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Abstract
In earlier work, we succeeded in automatically predicting the relative rankings of MT systems derived from human judgments on the
Fluency, Adequacy or Informativeness of their output. In this paper, we present an experiment – using human evaluators and
additional data – designed to test the robustness of our earlier results. These had yielded two promising automatically computable
predictors, the D-score based on semantic features of the MT output, and the X-score based on syntactic features. We conclude that the
X-score is indeed a robust and reliable predictor, even on new data for which it has not been specifically tuned.

1. Introduction
The manual assessment by human judges of the quality

of an MT system's output is a costly exercise. It is,
therefore, of central concern to explore whether there are
any automatically computable scores that correlate well
with such expensive, manually produced evaluations.
Indeed, this concern has motivated a number of recent
research initiatives (e.g. Papineni et al., 2001; Reeder et
al., 2001; Vanni and Miller, 2001; White and Forner,
2001) that have produced promising initial results. These
authors recognise, however, that further work needs to be
done to test the robustness of their findings.

Our own work in this vein (Rajman and Hartley, 2001)
attempted initially to automatically compute scores that
would correlate with human judgments on the Fluency,
Adequacy or Informativeness of individual documents
translated by five different MT systems. This proved to be
beyond us; however, we succeeded instead in predicting
the relative rankings of the MT systems yielded by the
human scores. We identified, in fact, two automatically
computable predictors: the X-score based on syntactic
features of the MT output, and the D-score based on
semantic features.

In this paper, we report on an experiment with human
evaluators designed to test the validity of these two scores
with additional data.

2. Experimental set-up

2.1. Data
From 1992 through 1994, DARPA conducted a series

of MT evaluations as part of the Human Language
Technology initiative (White, O’Connell and O’Mara,
1994). The largest of these included 100 newspaper
articles in each of three language pairs (Spanish, French,
and Japanese into English). Each pair was represented by
several MT systems in various states of maturity, and also
by two sets of human, professional translations. Each
translation, in turn, was subjected to three separate
evaluations, for Fluency, Adequacy and Informativeness.

We have focused on the translations derived from
French, that is, 100 human translations and 500 outputs
generated by five MT systems: Candide (CD), Globalink
(GL), MetalSystem (MS), Systran (SY) and XS (XS). Our
previous work showed a large discrepancy between the
manual and automatic rankings of the human translations,

and so we excluded the human translations from
consideration in the current experiment. However, we
added the 100 outputs generated by a new system,
Reverso (RV). Thus, we had 100 series of outputs, each
series consisting of six competing target versions derived
from the same source text by the six MT systems.
Following (White and Forner, 2001), we sorted the 100
series by their average score for Adequacy. We then
selected every 5th series, so retaining a representative
sample of 20 series to submit to our human evaluators.

2.2. Evaluators’ task
We employed 12 evaluators, all graduate students with

English as their mother tongue, ranging in age from mid-
twenties to early sixties. We expressly recruited subjects
who professed no knowledge of French, so that they
would be equally disadvantaged in any attempt to
reconstruct a translation by conjecturing about the source
text.

Each evaluator read 10 series of outputs, i.e. a total of
60 outputs; each series was read by six evaluators. The
order in which each evaluator read each series was
randomized, as was, for each series and each evaluator,
the order of the six texts in the series. The evaluators were
required to take at least a 10-minute break after every two
series.

The evaluators were given the following instruction:
‘Rank these six texts from best to worst. If you can’t
distinguish between two or more texts, bracket them
together, e.g. 4 [1 2] 6 [3 5]’. They were not told that the
texts had been generated by MT systems.

This procedure departs from a long tradition of using
anchored scales to assess attributes of MT output, from
(Carroll 1966) to (Papineni et al., 2001). It most closely
resembles the approach adopted by (Brew and Thompson,
1994), which asked evaluators to assign unanchored,
relative scores. The instruction was so designed as to
produce responses that would be directly comparable with
the rankings predicted from the automatically computed
scores. The underlying objective is the simple but useful
one of predicting where a new, unknown MT system
ranks relative to one or more previously evaluated
systems.

The instruction makes no mention of any attribute of
text quality, leaving the subjects to determine what they
mean by ‘better’ or ‘worse’, which we assume to be
captured by some combination of Fluency, Adequacy and



Informativeness. In this event, the underspecificity of the
instruction is not problematic, since our previous results
showed identical rankings according to Adequacy and
Informativeness, which varied only slightly from the
ranking according to Fluency (Rajman and Hartley, 2001).

