matrix is defined for all connected ports:
one function for each connection. In all other cases, � is
undefined.��� � , �+- G� - & '
()% � � �� �*� G&) (see def. 6)

undefined otherwise
(17)

3. A small example
This example simplifies the model in important ways:

all data flowing between ports is represented in XML and
all datatypes can be specified either using DTDs or XML
Schemas (XSD) (W3C, 2001d). Thus, in principle, all mis-
matches are due to variations in the XML data type defini-
tions.�

����� �"! - #��%$'& ��X� � �@)#� X�Y���2)"���� � �@)#� ��Y���2) (18)

unless (only keywords are different)�
����� �"! - #��%$'& � �	� �1� �@)+�� �	� �1���2) 9 � � �@)+�� � ���2) (19)

In our example, all datatypes have been described using
DTDs and all necessary , �+- G� - & functions have been specified
by Extensible Style Sheet (XSL) (W3C, 2001b) templates.
By specifying all DTDs and XSL templates, the application
becomes completely defined from the point of view of its
data exchange paths.

The rest of this section will particularize further each of
these aspects.

3.1. The application

The example application performs syntactic analysis of
natural language sentences (fig. 1).

Figure 1: The example application.

The application consists of three modules:
Smorph (Aı̈t-Mokhtar, 1998) (morphological ana-
lyzer); PAsMo (Paulo, 2001) (rule-based rewriter); and
SuSAna (Hagège, 2000; Batista, nd) (syntactic analyzer).

We consider only ports dealing with the data stream to
be processed, thus ignoring those used for reading static
data (such as dictionaries). Furthermore, in the follow-
ing we will focus on the connection between Smorph and
PAsMo, since the other relevant connection (that between
PAsMo and SuSAna) is analogous.

3.2. The application ports

The relevant ports are Smorph’s output (�) and PAsMo’s
input (�). To describe the data flowing through them, we
need to specify just �	� �1� �) and �	� �1� �@) (eq. 15 and figures 2
and 3). Smorph’s output will be translated before being

<?xml version="1.0" encoding="iso-8859-15"?>
<!ELEMENT pasmo-in (word)*>
<!ELEMENT word (class)*>
<!ATTLIST word text CDATA #REQUIRED>
<!ELEMENT class (flag)*>
<!ATTLIST class root CDATA #REQUIRED>
<!ELEMENT flag EMPTY>
<!ATTLIST flag name NMTOKEN #REQUIRED>
<!ATTLIST flag value CDATA #REQUIRED>

Figure 2: DTD for PAsMo’s input port, corresponding to
�	� �1� �@) .

used by PAsMo. Note that Smorph’s is a more expressive
description (thus obeying condition 11), and that some in-
formation will be lost in the conversion (not a problem as
long as condition 14 remains true).

<?xml version=’1.0’ encoding=’iso-8859-1’ ?>
<!ELEMENT smorph (item)*>
<!ELEMENT item (root)*>
<!ATTLIST item value CDATA #REQUIRED>
<!ELEMENT root (class)*>
<!ATTLIST root value CDATA #REQUIRED>
<!ELEMENT class (flags,flags)>
<!ATTLIST class type (0|mi) "0">
<!ELEMENT flags (flag)*>
<!ATTLIST flags level (1|2) #REQUIRED>
<!ELEMENT flag EMPTY>
<!ATTLIST flag name NMTOKEN #REQUIRED>
<!ATTLIST flag value CDATA #REQUIRED>

Figure 3: DTD for Smorph’s output port, corresponding to
�	� �1� �) .

3.3. The translation step

The only relevant transformation, ,��*-
!
, is the one map-

ping Smorph’s output to PAsMo’s input. It is implemented
as a XSL transformation step and is completely specified
by the set of XSL templates (figure 4) that map between
data described according to Smorph’s DTD and PAsMo’s.

4. Related work
This work is related with several fields. The first

is the field of data modeling, especially in what con-
cerns very high-level modeling, such as the one done
using UML (OMG, ndb). Specifications done in UML
can be described using the XML Metadata Interchange
(XMI) (OMG, 2002) specification that can then be used to
specify the XSDs for the data being sent/received on a mod-
ule’s ports. This is useful because it allows us to describe
graphically each module and its interconnections and, by
extension, an entire application.

Since we plan on evolving in the direction of ser-
vice specification(see sec. 5.), we have considered work
in this area. One such is IBM’s Web Services Flow Lan-
guage (Leymann, 2001) which can be used for specifying

<?xml version=’1.0’ encoding=’iso-8859-1’ ?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml"
encoding="iso-8859-15"
doctype-system="pasmo-in.dtd"/>

<xsl:template match="/smorph">
<pasmo-in>

<xsl:apply-templates/>
</pasmo-in>

</xsl:template>
<xsl:template match="item">

<word text="{@value}">
<xsl:apply-templates/>

</word>
</xsl:template>
<xsl:template match="root">

<class root="{@value}">
<xsl:apply-templates
select="class/flags/flag"/>

</class>
</xsl:template>
<xsl:template match="flag">

<flag name="{@name}" value="{@value}"/>
</xsl:template>
</xsl:stylesheet>

Figure 4: The translation specification in XSL, correspond-
ing to ,��*-

!
.

multiple aspects of web services. This language is also lay-
ered on top of others: Web Services Description Language
(WSDL) (W3C, 2001c) and Web Services Endpoint Lan-
guage (WSEL) (Leymann, 2001). Although this structure
closely parallels what we intend in our work, it has a differ-
ent focus and does not invalidate our proposal.

The third area is that of communication systems, which
typically define module interconnection architectures. An
example is CORBA. Another, of particular interest for NLP,
is the Galaxy Communicator (MIT, 2001; DAR, nd). This
architecture is a distributed, message-based, hub-and-spoke
infrastructure optimized for constructing spoken dialogue
systems. It uses a plug-and-play approach that enables the
combination of commercial and research components. It
supports the creation of speech-enabled interfaces that scale
gracefully across modalities. In this context, our proposal
enables easy specification of Galaxy applications. At a dif-
ferent level, our specifications can be gracefully translated
into hub scripts and server interface definitions.

In the context of reference architectures, such as the
ones proposed by the TIPSTER (TIP, nd) or RAGS (ITRI,
nd) projects, our model may prove useful in facilitating in-
tegration of external modules into the frameworks defined
by those architectures. Note that, unlike most software in-
frastructures for Language Enginnering research and de-
velopment, e.g. GATE (Cunningham et al., 1996), our
model does not say anything about any module’s function
or impose any restrictions on their interfaces and is, thus,
application- and domain-independent. This is so because
the model is exclusively concerned with the data streams
flowing between modules and the relations between their
semantics at each end and not with the way each stream
is used, i.e., the model is not directly concerned with
application-related issues. In this sense, the model could be
used to describe a kind of “smart glue” for use with other

architectures, e.g. in integration efforts of existing modules
into GATE’s CREOLE sets, or in datatype management.

Other application-development or intercommunication
infrastructures may benefit from using a high-level specifi-
cation such as the one we propose here.

5. Conclusions and future directions
Our approach is useful for application development,

since it focuses exclusively on the inputs and outputs of
each module, without regard for module internals. This
contributes to significant dependency reductions, for the
modules can be almost anything and run almost anywhere,
as long as a communications channel (according to our re-
strictions) can be established between them.

We envision various directions for future work.
The first is to provide higher-level service specifications

on top of port descriptions. This would allow services to be
defined using the descriptions of its inputs and outputs and,
rather than exhaustively describing each port and its data,
we would be able, at that higher abstraction level, to simply
specify the name of the service. The rest would follow from
lower-level descriptions.

Also, along the lines of higher-level abstractions and
services, it would be interesting to try and specify auto-
matic translation functions (, �+- G� - &) based on service seman-
tics. Of course, this would mean that semantics would have
to be specified in some way as well.

Both these approaches would help to integrate user-
developed modules and help integrators to develop trans-
formation steps that cannot be wholly automatically gener-
ated.

Another direction worth considering is the construction
of module and application servers: modules or pre-built ap-
plications would be presented, e.g. via a web browser, en-
abling users to specify custom applications.

6. References
S. Aı̈t-Mokhtar. 1998. L’analyse présyntaxique en une

seule étape. Thèse de doctorat, Université Blaise Pascal,
GRIL, Clermont-Ferrand.

Fernando Batista. n.d. Análise sintáctica de superfı́cie e
coerência de regras. Master’s thesis, Instituto Superior
Técnico, UTL, Lisboa.

Hamish Cunningham, Yorick Wilks, and Robert J.
Gaizauskas. 1996. Gate – a general architecture for text
engineering. In Proceedings of the 16th Conference on
Computational Linguistics (COLING96), Copenhagen.

DARPA, n.d. DARPA Communicator. See:
www.darpa.mil/ito/research/com/index.html.

Caroline Hagège. 2000. Analyse syntaxique automatique
du portugais. Thèse de doctorat, Université Blaise Pas-
cal, GRIL, Clermont-Ferrand.

ITRI, nd. RAGS – A Reference Architecture for
Generation Systems. Information Technology
Research Institute, University of Brighton. See:
http://www.itri.brighton.ac.uk/projects/rags/.

Harry R. Lewis and Christos H. Papadimitriou. 1981. Ele-
ments of the Theory of Computation. Prentice-Hall, En-
glewood Cliffs, NJ. ISBN 0-13-273426-5.

Frank Leymann, 2001. Web Services Flow Language
(WSFL 1.0). IBM Software Group, May. See also:
xml.coverpages.org/wsfl.html.

MITRE Corporation, 2001. DARPA Communicator, May.
See: http://fofoca.mitre.org/.

Object Management Group (OMG), 2002. XML Metadata
Interchange (XMI) Specification, v1.2, January. See:
www.omg.org/technology/documents/formal/xmi.htm.

Object Management Group (OMG), n.d.a. Common
Object Request Broker Architecture (CORBA). See:
www.corba.org.

Object Management Group (OMG), n.d.b. Unified Mod-
elling Language. See: www.uml.org.

Joana Lúcio Paulo. 2001. Aquisição automática de termos.
Master’s thesis, Instituto Superior Técnico, UTL, Lisboa.

NIST, nd. TIPSTER Text Program. See:
http://www.itl.nist.gov/iaui/894.02/related projects/tipster/.

World Wide Web Consortium (W3C), 2001a. Extensible
Markup Language. See: www.w3c.org/XML.

World Wide Web Consortium (W3C), 2001b. The Extensi-
ble Stylesheet Language. See: www.w3.org/Style/XSL.

World Wide Web Consortium (W3C), 2001c. Web Ser-
vices Description Language (WSDL) 1.1, March. See:
www.w3.org/TR/wsdl.

World Wide Web Consortium (W3C), 2001d. XML
Schema. See: www.w3c.org/XML/Schema and
www.oasis-open.org/cover/schemas.html.

Towards Saving On Software Customization

Svetlana SHEREMETYVA
LanA Consulting

Madvigs Alle, 9, 2tv
1829DK Copenhagen Denmark

lanaconsult@mail.dk

Alexsei PERVUCHIN, Vladislav TROTSENKO,
Alexej TKACHEV

Southern Ural State University, 76, Lenin av.
454080Chelyabinsk, Russia,

{perv,inter,tam @inf.susu.ac.ru}

Abstract

The paper suggests some ways to
save on software customization
when developing a family of NLP
applications meeting specific domain
and task requirements. The emphasis
is made on the application
architecture modularity and
reusability of system components. A
particular focus is set on an easy-to-
use environment for linguist
developers integrated with the
architecture to facilitate the reuse
and customization phase.

1 Introduction

In this paper we address the problem of rapid
and low cost deployment of NLP systems by
suggesting some ways to save on software
customization. A wide range of literature can
be found in the area of R&D of language
processing software, whose goal is to facilitate
future development efforts thus reducing
customization cost. The issue of customization
is closely related to reuse strategies and
integration during development process
(Prieto-Diaz, 1993; Thomas and Nejmeh,
1992). Constructing general-purpose tools that
can be shared by the community is a popular
topic of interest nowadays. Such tools are
developed both for language acquisition and
language processing. To name just a few one
can mention GATE, - a tool for locating,
loading and initializing components from local
and non-local machines (see, e.g. Cunningham,
1999), an abstract model of thesauri and
terminology maintenance OO framework
(Fischer et al., 1996), grammar development

environments integrated with sophisticated
text-processing interfaces such as Boas
acquisition tool for a quick ramp up of MT
systems (see e.g., Sheremetyeva and
Nirenburg, 2000), and the Advanced Language
Engineering Platform,- a grammar
development tool for high-level linguistic
processing, (see, e.g. Bredenkamp and Henzte,
1995). It is also recognized that though many
increasingly convivial, more widely distributed
and hardware-independent applications
softwares are currently available it is difficult
to find the system that matches exactly the
end-user requirements (Degoulet et al., 1994).
It seems highly problematic to identify once
and forever a particular locus to the dilemma
of genericity versus specificity when speaking
of genericity “in general” as applied to all
kinds of applications. Indeed, the locus can be
anything, - the system architecture, the
application components, the language
resources, etc. If, however, the concept of
genericity is considered as applied to a family
of applications, i.e., applications interleavingly
sharing tasks and domains, one can probably
suggest particular approaches to solve the
problem. In this paper we attempt just that. The
problem of customization can be considered
from two perspectives: internal and external.
Internal customization is responsible for
improvements in a current application and for
tailoring this application to the profile of a
particular user. External customization refers
to the effort and cost to “turn” a current
application to a new one. We address these
two aspects of customization by describing a
cost-effective development of a specific
application called AutoPat, - an application for
authoring patent claims describing apparatuses
in the English Language. A prototype of this
application has been developed many years

ago (see, e.g., Sheremetyeva and Nirenburg,
1996) so that we shall not deal with
specifications of the application but rather with
a re-engineering issue. We focus here on the
problem of components reusability and
integration of a developer’s toolkit into the
application architecture. Our objective is

?? to describe a cost-effective migration from
the old experimental version of AutoPat,
that did not support a lot of functionalities
to the AutoPat product;

?? to suggest ways to make improvements
(and tailoring) in the current version of the
application without extra programming
effort;

?? to discuss effectiveness of AutoPat
external customization to conceive and
realize other specific applications of the
same family.

The AutoPat “closest” family includes
applications with any combination of the
values of the following features:

?? Application type < authoring, machine
translation, information retrieval, etc.>

?? Domain < patents with different subject
matters <apparatus, method, process, etc.>

?? Document type <patent disclosure, claims>

?? Languages < English, Danish, Swedish,
Norwegian, German, French, etc.>

In what follows we first present the context of
the AutoPat application and the development
environment. Then we shall overview reusable
components and detail developers’
(customization) tools. Our discussion will
mainly address the improvement of the
application as well as advantages of distributed
environment to develop these kinds of
applications.

2 System overview

AutoPat is an NLP application that consists of
an interactive technical knowledge elicitation
module with a sophisticated but easy-to-use
 interface at the user end, analysis module and
fully automatic text generation module. The

architecture of AutoPat with integrated
development environment is given in Figure 1.

Figure 1. AutoPat overall architecture

Superficially, the architecture of our system
conforms to the standard emerged in natural
language generation, in that it includes the
stages of content specification, text planning
and surface generation (realization), as
expressed, for instance in Reiter, (1994).
However, there are some important
differences. Unlike the typical content
specification modules, our system relies on an
authoring workstation environment equipped
with a knowledge elicitation scenario for joint
human-computer content specification. The
latter starts with the user supplying natural
language phrases into the system in the process
of computer interview and results in the
production of a content representation of a
nascent claim.
 A wide range of complex problems which
are considered to be specific for generation
may lead one to believe that generation is
completely independent of analysis. This is
not, however, the case in practice. The input to
generation systems that is fed into the system
directly by a user must first be somehow
analyzed. This problem becomes especially
important in those applications in which input
to generation (as it is in our case) is in textual
form. The stages of AutoPat processing are not
strictly pipelined.The content specification
interleaves with interactive semantico-
syntactic analysis in that it assigns case-roles
status to input phrases and memorizes their
boundaries. The values of case-roles is then

Figure 2. A screenshot of the AutoPat developer’s interface window (top left corner) overlapping
the user’s interface for knowledge elicitation. It displays internal representation of a quantum of
knowledge supplied by the user and processed by the application analyzer.

automatically unambiguously POS-tagged,
assigned agreement features and interactively
marked for coreference thus converting “raw”
input into a shallow content representation, a
claim draft. The draft is then submitted to an
automatic text planner, which outputs a
hierarchical structure of templates that is then
input into linearizer and grammaticalizer to
be converted into a legal claim text.

3 Development process: migration from
experimental system to product.

3.1 Design

The first step in developing AutoPat was to
define a subset of the experimental model for
authoring patent claims that will be the basis of
the application and the extension it will need to
be turned into a product. The different

functionalities of AutoPat application require,
besides kernel components (such as the
knowledge elicitation scenario, the knowledge
representation language, lexicons, grammars
and processing algorithms), a user-adaptive
interface and linguistic knowledge acquisition
tools to fight the well known problem of NLP
applications, that of knowledge bottleneck.
Developer’s tools were integrated into the
system architecture to facilitate the
customization process and to make it cheaper.

3.2 Reuse and customization of existing
components

The second step in the development process is
the reuse of already developed components and
their customization if they do not fit
developer’s needs.

3.2.1 Knowledge elicitation scenario
The knowledge elicitation scenario was almost
fully reused in AutoPat, only one more step
was added that of eliciting knowledge about
dependent claims.

3.2.2 Knowledge representation language

Internal knowledge representation language
was completely reused.

3.2.3 User Interface
The interface of the old system supported its
main functions to model a professional
behavior of a patent expert working with an
inventor, - a knowledge elicitation interview,
and to build internal content representation.
 The content of the interview was almost
fully reused in AutoPat, only one more step
was added that of eliciting knowledge about
dependent claims. Major customization dealt
with lexicon acquisition functionalities and
what might seem minor issues that in reality
are very time consuming and thus affect the
cost of application. The AutoPat interface is
customized so as to support automation of
tedious tasks such as typing, revising texts,
making sure terminology is consistent,
propagating changes through document, spell
checking and lexicon acquisition. It has two
different acquisition functionalities for
predicate lexicon and for lexical units that fill
predicate case-roles thus supporting two
frames of their description (see Sections 3.2.5
and 4.2). The interface was also customized so
as to better suite the user profile in terms of
proficiency: the beginner has a chance to work
in the Wizard Guide mode. It strictly guides
the user through a step-by step procedure of
describing essential features of invention and
reuses experimental system interview
procedure. An experienced user can work in
the Professional mode that allows for more
speed and flexibility when authoring a claim -
the user may freely navigate among the stages
of claim composition. Another new
functionality allows the user to quit the
program at any moment of elicitation session
so that next time the user starts it s/he can
resume the work where s/he left off.

3.2.3 Analyser

AutoPat reuses the architecture of the old
system analyser, which consists of a
submodule of interactive semantico-syntactic
analysis and a submodule of automatic
morphological analysis applied to the case-role
fillers. The first analyser submodule is reused.
 The submodule of morphological analysis is
completely redone, as the old one was just a
“toy” for feasibility study. Unfortunately we
failed to incorporate to our system any of the
described analysers as they proved to be either
unavailable or not tuned to our domain. On the
one hand, we tried to build our morphological
analyser it in the most effort- and time-saving
way. On the other hand, in view of other
extensions of our AutoPat, such as multilingual
generation, machine translation, information
retrieval, etc., we decided to develop a
reusable, possibly “extendable” morphological
tool. As different types of applications need
different depth of analysis our morphological
submodule of the AutoPat analyzer features
flexible sets of tags so that developer could
vary the depth of analysis (see Sections 3.2.5
and 4.1). For example, for MT one might think
of tags marking semantic information in
addition to morphological, which for
generation (i.e., for our immediate needs) is
only necessary for predicates, but not for case-
role fillers. (see Sections 3.2.5, 4.1 and 4.2).
The AutoPat morphological analyser applies
two levels of disambiguation procedure, one
relies on context constraints, and another
involves knowledge about case-roles. With
one level of disambiguation it can be used as a
stand-alone tool for any text from patent
domain.

3.2.4 Generator
The upper level generation algorithm is reused.
It consists of the same procedures: building a
forest of predicate templates, linearization of
this forest in a bracketed string of characters,
and grammaticalization. The difference
between the old version of the system and

AutoPat is that in the latter it is possible to
customize algorithms at every generation step
to improve the system output without extra
programming effort (see Section 4.3).

3.2.5 Lexicons and grammar rules
The AutoPat lexicons are corpus-based and
draw heavily on the sublanguage and on the
needs of application. They include

a shallow lexicon of lexical units tagged
with their class membership, which conveys
morphological information (such as POS,
number and inflection type) and semantic
information, a concept, defining a word
membership in a certain semantic class (such
as object, process, substance, etc.). For
example, the tag Nf shows that a word is a
noun in singular (N), means a process (f), and
does not end in –ing. This tag will be assigned,
for example, to such words as activation or
alignment. At present we use 23 tags that are
combinations of 1 to 4 features out of a set of
19 semantic, morphological and syntactic
features for 14 parts of speech. For example,
the feature structure of noun tags is as follows:

Tag [POS[Noun
 [object [plural, singular]
 process [-ing, other[plural, singular]]

 substance [plural, singular]
 other [plural, singular]]]]]

 a deep (information-rich) lexicon of
predicates. This lexicon is the main part of the
AutoPat static knowledge and covers both the
lexical and, crucially for our system, the
syntactic and semantic knowledge. The
structure of the entries of this lexicon was
reused, the vocabulary was greatly enlarged.
Grammar rules are updated (see section 4.3).

4 AutoPat Development tools

All developer’s tools, including lexicon
acquisition tools, have interfaces, which, on the
one hand prompt acquirers to encode all the
necessary features and, on the other hand, do
not let them to add anything that is not relevant
for the system.

4.1 Shallow lexicon acquisition tools

Shallow lexicon acquisition environment
consists of several programs, including User
Interface, for different stages of lexicon
acquisition. Web Spider creates lists of words
from a particular domain web site (5 million
word corpus of US patents, in our case) in text
format. Word Sorter sorts input wordlists in
alphabetical, reverse or frequency order. Pre-
POS-Tagger creates “dirty” lists of parts-of-
speech. The human further cleans these lists.
Word Format Converter converts lists in .txt
formats into a .wdl format, - a special format
used by AutoPat programs. Word List Creator
takes unsorted files, in .wdl format sorts them
in any order, merges or subtracts lists of words.
Word List Editor maintains tagged lists of
words allowing for editing, adding, deletion
and search of the words. Tag Editor edits
number and content of tags assigning them to
certain groups of lexemes in the final
morphological lexicon.
User Interface is used for shallow lexicon
acquisition in the course of automatic spell
checking. A word typed in by the user is
highlighted as misspelled in two cases: when it
is really misspelled or when it is not found in
the underlying lexicon. The main
distinguishing feature of the AutoPat spell
checker is that in addition to providing hints to
correct a word, it also provides for a pop-up
menu of features for a word (in case the user
considers it is correct) to be put into the
AutoPat shallow lexicon with proper
description.

4.2 Predicate lexicon acquisition tools
The main tool for predicate acquisition is
graphical Predicate Lexicon Interface. It is
directly linked to the main application engine,
which relies on linguistic knowledge contained
in the lexicon. The interface allows for editing
any of lexicon fields, search any word by its
prefix or semantic class, propagate changes
from one field to another. The interface
program has a built-in morphological generator
that automatically generates all the word forms
of the predicate necessary for generation. The
interface has a standing menu of semantic
classes and case-roles to select from when
acquiring a new word. The acquirer can

customize the menu of semantic classes. Most
of the fields of a new predicate entry are
automatically filled with default fillers after the
semantic class is acquired. The interface is
programmed so as to keep acquirer “on the
right road” by means of different hints and
waning messages. The user can also acquire a
predicate through the User Interface by simply
typing it in a pop-up box and selecting its
semantic class in the menu. The grammar
forms of a new word are automatically
generated in a word box for the user to check
and edit if necessary, other information is
assigned to a new predicate automatically by
default depending upon a semantic class
selected by the user. Every new word thus
introduced by the user is flagged so that later a
linguist could check its entry through the
predicate dictionary interface closed for the
user.

4.3 Grammar acquisition tools
Grammar acquisition tools include 7
compilers. Compilers 1-4 belong to the
AutoPat analyzer, while compilers 5-7 compile
rules for the AutoPat generator. All compilers
have front-end interfaces providing rule
writing help. The formal language for writing
rules is very simple and has an IF-THEN-
ELSE-ENDIF structure (see Figure 3). Every
compiler has another interface to test the rules.
Compilers for the analysis rules allow
downloading any text files, not necessarily the
user’s input into AutoPat. That means that
these compilers can be used as stand alone
programs. In fact the whole morphology
analysis module can be used as off-the-shelf-
tool separately from AutoPat. Compiler-1 is
used to create tag disambiguation rules, which
are applied to the Tagger output. These rules
only use context information, which might be a
tag or a lexeme within a 5-word window with a
tag in question in the middle. The output of
this compiler together with the output from the
Tagger is fed to Disambiguator and used for
the first disambiguation pass. Compiler-2 is
used to create or edit the second set of tag
disambiguation rules that use syntactic
knowledge about the case-roles filled by the
analyzed strings. Disambiguator uses the
output of this compiler at the second pass.

Compiler-3 creates rules, which determine
whether singular and plural forms of the nouns
belong to the same lexeme and can be
considered as coreference candidates.
Compiler-4 creates rules for determining
agreement features between the predicate and
its first case-role. Compiler-5 is used to write
rules for linerazation of the claim plan tree of
predicate templates. They specify the order of
the words in every predicate template and the
location of the templates relative one another
in the nascent claim. These rules are more
often subject to changes than any other rules.
They are fed into Linearizer that substitutes the
tree of templates with a bracketed string of
tags. Compiler-6 is for writing cohesion rules
that delete some of the tagged strings from
Linearizer output, insert commas and assign
morphological features to predicates.
Condition part of the rules uses specific
knowledge provided by the Linearizer and by
the predicate lexicon. Compiler-7 is used for
writing rules for inserting determiners before
noun phrases in the final claim text. These
rules should recognize coreferential phrases,
which may be parts of other phrases or worded
differently.
 In AutoPat three types of rules are not
directly linked to any compiler for updating but
are “welded in” the programs. They are
tagging and semantico-syntactic rules in the
analysis module, and text planning rules in the
generation module. Tagging rules are very
simple and only suggest look-ups in the
morphological lexicon. These rules can
indirectly be updated through editing tag sets
and morphological lexicon. Results of this
knowledge update can be displayed in a.
special developers’ interface. Syntactico-
semantic rules rely on interactive knowledge
elicitation procedure and consist in looking up
a predicate (selected by the user at the
knowledge elicitation stage) at the predicate
lexicon, presenting the user with a selected
predicate template, assigning a case-role status
(place, manner, etc.) to every phrase put by the
user into a corresponding slot of the template
and registering the boundaries of these phrases.
Though these types of rules are not editable,
the output of syntactico-semantic analyzer can
still be checked through the developers

interface built into the users’ interface (see
Figure 2) and its output can be edited indirectly
by editing predicate lexicon. Text planning
rules are very complex. They include
algorithms of grouping and sorting

conceptually close predicate templates into a
forest of trees relying on semantic, legal,
stylistic and rhetoric domain knowledge built
into the system.

Figure 3. A screen shot of different compilers interfaces

These rules are not editable. But the developer
can still update the structure of this tree by
updating the predicate lexicon. A special
interface was built for the developer to follow
the stages of construction of the internal
meaning representation and intermediate
outputs of every generating procedure. In fact
the rules for building a text plan is language
independent, they depend only on semantic
properties of predicates which could be treated
as universal for different languages.

5. Discussion and conclusion

In this paper we addressed the problem of
saving on software customization when
developing a family of NLP applications
sharing domain and task requirements or when
updating applications once created. We
illustrated the approach on the example of
migrating from a prototype system for
authoring patent claims to an AutoPat product.
The migration was performed in two steps. The
first step was the analysis of the aplication, the
improvement of old components, such as
generator, and the realization of new

components, such as morphological analyzer
and a new user interface. The second step of
migration which was described in this paper
was to create developers tools for
customization of application and integrate
them into the system.
We were unable to compare the effectiveness
of our development tools to other such tools
due to their unavailability. Most of developer’s
tools are components of commercial products
and are presented as black boxes, only used
internally. This makes them unsuitable for
research purposes (see, for example, a similar
complain in (Lezius, 1998)).
 The application development process
described in the paper and targeted at saving
on software customization emphasizes reuse
and integration. At the level of each
component, the AutoPat developer can access
specific tools to perform reuse and
customization. Integration is about the extent
of compatibility of these tools and how
seamlessly they can facilitate the development
of applications. The development process of
AutoPat-product validated the effectiveness of
both the tools and their integration into the
system. Programmers’ work on AutoPat was
finished long before the system could be
considered a product. After manual acquisition
of a training amount of knowledge for
programming work the linguist completed the
task of creating product-size and -quality
knowledge without extra programming effort.
We are planning to reuse the same tools for
other applications of the same family (see
Introduction) including syntax parsing,
machine translation and automatic indexing.
For example, we have already started the work
on machine translation of patent claims where
all the English lexicons and tools (e.g.
interfaces) for their acquisition will be reused
though augmented with new relevant for MT
functionalities.

Acknowledgements

This research and development has been
supported by Zacco A/S, - international
Intellectual Property Rights consulting firm,
Denmark, Sweden, and Norway.

References

 Bredenkamp and Henzte, 1995. Some
aspects of HPSG implementation in the
ALEP formalism. Working Papers in
Language Processing No 46.

 Cunningham, H 1999. JAPE: a Java
Annotation Pattern Engine. Research
Memorandum CS-99-06, Department of
Computer Science, University of Sheffield

 Degoulet P, Jean FC, Engelmann U,
Meinzer HP, Baud R, Sandblad B, Wigertz
O, Le Meur R, Jargermann CA. 1994. The
component-based architecture of the
HELIOUS medical software engineering
environment. Comp. Methods and Programs
Biomed. 45, Suppl.

 Fischer,D., W.Mohr, and L.Rostek,
1996. A Modular, Object-Oriented and
Generic Approach for Building Terminology
Maintenance Systems. In TKE’96:
Terminology and Knowledge Engineering.
Frankfurt.

 Lezius W., Rapp R., and Wettler M.
1998. A freely Available Morphological
Analyzer, Disambiguator and Context
Sensitive Lemmatizer for German.
Proceedings of the COLING-ACL’98
conference. Monreal, Canada, August

 Prieto-Diaz R. 1993 Status report:
software reusability. IEEE Software 10(3).
 Reiter, E.B. 1994. Has consensus natural
language generation architecture appeared
and is it psycholinguistically plausible? In
Proceedings of the 7th International
Workshop on Natural Language Generation

 Sheremetyeva, S and S. Nirenburg.
2000. Towards A Universal Tool For NLP
Resource Acquisition. Proceedings of LREC-
2000 (Second International Conference on
Language Resources and Evaluation)
Athens, Greece., June
 Sheremetyeva S. and S. Nirenburg. 1996.
Interactive Knowledge Elicitation in a Patent
Expert's Workstation. IEEE Computer.
Vol.7.

Thomas I., and Nejmeh B.1992.
Definitions of tool integration for
environments. IEEE Software. 9(2).

Resource integration and customization for automatic hypertext information
retrieval in a corporate setting

Maria Nava

Université de Paris-Sorbonne
Institut des Sciences Humaines Appliquées

96 boulevard Raspail ,
F-75006 Paris, France

Electricité de France R&D

Dept. SINETICS/TAIC
1, avenue du Général de Gaulle

F-92141 Clamart, France

maria.nava@edf.fr

Abstract
In this paper, we describe our experience in reusing and customizing existing tools to meet new information retrieval needs in a
corporate setting.
The problem was to supply an authoring aid to handle customers enquiry letters by exploiting a textual case base.
We decided to integrate, and go as far as possible with, a terminology extractor and a context exploration platform. They were
previously developed through an academic and industrial collaborative research.
We have found a method to generate an information retrieval hypertext structure on a large collection of homogeneous documents by
creating li nks between noun phrases that are pertinent for navigation. Noun phrases are selected by automatic extraction and filtered
on the basis of the li nguistic context class where they appear, also determined automaticall y.
We have tried to point out the peculiar features that made possible the reuse and integration of existing resources, to produce a
relatively new solution to a fairly constrained real -world problem.

1. Introduction
Our work is motivated by an novel information

retrieval (IR) need formulated in a corporate setting, at
Electricité de France R&D (EDF R&D, the research and
development department of the French national electricity
board). The general problem was to supply an authoring
aid to help EDF employees handle customers enquiry
letters.

Starting from a textual case base and software
available, we were invited to study a flexible and cost
effective solution that would respect the employees
savoir-faire and experience, and add value to existing
tools.

Our approach aims at identifying the context where
interesting NPs occur in the enquiry letters, in order to
enhance the selection of pertinent cross-document links.
Context identification is based on spotting linguistic
markers of the expression of enquiries and on the
exploitation of a structured lexicon that we can extract
automaticall y from the textual case base.

2. The starting point
The initial scenario presented a number of constraints

to be respected, concerning both the nature of the IR
solution and the technical implementation.

2.1. Two corporate memory corpora
Two corpora were used to carry out a linguistic

analysis, train our system for marker identification and
test processing performance.

2.1.1. A large corpus of stored letters
A corpus of about 2000 customer letters, in French,

was first made available by EDF R&D. The collection
contains inquiries, intervention requests and complaints.
Even when a complaint is not formulated explicitl y,
generall y the writer’s intention is to point at some sort of
problem that needs fixing.

The corpus is homogenous from the point of view of
the general subject matter and purpose of the letters. On
the other hand, the variety of speech acts performed by
the writers lends a challenging heterogeneity to the texts,
interesting but problematic for automatic processing.

The corpus can be introduced in the corporate
memory as a case base, and connected to customer profile
and commercial strategy databases for global IR about a
single customer case.

Unfortunately, letters in this corpus were not
associated to the answers they had actuall y received.

2.1.2. A smaller corpus of letters and related
answers

A second corpus of about 200 question-answer pairs is
used for testing and discussing evaluation issues. It is a
collection of letters that were sent directly to EDF branch
managers to soli cit special treatment on peculiar issues.

This gives the letters a somewhat special status, which is
reflected in their style, vocabulary and structure.

We have used this smaller, more personal collection
to put our system to test, point out its limitations, and try
to explain them.

2.2. A terminology extraction tool: Lexter
The acquisition and exploitation of a structured

lexicon are carried out automaticall y by the Lexter1
system (Bourigault et al., 1996), developed at EDF R&D
in the framework of a PhD research project. Lexter was
designed to extract noun phrases (NPs) from a corpus of
texts (in French). Extraction is based on the hypothesis
that eligible NPs must exhibit the syntactic pattern of
candidate terms, as establi shed by terminology theory.
For example : definite article + noun + preposition +
noun is an observed candidate term pattern. NPs are not
extracted by direct pattern matching, but they are isolated
by spotting their syntactic boundaries, li ke, for instance,
verbs. The "terminological hypothesis" is not without
consequence for our work, as it will be pointed out in the
conclusive section.

Extracted NPs are then automaticall y organized in a
structured network of head-expansion relations.

Lexter accounts for morphological variants and head-
modifier relations of nouns and NPs, that are grouped
into families. It also supplies simple distributional
figures, such as frequency of a candidate term in the
corpus or candidate term head-modifier productivity
within the structured network.

Lexter also stores the whole corpus divided into
paragraphs, along with a pointer to the location of each
candidate term in the text. This feature was initiall y
designed to supply the terminologist with a linguistic
context for validation.

Extraction and corpus-related information is stored in
a relational database. We have taken advantage of all
Lexter features and results for the generation of hypertext
links, as described below.

2.3. A context exploration tool: ContextO
The identification of context classes where candidate

terms appear is based on the contextual exploration
method (Desclés et al., 1997) implemented in the
ContextO platform (Ben Hazez & Minel 2000). The
system was designed and is still developed at the LaLICC
laboratory (Langage, Logique, Informatique, Cognition et
Communication) of the Sorbonne University in Paris .

The exploration engine deployed by ContextO is
based on the identification of markers of a large number
of linguistic functions, as observed in the general
language. Markers are acquired through a "manual"
linguistic analysis of a corpus of texts, to model the
expressions of linguistic functions, depending on the
application. They are subsequently organized in semantic
classes with object-model relations. Markers are stored in
a knowledge base (a relational database, the same as
Lexter' s), which is accessed by the contextual exploration
engine of ContextO, a Java application. Markers are
exploited by speciali zed agents, performing specific tasks.
A number of tasks were already available; for example,

1 © EDF R&D.

the identification of static relations (is-a, has, etc.), causal
relations, thematic focus, citations, definitions, etc. For
the time being, ContextO exploits markers from French
and Spanish, but could easil y be adapted to other
languages.

The study of our own corpus of letters has helped us
find a number of linguistic structures regularly associated
to the expression of complaints, justifications or requests.
Each letter contains linguistic markers indicating a focus
on certain speech acts that help the writer organize
argumentative discourse.

For the first tests, the database contained about 200
markers organized into 24 functional classes
("complaint", "demand", "justification", etc.).

3. HyTEC, a new tool born from
customization

Hypertext generation based on automaticall y extracted
key-words usually produces an overwhelming number of
non-pertinent links. Any NP can actuall y constitute an
anchor for too large a set of heterogeneous links, a
serious limitation to the effectiveness of IR.

By exploiting the features of the existing tools, we
have designed a system, HyTEC (Hypertext from TErms
in Context), capable of generating a IR hypertext
structure on a large collection of homogeneous
documents by selecting only those NPs that are pertinent
for navigation.

Our work can be placed in the domain of IR automatic
hypertext (Agosti et al., 1997; Allan, 1997), where
paragraph (and document) linking is based on IR
similarity measures, and is typed.

The specification of our IR hypertext system is based
on a real-world application, that is, browsing a large
textual case base made of customer enquiry letters, along
with the associated reply letters. The aim of the
navigation in the document base is to help finding
consistent answers to any new incoming letter.

As our document base is liable to frequent updating,
we found it interesting that the hypertext structure be
generated at each IR session. Therefore, the document
base is dynamicall y indexed by a short content-sample
text at the beginning of the session.

A new browsing session is booted by the content of
the incoming letter, which supplies content elements to
compute a thematic similarity with enquiry letters stored
in the corporate memory.

Navigation allows to gather information on similar
cases that have already been solved and reuse written
material to compose a response to handle the problem.

3.1. Identifying the context of lexical expressions
Textual similarity is computed from what we call the

“pragmatic profile” of an input letter. We want to identify
the discursive context of NPs in order to select only the
most interesting ones and create links to similar NPs
appearing in the case base, in comparable discursive
contexts.