It is worth stressing also the fact that our evaluators
were ranking texts of some 250-300 hundred words each,
thus making summative judgments not only over attributes
of quality but also over collections of sentences. This
differs from the approach of, for example, (Papineni et al.,
2001), who asked their evaluators to judge translations of
just 50 sentences selected at random from a corpus of 40
(short) texts

3. Automatically computed scores
In our previous experiments, we defined three types of

scores that all can be automatically computed for the
translations produced by the MT systems: two scores
relying on syntactic features, the X-score and the C-score,
and one relying on semantic features, the D-score. As the
new results confirmed the already observed low predictive
power of the C-score, we will not present this score again
and the rest of this section will focus on a brief description
of the two most promising candidates: the X-score and the
D-score.

3.1. X-score
The X-score is taken to measure the grammaticality of

the translations. For any given document, the X-score is
obtained as follows. First, the document is analyzed by the
Xerox shallow parser XELDA1 in order to produce the
syntactic dependencies for each sentence constituent. For
example, for the sentence The Ministry of Foreign Affairs
echoed this view, the following syntactic dependencies are
produced: SUBJ (Ministry, echoed); DOBJ (echoed,
view); NN (Foreign, Affairs) and NNPREP (Ministry, of,
Affairs).

On the corpus used in our previous experiments,
XELDA produced 22 different syntactic dependencies,
among which (the figure within brackets indicates the
dependence occurrence frequency):

RELSUBJ[2501]: for example, RELSUBJ(hearing,
lasted) in “a hearing that lasted more than two hours”;

RELSUBJPASS[108]: for example, RELSUBJPASS(
program, agreed) in “a public program that has already
been agreed on ...”;

PADJ[2358]: for example, PADJ(effects, possible) in
“to examine the effects as possible”;

ADVADJ[433]: for example, ADVADJ(brightly,
colored) in “brightly colored doors”.

After each document has been parsed, we compute its
dependency profile (i.e. the number of occurrences of
each of the 22 dependencies in the document). This profile
is then used to derive the X-score using the following
formula:

X-score=(#RELSUBJ+#RELSUBJPASS-#PADJ-#ADVADJ)

Note that several formulae would have been possible
for computing the X-scores. The above-mentioned one
was selected in such a way that, if applied to the average
dependency profile, it correctly predicts the average rank
                                                
1 http://www.xrce.xerox.com/ats/xelda/

ranking (see Section 4.1 below) derived from the F-scores
(Fluency evaluation). In this sense, one can say that the
computation of the X-score was specifically tuned to the
test data and so it was considered quite ad hoc in our
previous experiments. However, this is no longer true for
the current experiments. We retained exactly the same
formula for the X-scores, while completely changing the
human evaluations – evaluators directly assigned rankings
to series of translations instead of assigning individual
scores to each of the translations. Moreover, we added a
new MT system, not present at all in the data that was
used for the tuning. Thus, in our new experimental setup,
there is no reason to believe the X-scores to be ad hoc,
which strongly increases their chances of being highly
portable to other experimental data.

3.2. D-score
The D-score is held to measure how well the semantic

content of a document has been preserved during
translation. The underlying idea is to use a vector-based
semantic model (similar to those used in domains such as
IR) and a large reference corpus of aligned translations2.
The part of the reference corpus consisting of the
documents in the source (or the target) language will be
called hereafter the source (or target) reference corpus. In
such a setup, the goal is then to measure how far the
position of any source document in the vector space
defined by the source reference corpus is comparable to
the position of its translation in the vector space defined
by the target reference corpus.

More precisely, for any document in the source
language, we compute its semantic similarity with each of
the documents in the source reference corpus and consider
the resulting vector of similarities as an indirect
characterization of the position of the document in the
vector space. The similarity measure used in all our
experiments is the cosine similarity between the document
lexical profiles (with the SMART ltn weighting scheme
(Salton and Buckley, 1988)). We proceed in the same way
for the translation of the document in the target language,
and thus produce a vector of similarities between the
translation and the documents in the target reference
corpus.

We then use the following hypothesis for which we
provided convincing evidence in (Rajman and Hartley,
2001) and in (Besançon and Rajman, 2002): the structure
of the vector space spanned by the documents in the
source reference corpus is well preserved by translation in
the target language, and thus is very similar to the one of
the vector space spanned by the documents in the target
reference corpus. This in turn implies the following useful
property: if the semantic content of a document is well
preserved during translation, then the vector of similarities
associated with this document in the source vector space
should be very similar to the vector of similarities
associated with its translation in the target vector space.

We therefore use the Euclidean distance between the
vectors of similarities as an indicator of the quality of the
preservation of the semantic content after translation, and,

                                                
2 As reference corpus, we used the JOC corpus containing
6729 documents comprising questions and answers to the
European Community as published in the Journal Officiel
de la Communauté Européenne.



in order to have a score (hereafter called the D-score) that
varies in the same direction as quality (the higher the
value, the higher the quality), we actually use an inverse
function of the distance:

D-score(Dtgt)=1(1+d(Vsrc(Dsrc),Vtgt(D tgt)))

where Vsrc(Dsrc) (or Vtgt(Dtgt)) is the vector of similarities
for the source document Dsrc (or the translation Dtgt) in
the source (or target) semantic vector space.

4. Computing the rankings
The very first problem we face when trying to predict

overall rankings is the production of the reference overall
rankings that should be predicted. For the six systems
evaluated in our new experiment, the raw evaluation
material consists of the 12x10=120 rank series produced
by the evaluators. Each of these series corresponds to a
ranking of the six MT systems made by one of the 12
evaluators (on the basis of one of the 10 translation
sequences he/she was provided with), and can be therefore
considered as one individual preference indication (or
vote) over these systems. The overall ranking we are
looking for is then the one that optimally globally
represents the set of 120 individual preferences.

Once the overall reference rankings are defined, we
further have to decide how the automatically computable
scores (X-score and D-score) should be taken into account
to derive overall rankings that will be used as predictors
for the reference rankings. In this case, the raw evaluation
material consists of the 100 series of six scores produced
for each of the 100 available series of translations. Here
again, we consider each of the sequences of scores as one
individual preference indication (or vote) over the MT
systems. The targeted overall ranking is therefore once
again the one that optimally globally represents the set of
100 available individual preferences.

In both cases we are faced with the problem of
optimally aggregating individual preferences. In fact, this
problem is a very hard mathematical problem well known
to economists and political scientists (in the domain of
voting theory for example), and for which it has been
shown (Arrow, 1963) that there is no indisputable optimal
solution. However, various simple aggregation techniques
can be used to produce sub-optimal solutions. For our
experiments, we have considered three such aggregations
techniques: (1) ranking by average scores (average score
ranking or ASR); (2) ranking by average ranks (average
rank ranking or ARR); and (3) ranking by average binary
preferences (average preference ranking or APR). We did
not consider other more sophisticated aggregation
techniques, such as approval voting or multiple round
voting schemes.

4.1. Average score and average rank ranking
(ASR and ARR)

ASR has the advantage of great simplicity: for each of
the systems, its scores are averaged over all the available
score sequences and the resulting average values are used
to produce the overall ranking of the systems. If the
original evaluation data consists of rank sequences instead
of score sequences (as it is the case for our human
evaluations), the rank values need to be transformed in
order to vary in the same way as scores (the bigger, the

better). For our experiments, we have simply multiplied
all the rank values by –1.

ARR is another very simple aggregation technique: for
each of the systems, its ranks are averaged over all the
available rank sequences and the resulting average values
are used to produce the overall ranking of the systems. If
the original evaluation data consists of score sequences
instead of rank sequences (as it is the case for the X-scores
and D-scores), each of the score sequences is first
transformed in a rank sequence.

Note that in the case of original evaluation data
consisting of ranks, ARR and ASR necessarily produce
exactly the same results. Computing ASRs is then of no
interest and therefore, for the production of the reference
overall rankings (i.e. those derived from the human
evaluations), we compute only ARRs. This is not the case
if the original evaluation data consists of scores, in which
case ASRs and ARRs do not necessarily coincide. One
potential advantage of ARR over ASR is the fact that the
former are less sensitive than the latter to outlying values.
However, for well-conditioned scores, we observed that
ASRs tend to be more stable than ARRs in the case of
bootstrap replication (see section 5). We therefore
systematically produced both ASRs and ARRs for the
overall rankings derived from the X-scores and D-scores.