Our research is based on the articulation of two
principles:
1. The exploitation of a lexicon structured by

grammatical relations, extracted automaticall y from
the whole text collection;

2. The identification of linguistic markers indicating
the expression of requests, complaints, justifications
and other discourse acts that are relevant in our
working context.

These two principles are implemented in the two
different NLP systems, that offer complementary
functions and results, that we have integrated.

3.2. Computing lexical links between texts
Our hypothesis is that the co-occurrence of a

candidate term and a focusing structure selects a portion
of text interesting for our similarity search in the case
base.

The search for pertinent markers is a means to refine
link generation on a number of texts already selected by
their lexical components, extracted by Lexter.

In order to reduce the number and, at the same time,
to keep only the most pertinent links, we have decided to
maintain only the links between NPs. NPs represent a
form of mutual contextuali zation of lexical elements and
allow a more precise automatic indexing than simple
nouns (Evans & Zhai, 1996). For example, instead of
retaining the simple word electricity, we will first choose
expressions li ke electricity bill or electricity meter (as
translated from French) as content carriers, because we
feel they are thematically more precise.

We have then integrated this domain-specific lexical
information, extracted automaticall y by Lexter, and
semantic and pragmatic context information supplied by

markers of the general language, identified by ContextO.
The lexical information triggers context analysis to create
a “signature” , a context-tag / NP relation, that is used for
indexing and filtering.

Even if the actual language we use is French, the
same principle may as well be ill ustrated with an example
in English, li ke

Due to temporary money problems, I’d be happy if I
could pay the bill by installments.

Context analysis is triggered by the phrases in itali cs
(pay the bill would be a nominal form in French). As
markers li ke I’ d be happy if (demand) or Due to
(justification) would be found in a particular context (by
context exploration rules), the sentences would be tagged
as belonging to a pertinent context class.

Links between portions of texts are computed by
matching signatures formed by NPs that are flagged with
a semantic tag indicating a context class.

4. Similarity search results
The results obtained by testing the system on three

sample entry letter are summarized in Table 1.
The performance of our system on sample texts shows

that the simple association of NPs and their conditions of
use can effectively improve retrieval precision, when
compared to results obtained by generating links between
NPs alone.

 Before context analysis After context analysis

Samples Initial number of links Non pertinent Non pertinent li nks
eliminated

Pertinent li nks
eliminated

1 158 81 71 8

2 93 23 16 11

3 78 32 24 5

Table 1: Results for three sample input letters on the main corpus

For instance, consider the following input text (as

translated from French), where extracted NPs are in
itali cs and context markers are in bold:

Dear Sirs,

Earlier this month, I have received an invoice from

you, concerning the use of gas and electricity, whose
amount I do not agree with. As the big amount you
are asking for apparently concerns only a 2-month
period, I have taken down the numbers shown on my
gas meter. The meter indicated 00613, but your
invoice reports 00878. I know this number represents
an estimation.

On the other hand, if we consider the huge
difference between your estimation and my actual
gas consumption, I refuse to pay the amount you are
asking for and invite you to send me a new invoice,
reporting figures closer to realit y.

Context identification allowed to retain a target text
li ke :

Dear Sir,

I am the tenant of the apartment located X Street in
TheTown, belonging to Mr and Ms Y. Since I have
taken up the place in 1996, I have only received
invoices reporting estimations of my electricity
consumption.

Before I was here, the place was unoccupied. I’ ll take
the li berty to tell you that at present, the electricity
meter indicates 36,637.

I ’d be grateful i f you could send me an invoice
corresponding to the actual consumption.

Notice that the NP real … consumption was also
included in a focused sentence in the input letter (On the
other hand …, I refuse ...). Notice also that the target text
focuses on the NP electricity meter (I’ ll take the liberty

to…), that could also be found in the input letter under
the form gas meter.

We have found that it is not necessary to carry out
context indexing for the input letter to improve precision:
it is enough to search the context of NPs in the candidate
target texts. On the other hand, to execute a relational
indexing (NP + context tag) both for the input and the
target texts allows precise link typing, which makes
navigation easier.

The same search session as above allowed to
eliminate a number of target texts, that had been
retrieved be found on the basis of simple NP matching,
but were not pertinent, li ke:

Sirs ;

I take the li berty to draw your attention to the
dangerous situation menacing all the famili es li ving in
our building.

We experienced important damages due to water
overflow last summer. To day, the leakage, which has
not been stopped yet, affects the wall bearing our
electricity meters and wiring.

[long descriptive text snipped]

If you consider that there actuall y is no danger, I’ d be
grateful if you could send us an off icial written
declaration about this, etc.

In this target text, there is no co-occurrence of context
markers and extracted NPs, as compared to the input
letter. Therefore it was not retained by HyTEC, which
improves retrieval precision.

Eventually, we are left with 1) non-pertinent targets

that have been retained, but also 2) pertinent candidates
that have not been retrieved.

In the first case, co-occurrence of markers and NP has
been identified in a sentence or paragraph, yet the rest of
the letter relates events or circumstances that are
different from those found in the input letter. However,
the noise caused by uninteresting letters is very low,
considering the number of searched texts. In this case,
retrieval precision would probably improve if we could
rely on a global text model, accounting for lexical and
discursive chaining.
In the second case, in spite of global similarity between
the input letter and a possible candidate target, content
proximity has not been identified. The most frequent
cause of this kind of failure is that pertinent markers
focus on synonyms of extracted NPs. Improved recall
rates should be attained cost-effectively by adding a
relatively small number (the corpus is homogeneous) of
synonymic relations to the NP network. We are planning
to test the integration of a tool (SynoTerm) that
automaticall y supplies Lexter with candidate synonyms
from general language resources (digital dictionaries)
(Hamon, 2000).

5. Generation of a hypertext structure
The results of link computation are presented in the

form of a hypertext structure generated on-the-fly,
directly exploiting the data structure in Lexter’s
relational database.

Figure 1: Navigating in context classes

The demonstration window (Figure 1) shows the text

of the input letter (left) with salient NPs highlighted and
(right) a choice of links to pertinent context classes
(complaint formulation, enquiry, justification, etc.).

Figure 2: From typed li nks to target paragraphs

Once a context class has been selected, the links to

target texts appear (Figure 2).

6. Evaluating task performance
The results of the first experiments are encouraging

in terms of precision/recall ratio (Nava & Garcia, 2001).
However, we feel that traditional evaluation measures are
not completely adapted to the task, as it is often a delicate
matter to decide whether two letters are even loosely
connected.

As we are currently testing the system on a more
extensive input letter set, a more flexible evaluation
protocol is under study. It will possibly include an
improved link type taxonomy and link weighing.

7. Methodological issues about
customization

In this paper, we have shown how we have reused,
customized and integrated two different NLP tools.

Lexter and ContextO belong to two different paradigms,
which are, we believe, complementary.

Lexter and ContextO were not designed to be
integrated. Lexter is a corpus-based extraction tool,
ContextO is a knowledge-rich filtering system. However,
we found that their results are complementary, and their
coupling has provided benefits that reach beyond the
simple application of cascading NLP processes.

In our case, we have observed that facilit y of
integration and customization are related to a number of
features, ranging from modularity and separation of
linguistic resources and procedures, to implementation by
off-the-shelf technology.

7.1. Lexter
We have taken advantage of the following:

1. Corpus-based extraction without domain-specific
resources (dictionary, thesaurus, etc.);

2. Shallow morpho-syntactic structuring;
3. Access to the full -text source;
4. Simple distributional data (frequency, head-

modifier productivity in the morpho-syntactic
network);

5. Extraction results stored and organized in an off-
the-shelf relational database (Microsoft Access).

On the other hand, considering our particular

application, we have experienced an important limitation
due to the fact that Lexter is basicall y an extractor of
candidate terms. This is certainly well suited for
technical, domain-specific text processing; but for our
collection (customers letters), this constraint is rather
restrictive. Given the source, purpose and style of the
texts, we would have been happier with additional lexical
information, li ke, for example, verbal phrases (which are
generall y ignored by the classical terminology theory and
applications). In informal writing, an expression li ke pay
the bill is often preferred to bill payment.

7.2. ContextO
ContextO was designed to facilit ate the acquisition

and reuse of linguistic knowledge, based on the
following:

1. Separation of linguistic knowledge and search

engine;
2. State-of-the-art object model of text, linguistic data

and tasks;
3. Independent speciali zed agents exploiting the

knowledge base;
4. Portable Java engine implementation accessing an

off-the-shelf relational database (Microsoft Access).
5. Exploitation of markers related to structures of the

general language.

It must be noted, however, that if the marker
collection is largely domain-independent, it is sensitive to
style and textual genre. Moreover, certain semantic
classes (for example, thematic markers) are more
generall y reusable than others (for example, static
relation markers).

Prospective work includes the adaptation of our
approach to automatic, corpus-based terminology
structuring.

8. Acknowledgements
Our PhD research is financed by EDF R&D.

9. References
Agosti, M., Crestani, F. and Melucci; M., 1997. On the

use of information retrieval techniques for the
automatic construction of hypertext. Information
Processing and Management, 33(2):133-144.

Allan, J., 1997. Building hypertext using information
retrieval. Information Processing and Management,
33(2):145-159.

Ben-Hazez, S. and Minel, J.L., 2000. Designing tasks of
identification of complex linguistic patterns used for
semantic text filtering. Proceedings of RIAO 2000,
Paris, France, 1560-1568.

Bourigault, D., Gonzalez-Mulli erand, I. and. Gros C.,
1996. Lexter, a Natural Language Tool for
Terminology Extraction. Proceedings of the 7th
EURALEX International Congress, Göteborg, Sweden,
771-779.

Desclés, J.P., Cartier, E., Jackiewicz; A. and Minel, J.L.,
1997. Textual processing and contextual exploration
method. Proceedings of CONTEXT ’97, Rio de Janeiro,
Brazil , 189-197.

Evans, D.A. and Zhai C., 1996. Noun-phrase analysis in
unrestricted text for information retrieval. Proceedings
of the 34th Annual Meeting of the Association for
Computational Linguistics, Santa Cruz, Cali fornia.

Hamon, T., 2000. Variation sémantique en corpus
spéciali sé : Acquisition de relations de synonymie à
partir de ressources lexicales. PhD Thesis, Université
de Paris Sorbonne.

Nava, M. and Garcia, D., 2001. Automatic hypertext
information retrieval in a corporate memory using
noun phrases in context. In R. Mitkov (ed.),
Proceedings of Recent Advances in Natural Language
Processing 2001 (RANLP ’01), Tzigov Chark,
Bulgaria.

Lexicalized Grammar Specialization for Restricted Applicative Languages

Patrice Lopez, Christine Fay-Varnier, Azim Roussanaly

LORIA, INRIA LorraineandUniversitiesof Nancy
BP239,54506Vandœuvre-l̀es-Nancy, France

�
lopez,fay, azim� @loria.fr

Abstract
In thecontext of spokeninterfaces,we presenta practicalmethodologyandanimplementedworkbenchcalledEGAL (LexicalizedTree
GrammarExtraction)dedicatedto designand test restrictedlanguagesusedin specifictask-orientedapplications.A complementary
methodologyis proposedto processtheextractionof theseapplicative languagesfrom a generalLTAG grammaranda trainingcorpus.
Additional resultsallow us to estimatethe representativenessof the trainingcorpus.An applicationof thesystemis presentedfor the
tuningof a LTAG grammardedicatedto a spokeninterfaceon thebasisof aWizardof Oz corpus.

1. Introduction
1.1. Motivations

In the caseof a spoken dialoguesystem,the quality
of the humancomputerinteractionlargely dependson the
ability of the computerto understandspontaneousutter-
ancesnormaly usedby humans. The practical develop-
ment of a spoken interface for a restricteddomainsim-
plies that we performthe tunningof existing lexicon and
grammarto a particularapplication.This paperproposesa
methodologyandanimplementedworkbenchcalledEGAL
(LexicalizedTreeGrammarExtraction)dedicatedto design
andtest restrictednaturallanguagesusedin specifictask-
orientedapplications.This workbenchis a sub-component
of a generalplatform for designingspoken languagesys-
temsandaddressessoftwaredesignerswhoarenon-experts
in naturallanguageprocessing.

Specializingagrammarfor restricteddomainssupposes
at leastthetwo following tasks:� Cuttingdown theexisting lexiconandgrammar.

� Addingnew wordsandnew syntacticconstructions.

In recentyears,thedevelopmentof largecoveringlex-
icalized grammarscould be observed. Complementary,
studiesabout the useof this kind of formalism for pars-
ing spokenlanguagehavebeenperformed.To addressspo-
kendisfluenciesandrobustnessconstraintsin thecontext of
humancomputerinteraction,additionalmechanismshave
beenproposedwhich often dependon the applicationdo-
main.At thelexical andsyntacticlevel, thefollowingadap-
tationsarerequired:� Model spoken phenomenathat could be considered

agrammaticalor rarein written languagebut frequent
in spontaneousspeechsuchasellipsisor interpolated
clauses(Priceet al., 1989).

� Userobustparsingtechniquesto take into accountthe
variability of theinput.

� Specializealexiconandagrammardedicatedto text to
aspecifickind of dialogueanda specializeddomain.

This paperaddressesthe last point. The specialization
of a generalhandwritten grammarto a specificdomainis

not a trivial task. Probabilisticmethodsandgrammarin-
ferenceas(Bod,1995)canbeseenasanalternative to this
problem.Still a linguisticallymotivatedhandwrittengram-
marprovidesa preciseunderstandingof theoccuringphe-
nomenaandreusability. In particular, this kind of grammar
allows us to take into accountthe importantambiguityof
thesyntacticlevel. This ambiguityis oneof the maindif-
ferencesbetweennaturallanguagethatwe wantto process
andregular languageswhich arejust an approximationof
naturallanguage.Moreover, probabilistmethodsneedvery
large annotatedtraining corpora. Their developmentcan
requirethesameamountof effort asthewriting of a wide-
coveringgrammar.

We presentin this papera methodologyandan imple-
mentedsystemcalled EGAL (LexicalizedTree Grammar
Extraction),ableto performanassistedspecializationof a
generalgrammarin orderto obtainan applicative sublan-
guagefrom a corpus. Whenthe specializedgrammarhas
beenobtained,a parsingmoduleallows the evaluationof
thegrammaron a testcorpusandthechoicebetweenvari-
ousparsingalgorithmsandstrategies.Thepartialandcom-
pletederivationscanbevisualizedandcomparedfollowing
differentcriteria.Themethodologyalsoallowsusto obtain
informationabouttherepresentativenessof theinitial train-
ing corpus.Finally, thelexicalizedgrammarandtheparser
canbeintegratedin concreteHCI systems.

Theproposedworkbenchcanbeappliedto variousdo-
mains. Our main goal is to designgenericand portable
spokensystemsthatcanprocessspontaneouslanguage.To
illustrateour methodologyandsystem,we have chosena
targetapplicationandcollectedanexperimentalWizardof
Oz corpusfrom which we have extracteda lexicon anda
specializedgrammar. We have finally evaluatedtherepre-
sentativenessof theresultinggrammar.

1.2. Lexicalized Tree Adjoining Grammars

The lexicalizationof a syntacticformalismconsistsof
theassociationof a setof appropriatesyntacticcontexts to
eachentryof thelexicon. Lexiconandgrammararemerged
in a single entity called syntacticlexicon. Lexicalization
providesat leasttwo main advantages:First the ability to
describesyntacticallyeachspecificlexical entryallows us
to choosethe requiredcomplexity of the syntacticstruc-
tureswith flexibility . Evenfor restricteddomains,toomuch
generalizationin syntacticdescriptionsgenerallyresultsin

unexpectedbordereffects. Secondlythe lexicalizational-
lows parsingheuristicssincea lot of syntacticambiguity
problemsbecomelexical ambiguitieswhich are easierto
process(Abeillé,1991).

The choiceof the formalismis essentialfor the repre-
sentationand the understandingof linguistic phenomena.
It is also important to considerits applicability for NLP
applications. The Lexicalized Tree Adjoining Grammars
(LTAG) (JoshiandSchabes,1992) is interestingfor pars-
ing andgenerationthanksto thelexicalizationpropertyand
extendeddomainof locality. Linguistic studiesandlarge-
covering grammardevelopmentsfor example in English
andFrenchhaveshown thepracticalinterestof theseprop-
erties. Moreover probabilisticmodelsbasedon LTAG as
stochasticTAG (Srinivas,1997)or supertagging(Srinivas,
1997),allow optimizationsfor theprocessingof lexical and
syntacticambiguitieson the basisof preferentialchoices.
Thesepropertiesmake theLTAG formalisminterestingfor
spokenutterancesunderstanding(Halber, 1998)andgener-
ationin spokensystems(Beckeret al., 2000).

Still the lexicalizationhassomedrawbacks,in partic-
ular the task of designingof the grammar. Still work in
progress,the Englishgrammarof the XTAG system(Do-
ran et al., 1994) alreadytook ten yearsof development,
theFrenchgrammar(Abeillé et al., 1994)morethanseven
years.A largecoveringgrammarcanincludeseveralthou-
sandof elementarytreepatternscalledschemata(Candito,
1999)anda syntacticdatabasethat givesfor eachlemma
thesetof correspondingtreesor treefamilies.Considering
a givenapplication,theuseof thewholegeneralgrammar
would leadto a prohibitive numberof hypotheses.More-
overourgoalis to avoid thedevelopmentof anew grammar
for eachnew application.

Work on theuseof LTAG for dialoguesystemsfor both
parsingandgenerationof a sublanguagehasbeendonere-
cently, but the tuning of a generalgrammarto a specific
applicationanddomainremainsaproblemfor thepractical
applicationof sucha lexicalizedformalism.Theextraction
of sublanguagegrammarsfor LTAG hasbeendiscussedin
(Doranet al., July 1997). But the proposedsolutionwas
basedonsuccessivemanualapproximationsby experts.No
practicalmethodologywasproposed.No significantfea-
tureshave beenidentifiedthatcouldhelp to performmore
efficiently this task or that could lead to a softwareengi-
neeringsolution.

2. Collection methodology
2.1. Restricted language

A restrictedlanguagecanbe definedasa setof utter-
anceslinked by a restricteddomain,usedfor a particular
function andgeneratedby a specificgrammarandvocab-
ulary (Deville, 1989). Two factorslimit the generallan-
guage:Thekind of discourseor dialoguewhich is realized
andtheapplicationdomainof thesystem.A restrictedlan-
guageis not only a subsetof the whole languagesincean
applicationcanusetechnicaltermswhich areonly relevant
for thedomain.Moreoverevenin limited domains,thesize
of thevocabularyandthesyntacticconstructionschangeas
theapplicationevolves.Consequentlya systemhasto pro-
posea methodologyto addnew wordsandnew syntactic

contexts for the structuresthat would not be coveredby a
generalgrammar.

Thepracticaladvantagesof therestrictedlanguagedefi-
nition areareductionof thecombinatoriccomplexity of the
processingand the ability to usea hand-writtengrammar
(which is for examplenot realisticfor dictationsystems).

In the caseof spoken dialoguesystems,we claim that
the systemsshouldnot understandwords out of the cor-
respondingrestrictedlanguagebecausesuchwordsdo not
belongto the competenceof the system. The lexicalized
grammardefinesherethenormof theapplicativelanguage,
i.e. what is acceptableor not. Sincedomainrestrictedap-
plicationsshouldnot understandevery user’s request,they
eventuallyhave to leadadditionaldialogueswith the user
in thecaseof out of domainwords.

2.2. Wizard of Oz experiments
TheWizardof Oz experimentsarenow widely usedas

a first stepof thedesignof a spokendialoguesystem.This
experimentconsistsin thesimulationof a spokendialogue
systemin orderto getasetof possibleuserinteractionsfor
agivenapplication.Theresultingcorpus(whichhasasub-
jective representativeness)becomesa referencefor thelin-
guistic modeling. In otherrestricteddomainapplications,
such as automaticthematicclassificationof e-mail in e-
commerce,asimilar stepis necessary.

Oneof themainproblemsrelatedto thiskind of corpus
is its representivenessfor the applicationsublanguagewe
want to model. If the principle of restrictedlanguageis
relevant, we canexpect that by increasingthe sizeof the
trainingcorpus,we will reacha sizesuchthatany addition
will not resultin a significantincreasein thevocabularyor
thesizeof thegrammar.

Our approachconsistsfirst of obtaininga corpuswhich
is classicallydivided in two parts. The first part is used
to designthe grammarof the restrictedlanguage(training
corpus). Thesecondoneis dedicatedto test(testcorpus).

We have presentedthe differentaspectswhich arees-
sentialfor the kind of systemwe want to build: WoZ Ex-
perimentalapproachin orderto obtainacorpus,specializa-
tion/designingof a lexicalizedgrammardedicatedto spo-
ken languageunderstanding,testof the resultinggrammar
andrepresentativenessevaluationof thetrainingcorpus.

We have not foundany existing workbenchfor lexical-
izedgrammarwhich wouldcombineall theseaspects.

3. Presentation of the workbench
The generalorganizationof a lexicalized tree gram-

mar dedicatedto parsingrelies on threemain knowledge
sources:� A morpho-syntacticdatabasewhich associatesan in-

flectedform, asyntacticcategoryandasetof morpho-
logical features.� A syntacticdatabasewhich associatesa given lemma
to asetof elementarytreesrepresentingthevalid syn-
tacticcontext for this lemma.� A setof schemata(Candito,1999).

The grammardesigning/tuningmodule of the systemis
basedon thesethreekindsof databases(seefigure1).

Multext
BDlex

descriptionscorpora

Morpho-

extraction
syntactical

lexicon
logical

interface

descriptions

Syntactic
syntactic
lexicon

corpora

generation

Finite State Automata
optimization

morpho- specialized
syntactic
lexicon

generaltraining test

automata
minimised

schema
set of LTAG

LTAG
parsers

syntactical

lexiconLTAG

descriptions
schema

derivation
forest/trees

Figure1: Overall presentationof theEGAL workbench.

3.1. Assisted generation of the lexicons

Morpho-syntactic extraction Given a training corpus,
this step just correspondsto the exploitation of existing
morpho-syntacticdatabases,Multext andBDlex (Ide and
Véronis,1994),by extractingthe requiredinformationfor
all the words usedin the corpus. This processhasbeen
implementedwith an automaton-basedcompilationof the
morpho-syntacticdatabases.

Set of schemata Weassumethatwealreadyhaveasetof
schemata(non-lexicalizedelementarytrees). For instance
this schemacancomefrom anexisting hand-writtengram-
mar or from an automatictree generationsystemas pro-
posedby (Candito,1999).A graphicaleditorallowsthede-
signof new schemataor themodificationof existingones.

Syntactic descriptions The goal of this module is to
identify the syntacticpropertiesassociatedwith a lemma
in orderto selectits correctsyntacticstructures.This iden-
tificationis notanautomaticprocesssinceresourcesableto
enumerateall thepossiblepredicativestructuresfor agiven
lemmaarenotavailable.Thisresultis obtainedonthebasis
of agraphicalinterfacededicatedto non-grammarianusers.

Themainideais to associateatermof syntacticfeatures
to characterize(i) the variouspossiblesyntacticcontexts
coveredby the generalgrammar(i.e. the variousLTAG
schemata),(ii) eachlemmaof a given corpuson the ba-
sis of a linguistic test suite illustratedby examples. The
unification of thesetwo structurescharacterizesthen the
precisesubsetof theacceptablesyntacticconstructionsfor
eachlemma.

The definition of our syntacticfeatureset is basedon
linguistic studiesof French(mainly (Abeillé, 1991)). The
currentsystemusesnineteensyntacticfeaturesfor thechar-
acterizationof a verbalcontext (for examplearity, passive,
subject-verb inversion,supportverb, equi-verb, reflexive,
auxiliary,...) andaframeof possibleprepositions.An alter-
nativewouldbeto usethesyntacticfeaturescorresponding
to the metagrammardescribedin (Candito,1999)andthe
correspondinggrammargenerationsystem:In thiscasethe

descriptiontermcorrespondingto theschemathatwouldbe
obtainedautomaticallywith thegenerationof theschemata.

For eachsyntacticfeaturewe createa linguistic test
composedby a questionlabelingthesetof possiblevalues
anda setof examples.Thetestsarestoredin a declarative
wayin aXML document.ThisXML documentis thenused
by agenerictestinterfacethatallowsauserto fill theframe
for eachlemmain a friendly way. Theresultof thesetests
consistsof a featuretermwhich is thesyntacticdescription
of thelemma.

For example the two following questionsbegin the
Frenchlinguistic testsfor verbs:� Which auxiliary is usedwith theverb? (onebetween

êtreandavoir)� Can the verb be used in an intransi-
tive/transitive/ditransitivecontext?

Thetestscontinueuntil thecompleteframeof syntacticfea-
turesandtheprepositionframearespecified.

The unificationof the termsassociatedto the different
schemataand the term obtainedfor a given lemmagives
the correspondencebetweenan entry of the lexicon and
the subsetof schematathat canbe anchoredby this entry.
For instanceon figure2, thetreeschemacanbeusedwith
thelemmaenlever sincethetwo syntacticdescriptionscan
beunified. This lexicalizationprocessis uniform with the
lexicalizationperformedonthebasisof morphologicalfea-
tures(for instanceinfinite verbsonly lexicalize infinitive
contexts).

Thismodulecanbeusedin two differentways:� Completionof thewholelist of linguistic testsin order
to characterizecompletelya lemmafor all its possible
uses.� Characterizationof thesyntacticcontexts observedin
thetrainingcorpus.

For theproposedmethodology, thesecondpossibilitymust
be chosen. The list of utterances(in the training corpus)

enlever�����������������������
�

auxiliary="avoir"
arity=transitive
nominalization="enl èvement"
argument=nominal
reflexive=true
passive=true
reflexive-lex=false
ergative=false
permutation-subjet-argument=false
inversion-subject=false
support=flase
symetrical=false
ellipse-obj1=true
preposition1=no|"de"

� ����������������������
�

Canonical Transitive Tree Schema�� arity=transitive
argument=nominal
preposition1=no

��
V

N	 V

[]

N	

Figure2: Two examplesof syntacticdescriptions:onefor theFrenchlemmaenlever, onefor a transitive treeschema.

which containthe lemmaandthe linguistic testsarepro-
posedsimultaneouslyto theuserby thegraphicaldescrip-
tion tool. In our methodology, contraryto theclassicalap-
proachfor cuttingdown thegrammar, we specifyeachen-
try of thelexicon in termsof its category andalsoin terms
of its correctsyntacticcontexts. The resultinggrammaris
reallya lexicalizedsubgrammar.

We do not usethe principle of treefamily usedby the
XTAG systembecauseof thesmallsizeof the lexicon and
for reasonsof computationalefficiency. With treefamilies,
thefinal selectionof treesassociatedto anentryof thelex-
icon is obtaineddynamicallyby unificationat the time of
instantiation.Herethecorrecttreesarealreadypredefined
andlistedin thesyntacticlexicon.

A complementarytool for linguistsallowsthedesignof
linguistic tests.We notethat:� Thedescriptionsobtainedby filling thefeaturesframe

areindependentfrom the lexicalizedformalism. For
instance,onecoulduseHPSGlexical types.� Thismoduleallowsusto integrateeasilynew wordsto
a systemby characterizingthe inflectedforms which
are not recognizedduring the morphologicalextrac-
tion. Moreover a very importantpoint is that adding
new wordswith thistool canbedoneby anon-linguist
userif thelinguistic testsarecorrectlywritten.

Automatic generation of the specialized LTAG syntac-
tic lexicon This stepproducesthe syntacticlexicon by
exploiting informationfrom the threedatabasesdescribed
before.We addto eachentryof themorphologicallexicon
the list of LTAG schematawhich canbe lexicalized. This
list is obtainby� The unification of the morphologicalfeaturesof the

flexed form with the morphologicalfeaturesof the
nodeto beanchored.� The unificationof the syntacticfeatureterm that de-
scribesthecorrespondinglemmawith all thesyntactic
featuretermsof theschemata.

The links to schemaaresimply notedwith externalrefer-
encesusingtheXML links mechanisms.Thefinal anchor-
ing is classicallydoneasa pre-parsingprocess.

3.2. Parsing test workbench

After the generationof a grammarfor an applicative
sublanguagegiven a training corpus,this moduleaims to
testtheresultson a secondtestcorpus.It allowsus:� To visualizetheparsingresults(bothpartialandcom-

pleteones).� To checkthegeneratedgrammarandpossiblychange
manuallysomedatain thesyntacticlexicon or theset
of schemata.� To testandto comparevariousparsingheuristicsand
strategies.� To studyoutof grammarphenomena.

This workbenchimplementstwo chart parsingalgo-
rithmsandseveralparsingheuristics:� A bottom-upconnectiondrivenalgorithmthatdelivers

extendedpartialresults(Lopez,2325February2000).� An implementationof thetop-down Earley-like algo-
rithm of (Schabes,1994).

The bottom-upparsergives completeand partial parses
with or without unification of featuresstructuresusedin
FeatureBasedLTAG. Thesedifferentkinds of resultsaim
to testthegrammarby identifying thestepinvolvedin the
failureof theparsing.

3.3. Technical choices

The implementationhave beenmadein Java for porta-
bility reasons. All the involved dataare encodedin the
highly portableformalismXML. A specificapplicationof
XML dedicatedto resourcesusedwith LTAG hasbeende-
velopedcalled TagML (Tree adjoining grammarMarkup
Language)(LopezandRoussel,2000). TagML allows an
efficientrepresentationof thesedatain termof redundancy.
For instanceit is possibleto encodeonly one time sub-
structuresthatareredundantin severalschemata.Similarly
it is also possibleto sharefeatureequationsoccuring in
severalschemata.All theseredundanciesimply redundant

computationthat could be avoided. This standardrepre-
sentationallowseasyresourceexchangeswith our research
partnersandallowsthesharingandthecomparisonof tools.
TheDTD allows us to checktheconsistency of the whole
grammar. Every parserthat respectsthis encodingnorm
canbeintegratedto theparsingworkbenchveryeasily.

The Java sources,classesand documentationof the
parsingtestworkbench,includingeditors,arefreely avail-
ableon request.The othermodulesshouldalsobe pack-
agedandavailableat thetime of theconference.

4. Grammar of the GOCAD corpus
4.1. A target application: GOCAD

TheGOCAD applicationaimsto modelgeologicalsur-
faces. The protocol and the Wizard of Oz experiment
usedwith this applicationare presentedin (Chapelieret
al., 1995). This experimentallowed us to obtaina corpus
which hasbeenencodedfollowing theTEI specifications1.
Thiscorpusof transcribedFrenchspokenutterancesis pre-
sentedin Table1.

4.2. LTAG for the applicative restricted language

Thecorpushasbeendivided in a trainingcorpus(80%
of theutterances)anda testcorpus(20%). Thesizeof the
LTAG grammarobtainedwith the EGAL systemis pre-
sentedTable2. The total numberof links to schemais a
goodmetricfor thewholesizeof thesyntacticlexicon.

Giventhisspecializedlexicalizedgrammar, theaverage
time for parsingis 167 ms per utterancewith an average
lenthof utterancesof 6.42wordsperutteranceon SunUl-
tra 1. It is difficult to comparewith resultsobtainedwith
thecompleteFrenchLTAG grammarbecausefirst thecov-
ering of this completegrammaris really limited for this
corpus(124unknown words).Moreover, for technicalrea-
sons,thisgrammarhasbeendesignedfor theXTAG system
whichis verydifficult to install (SunOS4 only for instance)
anduse. For indication,the parsingof sentencesof 10 to
15wordscantakemorethantenminutes.

4.3. Representativeness of the training corpus

Themorphologicalextractionphaseandthegeneration
of thesyntacticlexicon for GOCAD arefast(lessthanone
secondfor thefirst one,lessthantensecondsfor thesecond
on anaverageworkstation).Consequentlyit is possibleto
realizesystematicteststo studytheevolution of thegener-
ateddata.Themethodconsistsof first randomlyselecting
utterancesfrom the whole corpusandthengeneratingthe
correspondingLTAG grammar. This allows usto studythe
evolution of the sizeof the grammargiven the numberof
links to a schemain function of the numberof utterances
taken into account. A decreaseof the slopeof the curve
indicatesan improvementof the coverage. A horizontal
asymptotewould meanthat the coverageof the grammar
is perfectfor the target sublanguage.The Figure 3 gives
theevolution observedfor theGOCAD corpus:Thenum-
berof new structuresobtainedby consideringthe last two
hundredutterancesis very low andwe canconcludethat

1This corpus is available on the Silfide server
(http://www.loria.fr/projets/Silfide/)

thefinal generatedgrammaris agoodapproximationof the
GOCADsublanguage.

Figure 3: Evolution of the size of the generatedLTAG
grammar(numberof links to schema)asa functionof the
sizeof thetrainingcorpus(numberof utterances)

Sucha result can be very useful to estimatethe size
of the corpusneededto reacha satisfactorycovering rate.
Covering100%of theutterancesis not our objective since
in our approachonly utterancescorrespondingto thecom-
petenceof thespokensystemneedto beunderstood.

5. Future direction
We plan to seehow the workbenchscalesup to other

corporaandapplicationsdifferent thanspoken interfaces.
Our secondgoal is to extendthespecializationworkbench
to covermultilinguality. Onedifficulty thatarisesis thatthe
syntacticfeaturesusedfor thedescriptionof treeschemata
andlemmascanbedifferentfrom onelanguageto another.
It wouldmeanthatonly asubsetof thesefeatureshasareal
multilingualvalidity andcouldbeusedfor parallelspecial-
izationof multilingual syntacticressources.Syntacticfea-
turesdependingonthelanguagemightbelimited if weonly
restrictthemto pairsof languages,i.e. not consideringall
thelanguagesat thesametime.

6. References
Anne Abeillé, Béatrice Daille, and A. Husson. 1994.

FTAG : An implementedTree Adjoining grammarfor
parsingFrenchsentences.In TAG+3, Paris.

Anne Abeillé. 1991. Une grammaire lexicaliséed’arbres
adjointspour le français. Ph.D.thesis,Universit́e Paris
7.

Tilman Becker, Anne Kilger, Patrice Lopez, and Peter
Poller. 2000. Multilingual generationfor translationin
speech-to-speechdialoguesand its realizationin verb-
mobil. In ECAI’2000,Berlin, Germany.

RensBod. 1995. Enriching Linguisticswith Statistics:
PerformanceModelsof Natural Language. Ph.D.thesis,
Universityof Amsterdam.

Marie-HélèneCandito. 1999. Structuration d’une gram-
maire LTAG : application au français et à l’italien .
Ph.D.thesis,Universityof Paris7.

LaurentChapelier, ChristineFay-Varnier, andAzim Rouss-
analy. 1995.ModellinganIntelligentHelpSystemfrom

Numberof user
utterances

number
of words

averagenumber
of words/utterance.

862 5535 6,42

Table1: GOCAD corpus

numberof inflected
forms

numberof
schemata

numberof links
to schema

526 71 1776

Table2: Sizeof theLTAG grammarcorrespondingto thetrainingGOCAD corpus.

aWizardof OzExperiment.In ESCAWorkshopon Spo-
kenDialogueSystems, Vigso,Danemark.

Guy Deville. 1989. Modelizationof task-OrientedUtter-
ancesin a Man-MachineDialogueSystem. Ph.D.thesis,
Universityof Antwerpen,Belgique.

ChristyDoran,DaniaEgedi,BethAnnHockey, B. Srinivas,
andMartin Zaidel. 1994.XTAG System- A Wide Cov-
erageGrammarfor English. In COLING, Kyoto,Japan.

C. Doran,B. Hockey, P. Hopely, J.Rosenzweig,A. Sarkar,
F. Xia, A. Nasr, O. Rambow, andB. Srinivas.July1997.
Maintaining the forest and burning out the underbrush
in XTAG. In Workshopon ComputationalEnvironments
for Practical GrammarDevelopment(ENVGRAM’97),
Madrid.

ArianeHalber. 1998. Grammaticalfactorandspokensen-
tencerecognition.In Workshopon Text, Speech andDi-
alog, Brno.

Nancy Ide andJeanVéronis. 1994. Multext (multilingual
tools and corpora). In 14th Conferenceon Computa-
tional Linguistics(COLING’94),Kyoto,Japan.

Aravind K. JoshiandYvesSchabes.1992.TreeAdjoining
Grammarsandlexicalizedgrammars.In MauriceNivat
andAndreasPodelski,editors,Tree automataand lan-
guages. Elsevier Science.

PatriceLopezandDavid Roussel.2000.PredicativeLTAG
grammarsfor TermAnalysis. In TAG+5, Paris,France.

Patrice Lopez. 23-25 February, 2000. ExtendedPartial
Parsingfor LexicalizedTreeGrammars.In International
Workshopon Parsing Technology, IWPT 2000, Trento,
Italy.

Patti Price,RobertMoore, Hy Murveit, FernandoPereira,
JaredBernstein,and Mary Dalrymple. 1989. The in-
tegration of speechand natural languagein interactive
spokenlanguagesystems.In Proceedingof Eurospeech,
Paris,France.

YvesSchabes.1994. Left to Right Parsingof Lexicalized
TreeAdjoining Grammars.ComputationalIntelligence,
10:506–524.

BangaloreSrinivas. 1997. Complexity of lexical descrip-
tions and its relevanceto partial parsing. Ph.D.thesis,
Universityof Pennsylvania,Philadelphia.