4.2. Average preference ranking (APR)
APR represents another way of producing an overall

ranking as the synthesis of a set of several individual
rankings. The method for producing an average preference
ranking is quite simple. The individual rankings are first
converted into a set of binary comparisons on translation
pairs. For each of the pairs i:j, we then compute how many
times i has been ranked higher than j and the resulting
average ranking is the one corresponding to simple
majority decisions for all the pairs. By convention, for
each pair i:j, an associated value 1 (or -1) indicates that
element i has a better (or worse) rank than element j. For
partial rankings, a value 0 indicates that for the pair i:j, no
ranking decision has been made.

The APR rankings are in fact far more complicated
than they appear. Indeed, with the procedure described
above, it is not guaranteed that the resulting set of binary
decisions effectively corresponds to a ranking.

Two types of problems may arise. First, some of the
average binary decisions might not be taken on the basis
of a simple majority vote because the number of votes for
each of the 2 possible decisions (1 and -1) are equal; in
such a case, a partial ranking is produced and the
corresponding decision value is set to 0 as already
mentioned earlier.

Second, the resulting set of average binary decisions
might not correspond to a ranking. This is due to the fact
that some transitivity relation is not verified .This is the
well known Condorcet paradox, stating that the
aggregation of rational – i.e. verifying transitivity –
preference sets can result in a irrational set of preferences
(Saari, 1999). One possibility for dealing with such
situations is to relax the binary decisions that violate
transitivity to ‘unknown’ (value 0), again turning the set
of binary decisions into a partial ranking.

In our experiments, we used APR mainly as a second
step, to produce partial rankings when the total rankings
produced as ASRs or ARRs appear too unstable.



5. Quality measures used for the rankings

5.1. ASR and ARR stability
Since the average rankings analyzed in the previous

section are derived from a limited number of preference
sequences (either 120 rank sequences or 100 score
sequences), it is essential to have evidence of how
sensitive the overall rankings are to the specific raw
evaluation data they have been derived from. One
standard method for testing the stability of results derived
from finite sets of data is bootstrapping. The general idea
of the method is very simple: the original data set is used
to produce a large number of random samples (called
bootstrap replicates) of the same size N as the original
data set. The random samples are used to produce the
result for which we would like to estimate the stability,
which is then measured by a statistic computed on the set
of bootstrap duplicates.

In our case, the random samples are simply built by N
times randomly selecting among the original N raw
evaluation data sets. Note that it often happens that the
same raw evaluation data is duplicated several times in the
bootstrap replicates. To measure stability, we simply
compute how many times the evaluated ranking is
produced among all the rankings derived from the
bootstrap replicates. Additional insight into stability is
provided by checking whether the overall ranking
produced is indeed the most frequent one among the
replicates, and by computing the frequency of the second
most frequent one.

In our experiments, for each of the scores, we
produced 10,000 bootstrap replicates of the original
evaluation data set.

As we have already observed when we compared the
ASR and ARR rankings, an important part of the
instability of the ranking produced comes from the fact
that the data they derive from simultaneously substantiates
not one single overall ranking but in fact several
competing ones.

In order to analyse such phenomena, it is important to
be able to produce the different rankings that are
substantiated by a given evaluation data set. One
possibility would be to explore the different rankings
frequently produced during bootstrapping. This method
however is not optimal, as it does not allow us to make
use of the fact that the several competing rankings
probably share important common parts (i.e. a subset of
identical pairwise orders). A better approach is to focus on
the reliability of the average preference rankings, as we
see in the next section.

5.2. APR reliability
As it was the case for the ASR and ARR rankings, the

issue of reliability is an important concern for the APR
rankings. However, the approach for measuring reliability
is quite different. As the APR is built by deriving the
average binary decision from the counts of the individual
binary decisions, a statistical test can quite easily be used
instead of the simple majority rule. More precisely, this
corresponds to replacing the rule: ‘Select a decision if the
proportion of individual decisions it corresponds to is
greater than a half’ by the statistical test ‘Select a decision
if the proportion of individual decisions it corresponds to
is significantly greater than a half’. As we are dealing with

proportions, we used a Student test. The level of
confidence that can be associated with a produced APR is
then the lowest of the levels of confidence that were used
to select the average binary decisions it consists of.

5.3. Comparing rankings
Another interesting point is to define a proximity

measure on the rankings in order to quantify the quality of
the ranking predictions, i.e. how well the ranking derived
from an automatically computed score corresponds to the
one derived from the human evaluations.