�
��������	
�����
������������������������

������	�������	�
���������	 �� �������� ��� ��

��������� ���������	 �� �������� �������
����� ��������!"����������

�

��������

�

�� �� ��������	 �
�� �� �
� �����	�� ���������� ������ �

�� ��������� �������� ��	
��� ��	� �������� �
� �������

�
��	
��� ������ � �
� �
�� �
��� � �������� �	�����

�
��
�� ������� � ������������������ �
� ������� �
��	 ��

�� ��	� 	����	��� � �����	�	 ������ �
� �������� �������

�
��	 ����	� ������������ � ������ ������ ������ � ���	�

���� 	������������� ���� � �����	�� ���������� �������

����� �����	 ���
 ���� � � ������ ��	�� �� ������� 	�������	�

�����������	��

#�$"����%���� ��� $�&��� � �	���'� ��� ���&���(�
'���(�'��� ��� ��� ��%�������	 ���	 �� ��� &"��� ����
�������	 �	���'� ��� �� �� �'��(� %" �$$��%������ �"��
$�����' �����	 ��'$�� ������)�� �"��� ��$�%������� *� '��
&��"�� ��� ���(�� �	���'+ ��� �� ���� &"�%" �� �"��� �&�
�"� �� *� (���� $�������%�+ ,"��� ��� *�(��������%��
�'��(��� ���� �� �"� $��$�������� �� �� ��'� ���
�������(�"� �	���'�
� $��������	� %�'��(���' �"� ������%" %�'' ���	 ���

������($��'����	 �$�%������� %�'' ������ � ����� �"�
�%���'��� �' ���������� �� '���'�-��(�"� ��*����	 �� �
���&���(� '���(�'��� $�%��(�� &"�%" %������� �� ����
(�(� ���� �%�� �� &��� �� �� ����� � ���(�(���$�%���%
��� (�������$ �$��� �$$��%������� � �"��� ���% �� � �	���'
�"�� ����	��� �"� ���(�(� % ' �������	� �������(���'
'��$"���(./��������'� ��012 �������� ���34 ���
��������(�� ����'*�(����� .'��$"���(�%�� ��� ��'���
��%4 ��� �	���%��% ����	��� ./������� ����� ������ *2
/������� �� ���2 ,�$������� ���5� ����2 ,�$������� ���
67������ ����2 8� �������� �� ��� ���32 8� �������� ���
,�$������� ���14� 9���' ' ����������	 �� �"� �	���' ��
�%"����� *	 ��%� ���(���� �"� $�%��(� ��� %�'$������ ��
����	���� �� �"�� �"� ��� %�� $�����' � ���(� � '*�� ��
��������� ����� &��"�� ��� ���(�� �	���' . ��������
�����4� ,"� % ' ������ ���(�(� ����	��� $�%��(� %�� *�
%��%����� �� � %"��� �� $"����� &"��� ��%" $"��� �����
�"� � �$ � �� �"� $����� � $"��� �� ��$ � ��� $�����'� �
������� �$�������� ,"�������� ��%" $"��� �� ����	��� �� �
$�������� % ����($����� &"�%" %�� *� � *���� ��� � % ��
��'�-�� �$$��%������ ,"� ��� �� �� � '��$"���(�%�� ����
�	���� ��� ���'$��� �� �"� $"���� �� &"�%" � �$�����(
%"�%��� %�� *� * ���� � � ��"�� $"��� �� �"� %"��� $�������
� *���� ��� '��� �����%�� ���(�(� $������(������ � %"
�� $"���� ��� %� �� %"�%����� ,"��� ��� ���'$��� �� � %"
% ���'������� &"��� �"� ��� ��� "�� ���	 ��& %"��%���
:� '�	� "�&����� %��%���� �� � �	���' &"��� �"� ���

 ��� "�� �%%��� �� ��%" $"��� �� �"� ����	��� %"��� ��� ��
��� ��� �����'������ ����	��� ��� ���� # %" $����*�	 ��� �
�����'������ $"���� ��� �"� ���� �� ������ .���������4� '���
$"���(�%�� ����	��� &��" ��� $����*�� (��''���%���	 %���
��%� �����$��������� �� ��%" &�������' . ��� � ��� �� �	��(
"�'��	'	4� "� �����% '��$"���(�%�� (����� ��� ����(��

��(����	��� ��� ���%�(����� &����� '��$"���(�%�� ����
�'*�(����� .�����'*�(� � '��$"���(�%�� �����$�����
���� �� &�������'�4� ��'����% ����'*�(����� .�����'�
*�(� � &��� ����� �����$�������� �� &�������'�4� �	��
��%��% ����	��� .�"����& �	���%��% $�����(�� � �� ��$����
��%	 ����� ;,�$������� ��� 67������ ���<2 67������ ���
,�$������� ���<2 ,�$������� ����=4� ��%�
�� �"� ��� "�� �%%��� �� �"� &"��� $�%��(�� "� �� �"� ��

�*�� �� '��� '���' ' �� �� �"� $�&�� �� ��%" �� �"�
$��(��'�� ��� %�� �� ����� �� ���>� �&� %"��%� �� ��$ ��
�� ����� �� ����-� �"� ����������	 �� �"� �	���'� �"� ���
�������'��� �"� �� ��%������� $��%�����(�� $�$�� � %" ��
�� �� �� ����?@�� � �������'����� ���� ������� (�������
$ �$��� ��������� ������� ��� $��(��''��(���(�(�� ��
���� ��� �� �"� ��� ����� �� �"� �	���'� �� ��"�� &����� �
%�'$��"������ ����	��� �	���' &�����(�� � $�&��� �
�������'��� ��%�������� �"� '���' ' � '*�� �� �$$��%��
������
�� *�%�'�� �*��� � ���' �"� �*��� �"�� �"�� �� ��� � "���

��* ���� �	���'� ��� '	 �'$������� �� �"�� �����	 ��� �
�	���'� %����� *� '��� ���	 ��'$��� � � �"�	 %�� *�
'��� '���(��*�� ��� �����	 ���	 �� ����� ��� ��� $���
����� �"�� %����%� ��� �������� �����'����� �� (���� �*� �
�"� $��$������ ��� � �%���� �� ��%" '�� ��� ����& � �"���
��$��%��� �"� ����� (���� �*��� *	 ���%��*��(� ���(�(��
�$�%���% ���&���(� '���(�'��� �	���' �$$���� �� #&��
"����

��������������� ���!����

,"� ���&���(� '���(�'��� �	���' "�� �"� �����&��(
%�'$������A
.�4 � $��(��' �"�� % �� ��� '���� �"� ���� ���� � ���*��

$��%�� ��� � ��"�� $��%�����(�
.34 ,��� ���'������ �"�� ���'������ �"� ���� � ���*�� ���

%�'$ �������� ����	����
.14 ,�������� �"�� ���������� ��%" ����� �� ���� ��� ����

��%������ �"� �����
.�4 9��$"���(�%�� ����	��� �"�� (���� ��%" ����� ��� ��

'��� ����	����
.�4 � �����% (����� �"�� ����-�� '��$"���(�%�� ����

� ��� ��� ����(�� �� ����	��� �� ���%�(����� &�����
.54 9��$"���(�%�� ����'*�(���� �"�� �������� '���

$"���(�%�� �'*�(��	 �� �"� *���� �� %�������
.<4 #�'����% ��((�� �"�� ��(� �"� &�������'� ��'�����

%���	 &��" �"� "��$ �� � ����� $ ��%������	�
.04 #�'����% ����'*�(���� �"�� �������� ��'����% �'�

*�(��	 &��" �"� "��$ �� .�4 %���������������� � ���� ��� .*4
*	 ����-��(�"� ��%"��B � �� #����C������(9�$.#C94�
.�4 #	���%��% ����	���� ,&� �������� ��� $�������� ���

��� �"����& �	���%��% $�����(.)��������� D��''��4� ���
����"�� ��� ��� %����� %���(� �� �	���%��% ����� .E�$����
��%	 D��''��4�

.��4 D������ ����%�� ����*��� '���(�� ��� ��������'��(
�"� ��� �� � ���*�� ��� (������ ��%������	 %�'$��������
.��4 E�'�����$�%���% ����*��� '���(�� ��� $��$����(

��'�����$�%���% ��%����������
.�34 �����'����� �����%���� *���� �� ���(����% ����	����

,"� �	���' �� �� %����� %��� �"�� ��%" '�� �� �� * ���
�� ��$ �� �"� $����� � ���� ��� ���'$��� �"� "� �����%
(����� .�4 %�� *� �$$���� ���	 ����� �"� $"���� ��� "���
*��� $��%������ ��%� �� ��� '�� ���� ��%�$� ��� .�4 ���
.14� ��� ���(�(���$�%���%� �%%��� �� �"� &"��� $�%��(�
"�� �� *� $������� ��� �"� ����
,"� �	���' "�� *��� ���� ������$'��� ���%� ��0��

��� % ������	 �� "�� '�F�� %�'$������ ��� '��$"���(�%��
����	��� . �������� ���34� '��$"���(�%�� ��� ��'����%
����'*�(����� . �������� ���54� �� &��� �� ��� �"����&
�	���%��% '�$$��(. �������� �����4�

"��# ����	��� ��$��
�����%�

���"� (" �� �� (�������	 �%%�$��� �"�� ���&���(��*����
�	���'� ��"��%� (�����	 �"� $�����'��%� �� ���&���(�
'���(�'���� ���	 ��& � %" �	���'� ������ ,"� *�������%�
'�("� ��� *� ���	 �"� ��%� �� � ���%�����	 �����%�� '���
 ��� �� �"� �	���'� * � ���"�� �"� ��%� �"�� �"� �	���' ��
��%�������	 �����	 %�'$���� ��� �"�� �����	 �"� ����(���.�4
�� �"� �	���' "��� �%%��� �� �"� �� �%� %��� �� ��� �"�
%�'$������ �� �"� �	���'� �� ����� � ��� � � �"�� �"� ���
����$�� �� � '�� �� ����� "�'���� ��� ((���(&��" $��*�
��'� �"�� �%� ���	 �"� �� "��� *��� ������ *	 �"� ������
�$�� �� �"� $����� � '�� �� �� �"� %"���� ��� �� �"� $���
��� � '�� �� %����� *� %����%���� �"� ������$��� ��� ����
��� ((���(&��" $��*��'� �� �"� &���(�������'���� :���
&��" � ���*���� ����'*�(����� ��� �	���%��% $�����(�� ��
���'$�� �� � %" &���� &"��� �"� ������$��� �"� �� "���
� $����*����	 �� %����%� �� %"��(� �"� '��$"���(�%��
$������ ,"��� ��� ��&�	� * (� �� �"� '��$"���(�%�� $������
��� � %" * (� ��� ����� �� �� �� ������(����'*�(�����
� ���� ���� �"� %����(�	���' '�("� ���� �'$����'����
��� �� &� �� *� *��� �� ��� �� �� �"� '��$"���(�%�� $�����
��� ��� $��%" �� $ ����� �"� ����	��� "�� ������	 *��� $���
���'���

&��' �

����	������������(���	����������	���

,"� �	���' ����%"�� �*��� '���� �� $����*�� �� %���
��� %� �"� $��%�����(%"��� �� ������� &�	�� ��$�����(��
������ �� �� �� &��� ���&�� %�''��� %���� �� ���	��(
%�'$�����	 '�	 *� ������ ���� �"��� �%��$� ������ ��� ���
�'$��� �"��� �%��$�� ��� $�����'��(����� � $"���� �� �"�
$��%��� '�	 *� %����� %��� �� �"�� ��� �%��$� $�����'�
$"���� ���� ����"�� ���� ����"�� ��� �(��� ��5� ��%� �� ��
�'$������ �� ���� �"�� �"� �	���' ����&� �"� $��%�����(��
��& ����� ��� &��" ��%" %��� �"� $��%�����(�� ����� �"�� ���
�� �� ������� �� �"� �"��� �%��$��
:"�� �� ������� �� �"��� �%��$�� '�	 *� %����� ����

����%��	 ���' �"� %�''��� $��'$��)�''��� %���� ����
"�&����� � ���	 �� %�'$��� �"�� �"� �� �� �"��� �%��$��
"�� *�%�'� � %�''�� $��%��%�� �&����� �"� �"��� �%��$�
���� ��� ��%�������	 ��&�	� (��� �"� ������� ��� ��� ���
�"�� ������ �� �� ����� ��� � �� %�'*��� �"��� �%��$�� ���
%�''��� %���� �� ��� %����B ���� %"��� �� %�''�����
:"�� �� �'$������ �� �"�� �"� ��� '�	 * ��� ���>� �&�

&�����(�������'��� *	 ���(�"� $����*������� ������� *	
�"� �$������(�	���' .����?@�� �4� ,"�� ���� ��� ��%� ��
�"� $����*����	 �"�� �"� *���% $�%��(� ������* ��� �� �"�
% ���'��� %������� � '���� �������'��� ��� �"��� &"� ��
��� "��� �������� �� ��'� �� ������$ �"��� �&� '���
�����*�� �������'����

)��# ���������� �
��� ����������*��

 ���%�

)��$ � ����� ������*�� �� �"� % ���'��� ��� ����� ���
%���� �� ��'� &�	� �� �"�	 �� ��� "��� $��������$��%"
��((��(� �� ���� '��� ��$"����%���� ��%����(� �"�	 ���
��%���� �� ����� �� �"� ����� �� ��% '��� ��� %� ��� *	
 ���(#D9@� ,G�� �� H9@ ��%����(� �� ��$���� ���	
' %" �� �"� �$$��%����� &"�%" �	$� �� ��%����(�� ��� ��
��� ��� ������%�� �"� �$$��%����� �� ��'�� �� ���������(
&"��� ��% '���� �%%�����(�� ����%��� %�������� �"�
��% '��� ��� %� �� ��%����(�� ��� �� ��� ����� � ����
%����� C� �"� ��"�� "���� �� �"� �$$��%����� ��'� �� �����
(������ ���&���(� '���(�'���� �"� ��%����(�� �"�
��% '��� ��� %� �� $������� ���	 � ���� �� *�%�(�� ��
������ ��� ��%" ����� "�� �� *� ��%���� �� ���$�%� �� �����
��� ������ �� ���(����% ����	���� @�� � ���� �� '��� ������
�"� ��� ����� �� ����� � ���'��� �� �� �%� �����

.�4 #D9@� ,G�� ��� H9@ ��%����(
C�� �� �"��� ��%����(�	���'�� ��%������(�	 H9@� ��

 ��� �� ��%����(%��$���� ���"� (" � %" ��%����(�� ���
���	 ��� � ��� ��'� �$$��%������� �� �� ��� "��'� � ���"���
*�%� �� �� "��$� �� ��%� ���(�� ��%� ���(��%����� �� �"�
��% '���� �� $��%�����(�

.*4)��$��� &��" $��������$��%" ��((��(
��� � ���(��'� %��$��� ��((�� &��" IC# %���� "���

��� $���%�$�� �� �%�� �� %��$ ������ ���(����% ��������
(������ ,�((�� %��$��� "��� �"� �������(� �� �����$���
��%	 ��� �����	 (��� �����*����	� *�%� �� �"� %��� ��� ��
&��� �� �"� �%� �� ��%����(�� ���� �� ����*��� ��� �"� ���
%����("�� *��� %"�%���� ��� ����������(� �� �"�� �� �� �
���-�� ��% '���� ���" �"� ���� ������ ��� �"� ��%����(���
�� ����� ���'��� ��� �� ����&� ���	 ������ %���*�������

.%4)��$��� &��" ����	��� $��(��'�
�� �"� ��' �� �� ����*���" �� �%% ���� ��� ����%����

���&���(� '���(�'��� �������'���� �� �� "��� �� ��� ��	
��"�� $����*����	 �"�� �� $������ �"� % ���'�� &��" � $�%��
�(� �"�� %������� *��" �"� �� �%� ����� ��� �"� ����	���
$��(��'�� ��� �� ��%� �"� $��(��'� ��� ���� '��� �'�
$������� *�%� �� �"�	 (��� �"� ��� � $����*����	 �� �� ��	
������ �� ����� �� '��� �"� �	���' �����������	� �"� ����	�
��� �	���' �"� �� *� �*�� �� �%%�$� ���� �� �"� ���'��
&"��� ����� ��� � ���	 ������*���
:"�� �"� ��� "�� �%%��� �� ��� $��(��'� �� �"�

$�%��(�� �� '���� �� $����*�� �� '������� �"� ��'� ����� ��
����� � ���'���� �� �� �*��� � �"�� �"� �������	 ���� ���'��
�� ��� � �� ���������(%������ ��� ��	&����� �� �� ���� ���	
�����	 �"�� �"� ��� &� �� ���� �� "��� �"� ���� ���� ��
��'� ���� �� $���$��%����� ���'��� �� �"�� �"��� �� ��
���� �� $��%��� ��� $"���� ��%" ��'� &"�� �����'����� ��
����%"��� �� ����� � ��������� ���'��� �� ������%��$�������
���'��� �� � ��� � ���'�� �� $�������� �� �"�� %���� $��%�

�����(%� �� *� ������� ���' $"��� �� ,"� "������� $��� ��
$��%�����(�� �"� ��%���� %�'$���� �� $"���� ���� *�%� ��
�"�	 %������ �"� �%� �� ���(����% ����	��� ��� ����'�
*�(������ ��%� �� �"�� ����� ��'� ��'�� ��$�����(�� �"�
��-� �� �"� %��$ �� �"��� �� � ��'$������ �� ����	�� �"� %���
$ � ��� $������� �"� ����	��� ������� �� %��$ � �� �
�� �%� ��� � ��"�� $��%�����(� ,"� ����������(� �� �"�� �"�
����	��� ����� ���� �� *�%�'� �����	 ���(�� �� #&�"��� ���
���'$�� �� ��'�� �"� ��-� �� �"� ���(���� ����� ,"� ����'�
*�(����� $��%��� ��&���-�� �"� ��� �� *	 �*� � �� $��
%���� �&����� �� �"� ����'*�(���� ���� �� ����� ��
-�$$�� ���'��� ��� ��-� �� �*� � �"� ��'� �� �"� ���(����
 �-�$$�� ����� ,"�������� �"��� ��� $��%��%�� $����*�������
�� '������� ���� ���(� ����� �� ����	��� ���'���

+��, ����	��
������	���

�� ��$���� �� �"� ������ �� �"� ��� &"�� ����� �� ��
%�� *� '��� �� �"� ���(�(� '���(�'��� �	���'� ,�����(
�"� $�����'��%� ��� �%% ��%	 �� ��%��������� . ��������
����� ����*4 ��B ���� ' %" '��� ���' �"� ��� �"�� �"�
$��� %���� �� %��%�����%��� ��� ���'$��� ,����(����
�%%� �� �"� ��%� �"�� '��� ���� ��� � �"� ���� �� ��� �"�
����� � $"���� �� ����	��� ���%��*�� �� .34 �*��� %�� *�
$�%��� �� �"� �����&��(%�'$������A
.�4 	
������ ��%� ��� �"� $"���� ��1
.*4 �
���
�
����� ����	��� ��%� ��� �"� $"���� ���
.%4 �����������
� ��%� ��� �"� $"���� 5�0
.�4 �������� ������� ��%� ��� �"� $"��� �
,"��� %�'$������ %�� *� %�'$���� �� � ���'� ���������

�� &"�%" %��� �"�	 %����� *� '������� *	 �"� ��� * �
�"��� �� �� ���	 ��� ����� ,"�� ��� ���� ��%� ��� �"� '���
�'$������ ���(�(� ����	��� %�'$������ * � ����� ������
�"� ��� ������' �� $��%��� �"� ��� �� �� ��%" $"��� ���
���>� �&� ������

-��'�����!�

� � �� ���(�(� ����	��� $�%��(� ���$��� �� � � ���*��
$������' ��"��%�� �� �%% ����� $�&��� � ��� ���������
&�����(�������'��� ��� � � '*�� �� �$$��%������ ���
 ����������� ������ ,"� �	���' ���%��*�� "��� ������
"�����	 �� ���(�(���$�%���% ��� � ���*���� %�'$�������
���"� (" �"� *���% %�'$������ ��� (�����%� ��'�����$��
%���% �$$��%������ %�� *� * ��� �� �"� *���� �� ���� ��� ��
�"� ����	���� �� �$$����� ��� ��'� �����%�� ���' ���� ��
����� � ���'����

������	*�

������� �
����

�	����� "�-� ���� '������ �����-�'��� � $�'*��� ��
&����"��� ��� �$��� '*�� -� � ���	� ��-� 	� �������
.����� ����� �	�
�
����
��
 �� ��
�� �� ����� ���� �����

��
� �� �
��
 �� ��� ����� �� ��
����
� ��
��4

�
���
�
������� ������� �
���� ����
��

������������

���������	
�
������	� �������� �� � �	�� �

���	�	
�
��	�	� � ��� �� �� � � � �! "���� �
��	�	� � ���	"�� �� �� � � � �! "���� �
��	�	� ��# $%� &�� '������ � ��	" �

���	(�
�
��	(��)�*��+ �$ � ,-. ,/.
��	(�� �$0 ��1�2� �� � �3�4� �

�����5	�	
�
���5	�	� � �60 �2� ��7��+8�#60 �� �� ��# � 9!