A possible distance on rankings is the Hamming
distance, which computes the number of pairwise
differences. We extended this definition to partial
rankings by adding a value of 0.5 (or 0) for all the
pairwise differences that involve exactly one pair (or two
pairs) for which no preference decision has been taken.
With such a definition, the distance between the partial
rankings R1=(2[4 3]1) and R2=([2 4][1 3]) (where the
numbers identify the ranked entities) corresponding,
respectively, to the two sequences of six pairwise
comparisons S1 = (–1 –1 –1 +1 +1 0) and
S2 = (–1 0 –1 +1 0 –1), is d(R1,R2) = 1.5.

As defined above, the distance d(R1,R2) between two
rankings over N elements is necessarily between 0 and
N(N-1)/2, and can therefore easily be transformed into a
similarity s(R1,R2) by: s(R1,R2) = 1 – 2d(R1,R2)/N(N-1).
With this definition, the distance d(R1,R2) = 1.5
corresponds to a similarity s(R1,R2) = 75%.

Finally, two additional interesting measures of the
quality of the predicted ranking are its precision and
recall. The precision is the proportion of binary
comparisons correctly predicted among all the binary
relations predicted. The recall is the proportion of binary
comparisons correctly predicted among all the binary
relations in the reference ranking. In the above example, if
we consider R1 as the reference ranking, we have
PR1(R2) = 75% and RR1(R2) = 60%.

6. Description of the results obtained

6.1. Overall rankings derived from the human
evaluations

For the human evaluations (hereafter called the H-
ranks), both ARR (and of course ASR) and APR produce
the same overall ranking H:

H: RV SY CD GL MS XS

The corresponding stability/reliability measures are:

stability reliability
ASR/ARR 57%
APR 41%

Table 1: stability/reliability measures (H-ranks)

The derived ASR/ARR ranking is indeed the most
frequent one among the bootstrap replicates, the second
most frequent one being more than 3 times less frequent.
In addition, the most complete partial ranking that can be
produced by APR is:



Hp: RV [SY CD] GL MS XS with a reliability of 63%

which indicates that the least reliable pairwise preference
(in the complete ranking H) is SY > CD and that relaxing
it (i.e. not taking a decision on the relative position of SY
and CD) provides the partial ranking Hp with a reliability
of 63%.

6.2. Overall rankings derived from the X-scores
Again, all 3 aggregation methods (ASR, ARR and

APR) produce the same ranking X:
X: RV SY CD MS GL XS

The corresponding stability/reliability measures are:

stability reliability
ASR 52%
ARR 34%
APR 83%

Table 2: stability/reliability measures (X-scores)
The derived ASR and ARR rankings are indeed the most
frequent ones among the bootstrap replicates, the second
most frequent being more than 3 times less frequent for
ASR and 1.5 less frequent for ARR. In addition, the most
complete partial ranking that can be produced by APR is:

Xp: RV SY CD [MS GL] XS with a reliability of 89%.

6.3. Overall rankings derived from the D-scores
Again, all three aggregation methods (ASR, ARR and

APR) produce the same ranking D:

D: GL SY RV MS CD XS

The corresponding stability/reliability measures are:

stability reliability
ASR 75%
ARR 57%
APR 45%

Table 3: stability/reliability measures (D-scores)
The derived ASR and ARR rankings are indeed the most
frequent ones among the bootstrap replicates, the second
most frequent being more than 2 times less frequent for
ASR and 2 less frequent for ARR. In addition, the most
complete partial ranking that can be produced by APR is:

Dp: (GL SY) RV MS CD XS with a reliability of 99%.

6.4. Quality of the predictions
The following tables summarize all the quality

measures for the prediction of H (resp. Hp) by X and D
(resp Xp and Dp).

distance similarity precision recall
X 1 93.3% 93.3% 93.3%
D 5 66.7% 66.7% 66.7%

Table 4: prediction of H

distance similarity precision recall
Xp 0.5 96.7% 100% 93.3%
Dp 4.5 70% 71.4% 66.7%

Table 5: prediction of Hp

7. Interpreting the results

7.1. Reliability of the ranking methods
All three ways of deriving an overall ranking – ASR,

ARR and APR – systematically produce the same ranking.
This strong agreement is a good indicator of the
robustness of the method and simplifies the interpretation.