4�"��4:� �
���5	�	� � �60 �2� ��7���7��� �� �� ��# � 9!

4�"��4:� �
����5	�	� ��7��+ �� � 4�"��4:��4 �

�����(��	�	��
�
�(��	�	��� � ��7��+8��� �2� ��&�� �� �� � ;�

��:�""�4� < ;� 5!4:�9 �! � �=�=
��� ���;���
�

����;���� � �2 �� ��# � 9�:!4��� > 5	?�� �	�� � �%-
����
�

���� -- @--
���� �+����=
���� ���#��
���� ��%�

����5�9�	(
�
�5�9�	(� � �60 �2� ��7���7�#60 �� �� ��# � ;�

?���4! " < 9!���� �
�5�9�	(� � �60 �2� ��7���8�#60 �� �� ��# � ;�

?���4! " < 9!���� �
�5�9�	(� � �60 �2� ��7���8��� �� �� ��# � ;�

?���4! " < 9!���� �
�5�9�	(� � ��7��+7��� �2� ��&� �� �� ��# � ;�

?���4! " < 9!���� �
�5�9�	(� � 8�A��+��� �2� ��&� �� �� ��# � ;�

?���4! " < 9!���� �
�5�9�	(� � ����+��� �2� ��&� �� �� ��# � ;�

?���4! " < 9!���� �
�5�9�	(� � ��7���8��� �2� ��&� �� �� ��# � ;�

?���4! " < 9!���� �
��5�9�	(� ��7��� �� � 9!�!4 < ���4!��

��	(
�
�	(� -#0 ��-�6 �� � "! ���� < 	� !49�4 �! �

�������
�
������ � �60 �2� ��7��+8��� �� ��# � ?�� �

���;	�
�
��;	� � '�������+ � ����" �
��;	� � '�������� � ����" �

����
�
��� +%�-# '������

��� 5����
�
�5����� � �2 �� ��# � 9!< ���� �

�����	
�
����	� '�������+ � �!4� �
����	� '�������� � �!4� �

����
�
��� +%�-# 8�A���
��� +%�-# '�����+
��� +%�-# B�C���
��� B�C������

�� ��5	�	
�
���5	�	� � �60 �2� 8�A��+�#60 �� �� ��# � 9!

4�"��4:� �
���5	�	� � �60 �2� ����+�#60 �� �� ��# � 9!

4�"��4:� �
���5	�	� � �60 �2� ��7��+7��� �� �� ��# � 9!

4�"��4:� �
���5	�	� � �60 �2� 8�A��+��� �� �� ��# � 9! 4�"��4:�

�
���5	�	� � �60 �2� ����+��� �� �� ��# � 9! 4�"��4:� �
� ��5	�	� ����+ �� D- � 4�"��4:� �

��EF
�

�
������ ������� ������� �������

�
���
�
����� �� ������� ������������

���������	
�
������	� �������� �� � �	�� � @=��%

���	�	
�
��	�	� ��# $%� &�� '������ � ��	" � @�$

���	(�
�
��	(�� �$0 ��1�2� �� � �3�4� � @�$��

�����5	�	
�
����5	�	� ��7��+ �� � 4�"��4:��4 � @�160

�����(��	�	��
�
�(��	�	��� � ��7��+8��� �2� ��&�� �� �� � ;� 5!4:�9

�! � �=�= @2����
��� ���;���
�

����;���� � �2 �� ��# � 5	?�� �	�� � �%-
����
� @�2������

���� ��%� @��%�

����5�9�	(
�

��5�9�	(� ��7��� �� � 9!�!4 � @��#60
��	(
�

�	(� -#0 ��-�6 �� � 	� !49�4 �! � @-�
�������
�

������ � �60 �2� ��7��+8��� �� ��# � ?�� �
@2�����4

���;	�
�

��;	� � '�������� � ����" � @#60
����
�

��� +%�-# '������ @�#�
��� 5����
�

�5����� � �2 �� ��# � 9! � @�2������
�����	
�

����	� '�������+ � �!4� � @#60
����
�

��� +%�-# '�����+ @�#�
�� ��5	�	
�

� ��5	�	� ����+ �� D- � 4�"��4:� � @��
��EF
�

������������ ���� �� �
���� !"��#

� �����	 �����	 ���&
B @=��% �������� �� �
�	�� �

7 �	�	 �	�	 9��&
� @�$ ��# $%� &��
'������ � ��	" �

8 �	(� �	(� 9��&
A @�$0
 �$0 ��1�2�
�� � �3�4� �

A ���5	�	 ���5	�	 " ;G&
B @�160 7��+ �� �
4�"��4:��4 �

B ���(��	�	�� (��	�	�� ��	�&
� @2���� � 7��+8���
�2� ��&�� �� �� � ;�
5!4:�9 �! � �=�=

C � ���;��� ���;��� �!9&
B @�2������ � �2 ��
��# � 5	?�� �	�� � �%-

) �� �� ��&
* @�$�� ��%� � �	�� �
* ��5�9�	(�5�9�	(!;G&
C @��#60 7��� �� �
"�!�"!4 �
' 	((��&
�� @-� -#0 ����-�6 � 	�

!49�4 �! �
�� ����� ���� :��&
C @2�����4
 � �60

�2� 7��+8��� �� ��# �
?�� �

�� �;	� �;	� !;G&
�� @#60 '�������� �
����" �

�7 �� �� �!9&
�� @�#� +%�-#
'������

�8 � 5���� 5���� �:!��&
�� @�2������ � �2 ��
��# � 9! �

�A ���	 ���	 !;G&
�8 @#60 '�������+ � �!4�
�

�B �� �� ��&
�C @�#� +%�-#
'�����+

�C ��5	�	 ��5	�	 ���4&
�A @�� ����+ �� D- �
4�"��4:� �

�) E

������������� �
����� �
���� �
����
� ���$����

���C �������	
� ������	� ����+ �� � �	�� �
��B� ������;�
� �����;�� -#0 ��-�6 � ���� �
��B) ���� �?
� ��� �? � ��#���% � D1� � +!9 �
��*C ��3��
� ��� +%�-#)�*���
���) ����
� ��� +%�-# 8�A���
�7)7 ��	(
� �	(� -#0 ��-�6 �� � "! ���� �
�B�A �����
� ��� � ��7��� � ��� �
�BC8 ���("���
� �"���� � ��7��+8��� �2� ���= �� ��# �

"�� �
�)B' ������
� ������ �$� �� � (�� < " :� �" �
�*7� ����
� ���� ��%� � �	�� < ;� �
�*7) ����
� ��� +%�-# 8�A��+
�*)' ��:��
� ��� +%�-#)�*��+
�*'C ����
� ���� �+����= � ;� �
7�)) ���	�!
� ��	�!� ��# $%� &�� ����#60 '�����+ � ��	" �
7)�* ����
� ��� +%�-# ��7��+
7'78 ����
� ��� +%�-# ��7���
8�C8 ��� ��
� �� ��� -#0 ��-�6 � ���� �
87B7 ����
� ��� +%�-# '������
88A8 ����
� ��� +%�-# ����+
8B88 ����
� ��� +%�-# B�C���
8CA� ��(�
� ��� +%�-# B�C��+
A*�' ���	
� ��	� $%2��&�	 � ;� �
A'�) �����	��
� ����	��� ��%� � 	�< �� �
B)'* �����
� ����� ��%� � ��< �!< 5!4 �
)*�7 ����
� ��� +%�-# '�����+
�7*8B ����
� ���� -- � ��9 �

������������� �
����� �
���� ���
���� �
 �
��%�
��

�) ���	����G	
� ��	����G	�)�*��+ $%�&G	 � 94	�� �
) ���	����
� ��	�����)�*��+ D- � ��4!�� �
* ���	�����	
� ��	�����)�*��+ D- �#- �#- � ��4!�� �
� ���	!5	"	
� �!5	"	� �$� �$�&�	 '�������+ $%�&	 � !55	:� �

�C8 ����	!�?!�	
� ��	!�?!�	�)�*��+ $%�&�	 � � (��9�4 �
�*' ���	!�?!�	
� ��	!�?!�	�)�*��+ $%�&�	 � � (��9�4 �
�7 ���	!!
� ��	!!�)�*��+ ��	44!4�
�7 ���	!��
� ��	!���)�*��+ � ��"� �
C ���	��G	
� ��	��G	�)�*��+ � ��(��� < ?	5��
�7 ���	���9�
� ��	���9��)�*��+ � �	�:� �
7� ���	���!
� ��	���!�)�*��+ $%�&! � 	�:!�� �
7 ���	���!
� ����!� �$� �$�&�	 B��C��+ $%�&! � 	�:!�� �
8� ���	�� �;�(�
� ��	�� �;�(��)�*��+ � �4	!4	�� �
7 ���	����
� ��	�����)�*��+ � 	�:!�� �
B ���	���?�(�
� ��	���?�(��)�*��+ � �!	�� < �"��:� �

������������� �
����� �
���� ���
���� �
 �����

�7 ���	!��
� ��	!���)�*��+ � ��"� �
78 ��3	��G	
� ��	��G	�)�*��� � ?	5� �
C ���	��G	
� ��	��G	�)�*��+ � ?	5� �
* ��3	���9�
� ��	���9��)�*��� � �	�:� �
�7 ���	���9�
� ��	���9��)�*��+ � �	�:� �
8 ��3	���9	�	�	
� ��	���9	�	�	�)�*��� $%�&�	 D- � ?4�5� �
C ��3	���!
� ��	���!�)�*��� $%�&! � 	�:!�� �
7� ���	���!
� ��	���!�)�*��+ $%�&! � 	�:!�� �
7 ��3	�� �;�(�
� ��	�� �;�(��)�*��� � �4	!4	�� �
8� ���	�� �;�(�
� ��	�� �;�(��)�*��+ � �4	!4	�� �
8 ��3	����
� ��	�����)�*��� � ?	5� �
7 ���	����
� ��	�����)�*��+ � ?	5� �
�� ��3	���?�(�
� ��	���?�(��)�*��� ��!	�� < �"��:� �
B ���	���?�(�
� ��	���?�(��)�*��+ � �!	�� < �"��:� �

�

�

�

�

�

.����������

 ��������� �� .���34� � ,&��@����)�'$ ��� ���'���
��' ��� �"� ����	��� �� ���� 9��$"���(A �� �$$���
%����� �� #&�"���� �����% 6� ���� �� ����%�� #� ����
�.�4A 0<��33�

 ��������� �� .����4� /�' �� 	� /��&�"��� #���� ��
����A � %�'$ ��� �	���' ��� ����	-��(��%��������� ���
��� ���������(����%�� ����� ������������%"� ��*����$��
$���� 1< .#&�"��� ��� ' �4A �5���<��

 ��������� �� .���54� E���'*�(����� �� '��$"���(�%��
����	��� �� ���� ���(�(���)C@��D��5� I��%�����(�
�� �"� �5�" �������������)�������%� ��)�'$ ��������
@��(����%��)�$��"�(��� � (�� ���� ���5� I$� �50�
�<1�

 ��������� �� .�����4� #�@�9�A #&�"��� ���(�(�
'���(��� �����% 6� ���� �� ����%�� #� ���� 0.34A �1��
��<�

 ��������� �� .����*4� #���' /� ���"������ /�' �� 	�
9���� �� 9�� '�-�� �����*�A C����� ���������	 I�����
J����& ����%��� 6� ���� �� ����%�� @��(�(�� ��� @���
(����%� 3��

67������� ,� K ,�$�������� I� .���<4� ,�'� 67������ ���
I��� ,�$�������� � E�$�����%	 I����� ��� G�(���"�
,�%"��%�� J�$����� ��� ,J��� E�$���'��� �� D������
@��(����%�� ���������	 �� �������� ���<�

/�������� �� .����4�)��������� D��''�� �� � ���'�&���
��� $�����(� ����(����� �� ��� /���(��� .���4�
)C@��D���� I�$��� $�������� �� �"� �1�" �������������
)�������%� ��)�'$ �������� @��(����%�� 8��� 1� $$�
�50��<1� �������� �����

/�������� �� .�����4� E���(���(� $����� ��� �������%���
����� �� /������� �� �� .����4�)��������� D��''��A �
@��(�(�+����$������ #	���' ��� I�����(��������%���
,���� 9� ��� �� D� 	���� ������� I$� �����

/�������� �� .����*4� ,"� ���'����' ��� �������'��� ��
)��������� D��''�� I�����(� �� /������� �� �� .����4�
)��������� D��''��A � @��(�(�+����$������ #	���'
��� I�����(��������%��� ,���� 9� ��� �� D� 	���� ����
���� I$� ���00�

/�������� ��� �� 8� ��������� 6� ������7 K �� �������
.����4 .����4�)��������� D��''��A � @��(�(�������
$������ #	���' ��� I�����(��������%��� ,���� 9� ���
�� D� 	���� ������� �����

/��������'�� /� .��014� ,&������� '��$"���(A � (���
���� %�'$ �������� '���� ��� &�������' ��%�(������
��� $��� %����� I *��%������ ��� ��� E�$���'��� ��
D������ @��(����%�� ���������	 �� �������� ��01�

,�$�������� I� .���54� ,"�)��������� D��''�� I�����
)D�3� I *��%������ ��� 3<� E�$���'��� �� D������ @���
(����%�� ���������	 �� �������� ���5�

,�$�������� I� .����4� I�����(�� �&� ���'�&����A ������
����� ��� � �%������ ��$�����%	 (��''��� I"E �������
������� @��(�(� ��%"����(� E�$���'��� �� D������
@��(����%�� ���������	 �� ��������
"��$A??��"�����"����������?F ����� �?" '?	����?��?��$�����
���?

,�$�������� I� K 67������� ,� .����4� #	���%��% ����	���
�� ��� ��� ���(�(� ���(���(����% � ��� ��� %��$ ��
*���� $��������)C@��D���� I�$��� $�������� �� �"�
���" �������������)�������%� ��)�'$ �������� @���
(����%�� 8��� �� $$� 53��51�� /	���� �����

,�$�������� I� K 67������� ,� .���<4� � ����$��F�%����
��$�����%	 $������ �� I��%�����(� �� �"� ��")������
��%� �� �$$���� ��� ��� @��(�(� I��%�����(� 9��%"
1��� � �$��� 1��� :��"��(��� E�)�� �#�� I$� 5��<��

8� ��������� ��� 6� ������7 K �� �������� .���34�)���
������� D��''�� �� G�(���" � � I�����'��%��C�������
������ %����� I *��%������ ��� 3�� E�$���'��� �� D���
���� @��(����%�� ���������	 �� �������� ���3�

8� ��������� �� K ,�$�������� I� .���14� �'*�(��	
����� ���� �� � ��� %��������% $������ �� I��%�����(� ��
�"� #���")�������%� �� �"� G ��$���)"�$��� �� �"�
����%������ ���)�'$ �������� @��(����%�� G�)@��1�
$$� 1�����1� ����%"�� ���"�������� ���1��

Challenges in MT customization on closed and open text styles

Rémi Zajac
SYSTRAN Software, Inc.
zajac@systransoft.com

Abstract

This paper reports work in progress on two on-going customization projects at Systran. One project targets on-line technical support
documentation. This project falls in a domain that has been (and still is) a favorite target for high-quality MT applications. The second
project targets open style (on-line) texts on a large set of small domains. We outline and contrast customization issues for these two
projects, and present the customization process based on an automated analysis of monolingual corpora.

1. Introduction

Manual versus automatic customization

Customization of MT systems is a problem that has not
received much attention. Typically, customization is
reduced to the (manual) development of a simple domain-
specific dictionary. Complex lexical entries, involving
complex subcategorization patterns for example, are
excluded; a fortiori, syntactic customization is excluded
too.

Most previous work on automated customization make
use of a parallel corpus, for example Yamada et als.
(1995) and Su et als. (1995, 1999). Of course, example-
based systems may be considered fully customized
systems (Richardson et als. 2001, Pinkham et als. 2001).

Yamada et als. (1995) present a method to adapt a rule-
based MT system to a new domain by using aligned sets
of sentences. The method involves the comparison of the
MT parse tree (presumably after transfer) with the parse
tree of the manually produced translation. A side effect of
the comparison is the automatic generation of either
bilingual dictionary entries or transfer rules. The interest
of the method is not clear since the technical description
is rather sketchy and since there is no discussion on the
influence of the bilingual corpus on quality improvement.
The method seems to be implemented only for simple
bilingual lexical equivalences.

Su et als. (1995, 1999) suggest that customizing an MT
system can be reduced to learning probabilistic parsing
parameters. They use probabilistic learning techniques to
select the best parse of a non-deterministic parser. The
best parse is the one that gives a translation that is closest
to the manually translated sentence (or the one which
produces a parse tree that is closest to the parse tree for
the manually translated sentence, the paper is unclear on
this point). The method does not seem to be implemented.

The best current approaches, providing highest quality
results, to fully automatic customization are using
example-based techniques built on a substrate of a
comprehensive rule-based system as in the MSR-MT
project (Richardson et als. 2001, Pinkham et als. 2001). In
this approach, there is no distinction between lexical and
syntactic customization. What is learned is, in essence, a
set of lexicalized transfer rules that may cover entire
sentences.

Customization projects at Systran

Systran has recently started several customization
projects, for example for on-line technical support
documentation as in the Autodesk project (Senellart et als.
2001b). In all these projects, there is no bilingual corpus
available. An essential part of the effort is the
development of an automated methodology and tools to
speed-up customization and to lower costs. A parallel
effort that also supports customization projects is directed
at the restructuration of the MT architecture towards
better modularity and declarativity, and improved
performances (Senellart 2001a).

The paper is organized as follows. The next section gives
an overview of two on-going customization projects at
Systran and outlines specific customization issues. One
project falls in a domain that has been (and still is) a
favorite target for high-quality MT applications: (on-line)
technical support documentation. The second project
targets open style (on-line) texts on a large set of small
domains. The next two sections present the customization
process. Section 3 describes the assessment of
customization needs for a given application. This
assessment translated into a customization plan, and the
customization process itself is described in Section 4. We
conclude on several open issues.

2. Two customization projects at Systran

MT applications have been traditionally divided into
dissemination and assimilation applications. An

mailto:zajac@systransoft.com

assimilation scenario is an analyst working of foreign
documents in open domains and open styles (technical
documents as well as web postings and email). These
kinds of applications use a generic MT engine with a very
large lexical coverage and implementing a non-specific
language model that will succeed in providing an average
quality on most texts and fail to provide a high quality on
most texts. Dissemination applications target the
translation of technical documents, typically technical
user manuals, for publication. Technical documents cover
closed domains and closed styles. Dissemination
applications use specific MT engines with targeted lexical
coverage and implementing a tailored language model
that succeeds in providing a good quality on most texts.

It should be clear that, at present, manual customization
could only be envisaged in the dissemination scenario, on
a closed domain and a closed text style. For this kind of
scenario, some rule-based MT systems have demonstrated
high-quality translations. However, no system has ever
been able to provide high-quality translation on open
domains and open style documents. The consensus in the
MT community seems to be that on these kinds of texts,
MT can only be used for assimilation scenarios. However,
this consensus is based on past experience with rule-based
systems: it is still an open question whether example-
based or statistical-based systems may achieve high-
quality on open domains and open style.

Scenario 1: on-line technical support documentation

The source corpus for this project is medium size (tens of
thousands documents, about 2M words). The document
style is technical and homogeneous and documents are
written by technical writers following specific style
guidelines and using an in-house glossary. Sub-types of
documents are well defined, for example, FAQs and
procedures. The domain is homogeneous covering a
single family of products, but very complex, with a high
number of concepts and a high number of relationships
between concepts. The corpus evolves slowly over time
as new documents are added for new versions of existing
products. There may be completely new products (still
within the same product family) with new concepts and
new terminology to cover. Therefore, a continuous
monitoring of the document database is necessary to keep
track of the emergence of new concepts and terms. At that
point, a focalized customization effort is needed for these
new documents.

This type of application has been a favorite target for
high-quality MT in the past and still remains a favorite
(See e.g., Richarson et als. 2001, Pinkham et als. 2001).
Translation problems may be reduced to some extend by
using a writing style guide. For example, the lexicon can
be limited to common words (new words for new
concepts only). Grammar and style variation can also
limited by the use of technical writing guidelines. Such
guidelines could be implemented in a controlled language
checker. The idea is the same as for other controlled

languages, but with a more modest aim: not solving all
MT problems but limiting MT problems to a narrower
range.

The main challenge is how to describe the terminology of
a large and complex domain: the ontology of the domain
is narrow but deep, complex and very specific. For this
project, we use a mix of terminology extraction tools (see
e.g., Jacquemin 2001). Another issue will be tracking
emergence of new concepts as the document database
changes over time, and update the terminology
accordingly.

Scenario 2: fast changing on-line postings

This customization project blurs the distinction between
MT for assimilation and MT for dissemination. In this
project, the corpus is very large, millions of postings, with
several thousands of new postings every day. The style is
very relaxed and makes use of a large range of colorful
expressions, with plenty of misspellings and grammar
errors, highly variable punctuation usage, as well as
uncommon abbreviations. The corpus can be divided into
a large number of unrelated sub-domains. Within each
domain, the terminology is relatively restricted with a
limited number of concepts and a limited number of
relationships between concepts. However, there is a very
large number of proper names referring to specific
products and entities.

In a posting, we can identify several sections that can be
categorized into different styles. For example, a
description of an object, contractual sections dealing e.g.,
with payment options or shipping, etc. However, there are
always sections that cannot be fitted into any well-defined
slot and must be considered free open text. These sections
are the most challenging since they are typically
argumentative in nature, conveying opinions and trying to
convince the reader to adhere to these opinions. These
sections are also the ones exhibiting free informal syntax
and creative use of language. A specific issue here is to
automatically segment a posting into sections that
correspond to homogeneous styles and select most
appropriate translation parameters for each style.

Each posting addresses a specific domain, and each
domain is shallow and relatively simple. Each domain
can be managed using simple thesaurus-like management
tools à la Wordnet. There are however two main
challenges. One is the number of domains (hundreds).
Another is the novelty factor that requires constant
tracking and customization to match changes in language.
In particular, we need to track the emergence of new
words (neologisms as well as new names and
abbreviations) and new expressions.

3. Evaluation of Customization Needs

Customization assumes a base MT system. The first step
in a customization project is to measure the gap between

the quality of this base system and the quality of the
targeted customized system in order to evaluate as
precisely as possible the customization needs, and to
develop a customization plan.

If a bilingual corpus is available, the customization needs
could be estimated by evaluating the performance of the
base system against the corpus. The translation of the
source corpus produces a baseline translation that can be
compared and evaluated against the manual translation
(target side of the bilingual corpus). An in-depth
evaluation of mismatches provides a detailed catalog of
customization requirements for both lexical customization
and grammatical customization. This evaluation can also
assign mismatches to specific sub-grammars of the MT
system: NP analysis, verb transfer, relative clause
generation, etc. This of course can only be done manually
on a small set of documents only.

An indirect but more economical way of evaluating the
customization needs is to:

• Measure the performance of the system on a
known source baseline corpus, and to

• Evaluate the distance between the baseline
corpus and the source corpus.

By using a set of quantitative linguistic indicators, it is
possible to estimate the amount of customization needed
to achieve a pre-set quality target. The following
paragraphs give an overview of an automated
customization evaluation process that includes the
establishment of a baseline and the construction of a
terminological (domain) profile, a lexical profile and a
syntactic profile for the source corpus. These profiles are
compared to the baseline in order to provide a quantitative
estimate of the customization needs (Underwood &
Longejan 1999).

A terminological profile of a corpus provides an estimate
of the closure of the vocabulary of the corpus as well as
the complexity of the domain. The vocabulary closure is
measured by counting the number of new terms that
appear when a new text is seen (term growth curve). If
this curve flattens out rapidly (few new terms appear in
newly seen documents), the vocabulary is essentially
closed. In such a case, the customized system will
probably require little lexical maintenance after delivery.

 The complexity of the domain is estimated using the
number of technical terms belonging to the domain and
the number of interconnections between these terms. The
number of interconnections between terms can be
estimated by counting the number of syntactic relations
between technical terms occurring in the same sentence:
predicate-arguments relationships (predicate-object, but
also predicate-subjects), and head-modifiers relationships.

New usages of existing words can be detected only as a
failure in parsing or translation: parsing and translation
failures are collected and sorted by shared lexical units:
any lexical unit that occurs in several parsing or
translation failures is a potential source of failure and
should be investigated.

The syntactic profile of a corpus provides an estimate of
the customization work needed on grammars for parsing,
transfer and generation. The base system is evaluated on a
standardized test suite where test items are categorized by
linguistic classes of phenomena. This evaluation provides
a detailed account of the strengths and weaknesses of the
base system in terms of linguistic categories. We then run
the system on the source corpus and extract a frequency
profile of morphosyntactic phenomena. This frequency
profile is matched to the baseline profile in order to build
a customization plan, and to estimate the level of quality
that can be achieved for a given level of effort.

4. Customization Process

The customization loop

The source corpus is segmented into translation units
(sentences) and the translation units are translated, sorted
and stored in the development database. Customization
then proceeds along two parallel lines: one customization
for terminology and lexical elements, and another for
grammar and style. Customization plans are directly
derived from terminological, lexical and syntactic
profiles. Since any change in a component of the system
may have unforeseen impact on other components, and in
order to ensure constant progress and test for regression,
testing is done continuously and in parallel to
development. Continuous testing uses the development
database, allows to focus on the main customization
issues, to deal rapidly with any potential regression, and
to measure progress.

Words that are not in the system dictionaries are extracted
during the initial assessment. This initial step also
produces a list of lexical units that may be sources of
parsing or translation failures, and are therefore
candidates for revision. Terminology lists are built using
terminology extraction tools. Initial customization
proceeds using these lists. As the systems dictionaries are
updated, the test database is translated with the updated
dictionaries, and new translations are compared with the
initial ones. Any translation that shows a difference is
added into the review set.

The initial assessment produces a frequency list of
morphosyntactic structures that appear in the source
corpus. Given that the baseline evaluation identifies the
weak areas of the system, this list is converted into a
customization plan where the most frequent weak areas
are dealt with first (modulo dependencies between
grammar modules).

Testing

Testers review new translations as the system is updated.
Two different kinds of testing are done, one for
terminological and lexical customization, and another for
grammar and style. New translations are sorted according
to various criteria, including coverage of terminology and
difference in translation. For example, new terms added in
the dictionaries should be matched and translated for all
translation units containing these terms. Two lists are
built: one containing matched terms (for simple checking)
and one containing unmatched terms (to identify potential
dictionary coding problems). A similar testing process is
used for structural customization. For example, after
working on relative clauses, all sentences containing
relative clauses are extracted and divided into a list of
changed translations and a list of unchanged translations.

When a translation is changed, it should show an
improvement in quality: progress is tracked for any
changed translation and quality of new translations is
evaluated and recorded. Tracking the quality
improvement rate allows us to estimate the cost-
effectiveness of the customization effort.

5. Conclusion

The customization method presented in this paper is
directly challenged by fully automatic methods using
example-based techniques, including for example MSR
methods (Richardson et als. 2001, Pinkham et als. 2001).
Although manual customization is obviously feasible and
can reach acceptable quality, one important issue is the
cost-effectiveness of the method: a manual method should
be cheaper than using automated customization with a
bilingual corpus. Therefore, it should be cheaper or
equivalent to the cost of translating a bilingual training
corpus (this obviously depends on the minimal size
required by the training algorithm). We assume that it
may be cheaper when there are multiple target languages
as the initial work of analyzing the source corpus and
extracting terminology and other specific linguistic
pattern can be shared among all target languages. Another
important issue is the evolution of the source document
database: we need to develop specific methods for
tracking changes in language and for updating the
language resources at a minimal cost.

To evaluate the accuracy of the estimates of
customization effort, and to evaluate the speed and cost-
effectiveness of the customization methodology, we are
recording a set of quantitative indicators to help us
provide accurate estimations. During a customization
project, we are tracking cost of creating/customizing
lexical entries together with the quality impact of these
new of customized entries on the whole corpus. We do
the same for grammar customization. Finally, the quality
of the MT system is evaluated before customization, and a
post-customization evaluation provides a measure of the
improvement in quality that has been achieved.

Experience over several projects should help us find the
most relevant indicators, and obtain accurate estimates
from detailed corpus analyses.

6. References

Jacquemin, Christian. 2001. Spotting and Discovering
Terms trough Natural Language Processing. The
MIT Press.

Lalaude, Myriam, Veronika Lux, Sylvie Regnier-Prost.
1998. “Modular controlled language design”.
CLAW-98, Pittsburgh, PA. Pp103-113.

Pinkham, Jessie, Monica Corston-Oliver, Martine Smets,
Martine Petterano. 2001. “Rapid assembly of a large-
scale French-English MT system”. MT Summit VIII,
Santiago de Compostela, Spain. Pp277-282.

Richardson, Stephen, William Dolan, Arul Mezenes,
Jessie Pinkham. 2001. “Achieving commercial-
quality translation with example-based methods”.
MT Summit VIII, Santiago de Compostela, Spain.
Pp293-298.

Senellart, Jean, Peter Dienes, Tamas Varadi. 2001a. “New
generation Systran translation system”. MT Summit
VIII, Santiago de Compostela, Spain. Pp311-316.

Senellart, Jean, Mirko Plitt, Christophe Bailly, Francoise
Cardoso. 2001b. “Resource alignment and implicit
transfer”. MT Summit VIII, Santiago de Compostela,
Spain. Pp317-324.

Su, Keh-Yih, Jing-Shin Chang. 1999. “A customizable,
self-learnable parameterized MT system: the next
generation”. MT Summit VII, Singapore. Pp182-190.

Underwood, Nancy L., Bart Jongejan. 1999. “Profiling
Translation Projects”. TMI-99, Chester, England.
Pp139-149.

Yamada, Setsuo, Hiromi Nakaiwa, Kentaro Ogura, Satoru
Ikehara. “A method for automatically adapting an
MT system to different domain”. TMI-95, Leuven,
Belgium. Pp303-310.

Locating and Reusing Sundry NLP Flotsam in an e-Learning Application

Anju Saxena and Lars Borin

Departmentof Linguistics,UppsalaUniversity,
Box 527,SE-75120Uppsala,Sweden

and
ComputationalLinguistics,Departmentof Linguistics,
StockholmUniversity, SE-10691 Stockholm,Sweden

anju.saxena@ling.uu.se,lars.borin@ling.su.se

Abstract
We describethe backgroundand motivation for an e-learningproject—IT-basedCollaborative Learning in Grammar—whereNLP
resourcereusehasbecomean importantissue. The resourcesareof several kinds: POS-taggedandsyntacticallyannotatedcorpora
(treebanks),parsingsystemsandgrammarwriter’s workbenches,andvisulizationandmanipulationtools for linguistically annotated
corpora.Ourexperiencethusfarhasbeenthatalthoughthereareanumberof suchresourcesavailablee.g.on theWeb,asarule,numer-
ousincompatibilitiesandlack of standardizationat all levels—markupformats,linguistic annotationschemes,grammaticalframework,
softwareAPIs,etc.—make thereuseof theseresourcesinto a non-trivial endeavor.

0. Preamble: the Setting
It is generallyacknowledgedthat the goal of teaching

grammar—especiallyat the university level—shouldnot
primarily bethatstudentsmemorizedefinitionsof concepts
andgrammaticalconstructions,but ratherthat they under-
standand learn to recognizedifferent structuralpatterns.
Thiscanhardlybeachievedwithoutgiving studentspracti-
cal training in the skill of grammaticalanalysis.Research
hasshown that hands-onproblem-solvingis more stimu-
lating and thought-provoking than when the information
andresultsarehandeddown to the pupils during lectures.
Further, our experiencehasbeenthat studentslearnabout
grammaticalconstructionsand phenomenamore actively
when theseconstructionsarediscussedby comparingthe
systemfound in their native languagewith thatof another
language.An addedfactorcontributingto anactivestudent
participationis thechoiceof thematerialforming thebasis
for exercisesandgroupactivities, which shouldpreferably
beasnaturalaspossible.

With thesepedagogicalconsiderationsin mind,we for-
mulateda project for realizinga new format for teaching
coursesin grammarin LinguisticsandComputationalLin-
guistics(the ability to reasonaboutgrammarandto carry
outgrammaticalanalysesof languageutterancesbeingnec-
essaryprerequisitesfor all linguistic studiesof language
andtherebypartof the corecurriculumof thesesubjects).
In the proposedformat interactive practical training and
corpus-basedexercisescompriseanintegralpartof thestu-
dents’ learningprocess,giving them the opportunityand
incentive to participatemore actively in their own learn-
ing process.Using IT asa tool for collaborative work al-
lows the studentsto choosethe problem-solvingstrategy
whichsuitsthembest,aswell asthetimeandplaceto work
on theproblem.A corpusof naturallanguagematerialfor
grammaticalanalysiscontributesto amoreactiveparticipa-
tion, asit not only presentsthe grammaticalconstructions
in theircontext, but alsogivesstudentsagreaterfreedomto

approachthematerialandconducttheinvestigationfrom a
perspective which suitstheir individual learningstyles. A
text corpusconsistsof naturallyoccurringlanguagein its
naturalphysicalcontext, sinceit is madeup of complete
texts or largetext fragments,asopposedto themade-upor
isolatedsinglesentencesor phrasesoftenusedto illustrate
grammaticalpointsin linguisticstextbooks.Thisaccompa-
nying physicalcontext makesit possibleto investigatethe
textual, discourse-level, functionsof the grammaticalphe-
nomena.

An outlineof theproposedtrainingmaterialis presented
below. It hasa modulararchitecture,composedof four
typesof modules(seeFigure1, below):

1. ‘Encyclopedia’ module, containing descriptionsof
grammaticalconceptsand constructions.Its content
will beattunedto thecontentsof thecourseandthein-
teractive exercises(as,in their turn, theexerciseswill
beadaptedto the ‘encyclopedia’contents),andat ap-
propriateplaces,therewill behyperlinksto interactive
exercisesdealingwith thecurrenttopic.

2. ‘Text corpus’ module, containing at least (a)
POS-taggedand syntactically annotatedcorpora of
Swedish,and (b) an annotatedcorpusof a foreign
language. For (a), we will use the SUC and Tal-
banken annotatedSwedishcorpora(seebelow); for
(b), we will use a corpus of Kinnauri (a Tibeto-
Burman languagespoken in India) narratives avail-
able on the web (http://www.ling.uu.se/
anjusaxena/corpus.html ; seefigure2), which
ishyperlinkedto amorphemedictionary. Further, with
the help of a graphic interfacestudentswill be able
to seea ‘map’ of how andwhereoneparticularmor-
phemeor a wordoccursin thecorpus(seeOlssonand
Borin (2000)),providing supportin their work on the
functionsof grammar. Thestudentswill work with the

Figure1: Organizationof theproposedIT-supportedgrammartrainingapplication

samecorpusaspartof theirgroupactivitiesandaspart
of their examination.

3. ‘Interactive exercise’ module. Our aim here will
be to provide studentswith a set of exercises,with
basic tools for computer-mediatedstudent cooper-
ation in virtual work- groups (a ‘spreadsheet’for
problem-solving;optional‘step-by-stepquestions’for
the grammaticaltopic covered;grammarrule writing
exercisesto be discussedin moredetail below), with
hyperlinks to the ‘encyclopedia’, to the ‘resources’
(seebelow) andto the annotatedcorpusof a foreign
language(which, in turn, will be hyperlinked to the
dictionary;seeSaxena(2000)).As partof eachtheme,
studentswill first discussthe constructionduring the
lecturesession,thenagainwhile examiningthe con-
structionin thecorpus,andfinally alsowhile compar-
ing the resultsof the corpus-basedanalysiswith the
Swedishsystemand thendiscussingit in the group.
This learningmethodwherethe sameconstructionis
examinedfrom anumberof mutuallyreinforcingprac-
tical and theoreticalviewpoints will, hopefully, pro-
vide the studentswith supportand incentive in their
learning process. Further, the samecorpuswill be
usedin grammarcoursesin first andsecondsemesters,
providing groundsfor deeperanalysesin the second
semesterthanwouldhavebeenthecase.

4. ‘Resource’moduleswill provide a pool of resources
for furtherreadingandrelevantlinks to othersites.

Thearchitecturalorganizationof thesoftwareproposed
herehasseveraladvantages,the two mostsignificantones

beingextensibility and‘conceptualdecentralization’.Ex-
tensibility meansthat new functions can be easily inte-
gratedin the application. ‘Conceptualdecentralization’is
especiallysignificantasit allows the possibility of adjust-
ing to individuallearningstyles.For example,if thestudent
prefersto startout with the‘encyclopedia’materialandgo
from thereto theappropriateexercises,whenshefeelsthe
needto doso,shehasthatchoice.At thesametime,theap-
plicationallows thepossibilityof startingoutatotherentry
points,e.g.,‘interactive exercises’,with theoptionof call-
ing up therelevant‘encyclopedia’materialat eachinstant.

1. The NLP Resource Customization
Problem

NLP resourcecustomizationhas becomean issuein
this projectmainly in connectionwith module3 (interac-
tivegrammarexercises).It hasbeenour aim from thecon-
ceptionof the project to rely mostly on standardWWW
andopen-sourcesoftware—i.e.,software which is gener-
ally freeandwherethesourcecodeis freely availableand
modifiable by the user—for implementingthe modules.
Thisdesignphilosophyhastheadvantageof makingtheap-
plicationmaximallyplatform-independent,aswell aspro-
viding a familiar interface—astandardweb browser—for
studentsandfaculty.

Oneof theexercisesthatwehaveplannedfor module3
buildsuponacombinationof asyntacticallyannotatedcor-
pus(a treebank)anda grammarwriter’s workbench.The
basicpremiseof theexercisesis a furtherrefinementof the
ideapresentedby Borin andDahllöf (1999). We propose
to usegrammarruleswritten by students(usingan exist-
ing grammardevelopmenttool) assearchexpressionsin the

Figure2: TheKinnauri corpus– Webformat

treebank.In its simplestform, theresultof thesearchwould
be expressedas precisionand recall. Given an NP rule
formulatedby a student,we could automaticallytell how
many of the (maximal)treebankPOSsequencesmatching
therule actuallymakeup NPs,how many arenot NPs,and
how many NPsin thetreebankarenotdescribedby therule.
Thereareall kindsof conceivableelaborationsof thisbasic
scheme,which could be seenasa more linguistically so-
phisticatedparallelto theuseof (unannotated)text corpora
and concordancingsoftware in so-calleddata-driven lan-
guagelearning(Flowerdew, 1996).1 For theComputational

1Thebasicideahereissimilarto theICECUPFTF(FuzzyTree
Fragment)grammaticalquerysystemfor parsedcorpora(Wallis

Linguisticsstudents,thereis theadditionaladvantageof be-
ing able to work from the very beginning of their studies
with thesamekind of toolsandresourcesthat they will be
using‘for real’ aftergraduating,in their professionallife.

Whatwe have foundalreadyin this beginningstageof
the project,however, is that therearesomeseriousobsta-
clesto usingavailableNLP resources.2 Mostly, the issues
thathave arisenin this connectionconcern(lack of) com-
patibility andstandardizationof NLP resources.Someof

andNelson,2000),but with a diffent useandtarget audiencein
mind.

2Here, we use “NLP resources”as a cover term for both
language resourcesandprocessingresourcesin the terminology
adoptedby Cunningham(2002).

<text id=kl01>
<body>
<p>
<s id=kl01-001>
<c lem=’-’ msd=’FI’ n=1>-</c>
<w lem=’vilken’ msd=’DH@0P@S’n=2>Vilka</w>
<w lem=’djävla’ msd=’AQP00N0S’ n=3>djävla</w>
<w lem=’optimist’ msd=’NCUPN@IS’ n=4>optimister</w>
<c lem=’,’ msd=’FI’ n=5>,</c>
<w lem=’frusta’ msd=’V@IIAS’ n=6>frustade</w>
<name type=person>
<w lem=’Lasse’ msd=’NP00N@0S’ n=7>Lasse</w>
</name>
<c lem=’.’ msd=’FE’ n=8>.</c>
</s>

<suctext id=kl01>
<p>
<s id=kl01-001>
<d n=1>-<ana><ps>MID-</d>
<w n=2>Vilka<ana><ps>HD<m>UTR/NEU PLU INDvilken</w>
<w n=3>djävla<ana><ps>JJ<m>POS UTR/NEU SIN/PLU IND/DEF NOMdjävla</w>
<w n=4>optimister<ana><ps>NN<m>UTR PLU IND NOMoptimist</w>
<d n=5>,<ana><ps>MID,</d>
<w n=6>frustade<ana><ps>VB<m>PRT AKTfrusta</w>
<name type=person>
<w n=7>Lasse<ana><ps>PM<m>NOMLasse</w>
</name>
<d n=8>.<ana><ps>MAD.</d>
</s>

Figure3: AlternativeSUCannotationformats

theissuesare:

� Differencesin fundamentalstorageand text markup
formats. The threecorporathat we are considering
for usein theprojecthave threedifferentstoragefor-
mats: (1) Thebasicformatof Saxena’s Kinnauri nar-
rative corpusis asa Shoeboxdatabase(Busemanand
Buseman,1998)(seefigure4), from whichawebver-
sion in HTML hyperlinked to a morphemelexicon
wassemiautomaticallyderived(seefigure2); (2) The
StockholmUmeåCorpus(SUC;EjerhedandKällgren
(1997))comesin anSGML corpusformatasspecified
by theText EncodingInitiative(TEI; http://www.
tei- c.org/), and further, thereare two different
grammaticalannotationformats,Parole/EAGLESfor-
mat (seeMonachini and Calzolari (1996)) and SUC
format (see figure 3); (3) The Talbanken syntacti-
cally annotatedcorpusof Swedish(Einarsson,1976a;
Einarsson,1976b;Teleman,1974)is in an80-column
punchcard format with only capital letters(seefig-
ure5).

\ref 07/007a/01
\tx @mar@N boa loshigyO //
\mrep @mar@N bOba lo-sh-i-gyO
\gl mother with father say-?-?-D.PST
\tr Mother and father said:

\ref 07/007a/02
\tx jO tshEtsats-u nam@Nch@ tate //
\mrep jO tshEtsats-u nam@Nch@d ta-te
\gl this girl-POSS name(N) what keep-LET’S
\tr "what should we name this girl?

\ref 07/007a/03
\tx nam@Nt@ sOthlets tate //
\mrep nam@Nt@ sOthlets ta -te
\gl name(N) EMP name keep-LET’S
\tr Let’s keep the name (=name her) Sothlets."

Figure4: TheKinnauri corpus– Shoeboxformat

� Differencesin POStaggingandsyntacticannotations
betweencorpora. The SUC andTalbanken Swedish
corpora,althoughboth arePOStagged,usedifferent
tagsets,with e.g.SUChaving twoandTalbankenthree
subclassesof nouns, and SUC, but not Talbanken,
markingnumberin nouns,etc. Tagsetincompatibil-
ities, even within a languageis a problem that has
beennoted in the literature (e.g. by Atwell et al.
(2000)), and therehasbeensomework on tools for
automatictagsetmapping(e.g. Teufel (1995)). The
problemsarecompoundedwhenseverallanguagesare
involved,3 which would be desirablein our setting,
wherethelinguisticsubdisciplinesof ContrastiveLin-
guisticsandLanguageTypologyrely on explicit com-
parisonsbetweenlanguagesat variouslinguistic lev-
els. As statedabove, we know from experiencethat
studentslearn about grammaticalconstructionsand
phenomenamore actively when theseconstructions
arediscussedby comparingthesystemfound in their
native languagewith thatof anotherlanguage.Prefer-
ably, theotherlanguageshouldbeonethatthestudents
do not know already, asthey thenwill be betterable
to concentrateon theanalysisof ‘pure’ form. This is
why we intendto usethe SwedishandKinnauri cor-
poratogetherin ourfirst application.

� Differencesin POS categories, syntacticcategories
andgrammaticalframework betweenthe corporaon

3The problem of crosslinguisticmappingof part-of-speech
tagshasnot beenextensively discussedin thecomputationallin-
guisticsliterature(seeBorin (2000);Borin (Forthcoming2002);
Borin and Prütz (2001)), but in generallinguistics, there is an
extensive literatureon the issueof crosslinguisticpropertiesof
part-of-speechsystemsandthe universalityof proposedpartsof
speech,which is very relevant in this context (e.g.,Anwardet al.
(1996);Itkonen(2001);Pawley (1993)).

P21803012001 0000 << GM 010
P21803012002 *DET POOP SS 010
P21803012003 RÖR VVPS FV 010
P21803012004 SIG POXP AAOO 010
P21803012005 ALLTSÅ ABKS +A 010
P21803012006 OM PR OAPR 010
P21803012007 FALL NN OA 010
P21803012008 1000 RC OAET 010
P2180301200910002DÄR ABRA RA 010
P2180301201010002ORSAKEN NNDD SS 010
P2180301201110002TILL PR SSETPR 010
P2180301201210002PATIENTENS NNDDHHGGSSETDT 010
P2180301201310002SYMTOM NN SSET 010
P2180301201410002INTE ABNA NA 010
P2180301201510002PRIMÄRT AJ AA 010
P2180301201610002ÄR AVPS FV 010
P2180301201710002ÅDERFÖRKALKNING VN SS SP 010
P21803012018100021100 +F +F 010
P2180301201911002UTAN ++MN ++ 010
P2180301202011002I ABMN +A 010
P2180301202111002STÄLLET ID +A 010
P2180301202211002BEROR VVPS FV 010
P2180301202311002PÅ PR OAPR 010
P2180301202411002EN EN OADT 010
P2180301202511002SANNOLIK AJ OAAT 010
P2180301202611002STÖRNING VN OA 010
P2180301202711002I PR OAETPR 010
P2180301202811002CIRKULATIONEN VNDD OAET 010
P2180301202911002AV PR OAETETPR 010
P2180301203011002DEN PODP OAETETDT 010
P2180301203111002VÄTSKA NN OAETET 010
P21803012032110021110 RC OAETETET 010
P2180301203311106SOM PORP SS 010
P2180301203411106OMGER VVPSSM FV 010
P2180301203511106HJÄRNAN NNDD OO 010
P21803012036 . IP IP 010

Figure5: Theannotationformatin theTalbankentreebank

the one hand and the grammar writing tools and
parserson the other. Thus, the Talbanken corpus
usesa fairly traditionalSwedishfunctionalgrammat-
ical framework, wheree.g. NPs are not directly re-
coverable,but only indirectly, througha combination
of syntacticfunctionandlexical category of thehead
word, while it seemsthatmany, perhapsthemajority,
of the grammarwriting tools freely available on the
Webpresupposeaphrasestructureframework.

� Differences in implementation language, storage
model,API, documentationandsourcecodeavailabil-
ity, etc. of potentiallysuitablesoftware.For anexcel-
lentoverview of theseissues,seeOlsson(2002).

Thus,we have beenforced from the outsetto discuss
seriouslyhow we are to integrateexisting NLP resources
in our application,aswell ashow to make the application
itself extensible,so thate.g. new languagecorporaor new
annotationscanbeadded.4

2. Taking Stock and Looking Ahead
We are attemptingto reuseNLP resourcesoriginally

meant for NLP research—bothlanguage resources (no-
tably annotatedtext corpora) and processingresources
(the most important being parsersand grammarwriting
tools)—inane-learningapplicationfor IT-basedcollabora-
tive learningin grammarcoursesfor LinguisticsandCom-
putationalLinguisticsuniversitystudents.At themoment,

4Coursesin Hindi andTurkish at UppsalaUniversity will be
usedastestbedsduringthethird yearof theproject,basedon rel-
evantHindi andTurkishcorpusresources.

we arelocatingandevaluating5 NLP resources,mainly on
the web, for the corpus-basedinteractive grammarexer-
cises.As thecorporaarein placealready, wearenow eval-
uatingtools for the manipulationandvisualizationof cor-
pusdata,parsingsystems,andgrammarwriting environ-
ments(workbenches),which raisesa numberof compati-
bility/standardizationissuesthatneedto beresolved.These
compatibility/standardizationissuespoint in two directions
simultaneously, asit were:

1. backwards:How canwe integratein our application,
with theleastamountof effort, existingNLP resources
of thekind thatwe need?

2. forwards: How can we ensurethat we ourselves,as
well asothers,will beablein thefutureto modify the
existingNLP resources,oraddnew ones,in theframe-
work thatwe define?

The preliminaryanswersto thesetwo questionsareas
follows.

There does not seemto be a simple answerto the
first question. Generally, we think that it is more desir-
ableto be ableto reuseexisting languageresources—i.e.,
texts andcorpora,lexicons,andthe like—thanprocessing

5The evaluation is to be mainly pedagogical,i.e. we will
ask ourselves whethera particularresourcewill be suitablefor
the pedagogicalframework that we have adoptedfor teaching
grammar. However, usability—asthe term is usedin Human–
ComputerInteractionresearch—willalso be an importanteval-
uation criterion, as well as the the estimatedeffort neededto
adapttheresourcefor ourneeds.SeeHammarström(Forthcoming
2002)for details.

resources—inour casefirst andforemostgrammarwriting
and processingenvironments—forthe pragmaticreasons
that

� constructinganannotatedcorpusfrom scratchis likely
to be a much larger effort than building a grammar
writing environment;

� standardizationefforts have progressedfurther par-
ticularly in the realm of POS taggedlanguagecor-
pus resourcesthan in the caseof languageprocess-
ing resources(Monachini and Calzolari, 1996; Bird
et al., 2000; Ide et al., 2000;CottonandBird, 2002)
(andtreebankformats;seeAtwell et al. (2000)),al-
though,asa rule, their usein computer-assistedlan-
guagelearningapplicationshasnot beenconsidered
in this connection(Borin, 2002).

Hence,we aim at being able to handleat leastPOS-
taggedcorporausingthe EAGLES/Paroletag schemeand
marked-upaccordingto theTEI/CESSGML or TEI/XCES
XML languagecorpusformats(thusrecognizing,e.g.,the
SUCParoleformatwithoutspecialpreprocessing).

As for thesecondquestion,it too,is easierto answerfor
languageresources.Here,we will harmonizetheunderly-
ing corpusformatswith otherongoingprojectsin our de-
partments,6 while simultaneouslyendeavoring to conform
to standardsthatarebeingworkedout in theNLP commu-
nity. This meansthatwe will undertake the conversionof
the Kinnauri andTalbanken corporainto this format, and
that in duecoursewe plan to make the corporagenerally
availablein thenew format.

As far as ‘grammar writer’s workbenches’are con-
cerned,we have not yet beenable to find a ready-made
environmentuser-friendly enough(for our Linguisticsstu-
dents)and bug-freeenoughto be immediatelyuseful for
our purposes.Thus, it seemslikely that we will have to
put in somedevelopmenteffort in this area. If this turns
out to be the case,the mostlikely kind of workbenchthat
we will modify or build, will be one within the general
paradigmof unification-basedfeaturestructuregrammar.
The evaluationof thesesystemsis still ongoing,however
(Hammarström,Forthcoming2002).

3. Acknowledgements
The work describedhereforms part of the project IT-

basedCollaborativeLearningin Grammar, acollaboration
betweentheuniversitiesin UppsalaandStockholm,funded
by theSwedishAgency for DistanceEducation(DISTUM),
for the threeyears2002–2004.Anju Saxenais theprinci-
pal investigatorfor the project. Seealsohttp://www.
ling.uu.se/anjusaxena/distum.html .

6We will strive to be compatiblewith the corpusformat de-
velopedin theCROSSCHECK (http://www.nada.kth.se/
theory/projects/xcheck/), SVANTE (http://www.
ling.uu.se/lars/SVANTE/) andASUavailabilityprojects,
in all of whichformatsandtoolsfor Swedishlearnercorpora (see
Granger(1998))are beingdeveloped. The basiccorpusformat
will adherecloselyto XCES,with ‘standoff ’ linguisticannotation
(Ideetal., 2000).

4. References

JanAnward, Edith Moravcsik, and Leon Stassen.1996.
Partsof speech:a challengefor typology. LinguisticTy-
pology, 1(2):167–183.

Eric Atwell, George Demetriou, John Hughes,Amanda
Schiffrin, Clive Souter, andSeanWilcock. 2000. Com-
paringlinguisticannotationschemesfor Englishcorpora.
In AnneAbeille,TorstenBrants,andHansUszkoreit,ed-
itors, Proceedingsof theWorkshopon Linguistically In-
terpretedCorpora. LINC-2000, pages1–10. Held at the
CentreUniversitaire,Luxembourg,August6, 2000.

Steven Bird, David Day, JohnGarofolo,JohnHenderson,
ChristopheLaprun,andMark Liberman.2000.ATLAS:
a flexible andextensiblearchitecturefor linguistic anno-
tation. In Proceedingsof LREC2000, pages1699–1706,
Athens.ELRA.

LarsBorin andMatsDahllöf. 1999.A corpus-basedgram-
mar tutor for Educationin LanguageandSpeechTech-
nology. In EACL’99. Computerand InternetSupported
Education in Language and Speech Technology. Pro-
ceedingsof a WorkshopSponsoredby ELSNETandThe
Associationfor ComputationalLinguistics, pages36–43,
Bergen.Universityof Bergen.

LarsBorin andKlas Prütz. 2001. Througha glassdarkly:
Partof speechdistribution in originalandtranslatedtext.
In WalterDaelemans,Khalil Sima’an,JornVeenstra,and
JakubZavrel, editors,ComputationalLinguisticsin the
Netherlands2000, pages30–44.Rodopi,Amsterdam.

Lars Borin. 2000. Enhancingtagging performanceby
combining knowledge sources. In Gunilla Byrman,
HansLindquist, and MagnusLevin, editors,Korpusar
i forskning och undervisning. Corpora in Research
and Teaching, pages19–31,Växjö Universitet,Växjö.
ASLA, ASLA.

LarsBorin. 2002. Wherewill thestandardsfor intelligent
computer-assistedlanguagelearning come from? In
Proceedingsof LREC 2002 workshopon International
Standardsof TerminologyandLanguageResourceMan-
agement. To appear.

Lars Borin. Forthcoming2002. Alignment and tagging.
In LarsBorin, editor, Parallel Corpora, Parallel Worlds.
SelectedPapersfroma SymposiumonParallel andCom-
parableCorpora at UppsalaUniversity, Sweden,22–23
April, 1999. Rodopi,Amsterdam.

Alan BusemanandKarenBuseman,1998. TheLinguist’s
Shoeboxfor WindowsandMacintosh.SummerInstitute
of Linguistics,Waxhaw, NorthCarolina:.

ScottCottonandStevenBird. 2002. An integratedframe-
work for treebanksandmultilayer annotations.In Pro-
ceedingsof LREC2002, LasPalmas.ELRA. To appear.

Hamish Cunningham. 2002. GATE, a generalarchitec-
ture for text engineering.Computers and the Humani-
ties, 36:223–254.

JanEinarsson.1976a.Talbankensskriftspråkskonkordans.
Corpuson CD-ROM.

Jan Einarsson. 1976b. Talbankens talspråkskonkordans.
Corpuson CD-ROM.

EvaEjerhedandGunnelKällgren. 1997.StockholmUmeå

Corpusversion1.0,SUC1.0. Departmentof Linguistics,
UmeåUniversity.

JohnFlowerdew. 1996. Concordancingin languagelearn-
ing. In Martha C. Pennington,editor, The Power of
CALL, pages97–113.Athelstan,Houston,Texas.

SylvianeGranger, editor. 1998. LearnerEnglishon Com-
puter. Longman,London.

Harald Hammarström. Forthcoming 2002. Overview
of IT-basedtools for learning and training grammar.
Projectreport,IT-basedCollaborativeLearningin Gram-
mar. Departmentof Linguistics,UppsalaUniversity.

Nancy Ide,PatriceBonhomme,andLaurentRomary. 2000.
XCES: an XML-based encodingstandardfor linguis-
tic corpora. In Proceedingsof the 2nd International
Conference on Language Resources and Evaluation
(LREC2000), pages825–830,Athens.ELRA.

EsaItkonen.2001.Concerningtheuniversalityof thenoun
vs. verbdistinction. SKYJournal of Linguistics, 14:75–
86.

MonicaMonachiniandNicolettaCalzolari. 1996. Synop-
sis andcomparisonof morphosyntacticphenomenaen-
codedin lexiconsandcorpora.a commonproposaland
applicationsto Europeanlanguages.EAGLES Docu-
mentEAG-CLWG-MORPHOSYN/R.

Leif-Jöran Olssonand Lars Borin. 2000. A web-based
tool for exploring translationequivalentson word and
sentencelevel in multilingual parallel corpora. In
Erikoiskielet ja kännösteoria– Fackspråk och över-
sättningsteori– LSP and Theory of Translation. 20th
VAKKI Symposium, pages76–84,Vaasa,Finland.Uni-
versityof Vaasa.

Fredrik Olsson. 2002. Requirementsand DesignConsid-
erationsfor anOpenandGeneral Architecturefor Infor-
mationRefinement. Number35 in Reportsfrom Uppsala
University, Departmentof Linguistics,RUUL. Uppsala
University, Departmentof Linguistics.

Andrew Pawley. 1993. A languagewhich defiesdescrip-
tion by ordinarymeans.In W. A. Foley, editor, TheRole
of Theoryin LanguageDescription, pages87–129.Mou-
ton deGruyter, Berlin.

Anju Saxena. 2000. Corpora of lesser-known lan-
guageson the internet: A pedagogicaltool for the
teaching of syntax. Paper presentedat the work-
shopon IT inom språkundervisningen.UppsalaUniver-
sity. http://www.ling.uu.se/anjusaxena/
symposium0303.html .

Ulf Teleman. 1974. Manual för grammatiskbeskrivning
av talad och skrivensvenska. Liber, Lund.

SimoneTeufel. 1995. A supporttool for tagsetmapping.
In Proceedingsof SIGDAT 1995.Workshopin connec-
tion with EACL 95, Dublin. Associationfor Computa-
tionalLinguistics.

Sean Wallis and Gerry Nelson. 2000. The FTF
home pages. WWW: http://www.ucl.ac.uk/
english- usage/ftfs/faqs.htm . Accessedon
10 April 2002.