7.1.1. ASR and ARR
As far as the robustness of ASR and ARR is concerned

(according to bootstrap replication), the scores obtained
are reasonably good – almost always above 50% and
better than the scores obtained by (Rajman and Hartley,
2001), which were all below 47%. Even the ranking
produced by the single low value – ARR(34%) for the X-
score (Table 2) – is indeed the most frequent in the 10,000
bootstrap replications performed and the second most
frequent ranking (which has a score of 23%) is more than
1.5 less frequent. In short, the rankings produced are
without any doubt reliable in that they are representative
of the specific data used for the experiment.

7.1.2. APR
As far as the reliability of APR is concerned, the

scores obtained are lower than those obtained previously.
However, to put this fact in perspective, it is important to
remember the interpretation of the reliability of APR: the
APR reliability scores essentially measure how well the
overall ranking produced represents the underlying
individual rankings produced for each of the documents,

For the ranking derived from the human evaluations
(H-ranks) in particular, the APR reliability score is
therefore to some extent indicative of inter- and intra-
annotator variability. Thus, the low score of 41% obtained
for the rankings derived from the H-ranks (Table 1) in
comparison to the scores of over 80% obtained previously
for the A-, F-, and I-scores could probably be taken to
reflect the fact that the annotators used in our experiment
were less trained than those participating in the DARPA
experiments.

The APR reliability for the X- and D-scores is fully
comparable with that obtained previously. The X-scores
produce an overall ranking which shows a quite good
agreement of 83% (Table 2) and the weakest pair-wise
comparison (MS > GL) is indeed the one that does not
correspond to the ranking derived from the H-scores;

The D-scores produce a ranking with a quite low
agreement of 45% (Table 3), but this is due solely to the
difficulty of discriminating between the first two systems
(GL and SY). The partial ranking that does not decide any
relative ordering for these two systems nonetheless
corresponds to an excellent overall agreement (99%).



7.2. Predictive power of the automated scores

7.2.1. X-score
The X-scores clearly represent a very good predictor

of the ranking derived from the human evaluations (H-
ranks). The distance between the H-ranking and the X-
ranking is 1, corresponding to a similarity of 93.3%, a
precision of 93,3% and a recall of 93.3% (Table 4). If we
restrict ourselves to the most complete partial ranking,
these values improve to a distance of 0.5, a similarity of
96.7%, a precision of 100% and a recall of 93.3%.

These results confirm those obtained by (Rajman and
Hartley, 2001), but put them in a fresh perspective. In the
previous experiments, the X-scores were optimised on the
data, and so it was hardly surprising that they yielded such
good results. We doubted that such ad hoc scores would
generalise well to other data.

However, the formula used to compute the X-scores
were derived only from the outputs of the five ‘old’ MT
systems, excluding the outputs of Reverso (See Section
3.1). The fact that they still perform extremely well for a
new set of data to which they had not been tuned indicates
that they might have a generality that was not suspected
initially.

7.2.2. D-score.
The D-scores appear to be quite disappointing as

predictors for the rankings derived from the human
evaluations. The distance between the D-ranking and the
H-ranking is 5, corresponding to a similarity of 66.7%, a
precision of 66.7% and a recall of 66.7% (Table 5). For
the most complete partial ranking, these values are
respectively: distance = 4.5, similarity = 70%,
 precision = 71.4% and recall = 66.7%.

The D-scores therefore clearly do not confirm the
promise they offered in (Rajman and Hartley, 2001).

8. Conclusions
Our general conclusion from these results is that we

have identified an excellent automated predictor for the
ranking of MT systems. This predictor relies on purely
syntactic features; a predictor based on more semantic
features does not perform as well, despite earlier
expectations of its robustness.

Moreover, the method does not require the production
of reference translations by human translators, up to four
in the case of (Papineni et al., 2001). These authors limit,
however, the expense of this part of the process by
translating only 500 sentences, leaving themselves with a
rather small data set.

We hold to our earlier intuition (Rajman and Hartley,
2001) that humans recognise translations produced by
machines on the basis of syntactic features and rank them
accordingly. We offered this in order to account for the
large discrepancy between the manual rankings of the
human translations (relative to the machine translations)
and the automatically produced rankings. While the
former consistently ranked the human translation in first
place, the latter did not.

In other words, we believe that a machine translation is
perceived as ‘good’ on the grounds of its well-formedness,
rather than its semantic plausibility. This viewpoint finds
some support in the results of (Papineni et al., 2001), who
observed that bilingual judges were more lenient and

tolerant of a bad translation than monolingual judges
because their perceptions of its fidelity moderated their
penalisation of its ill-formedness. Recall that the judges in
our experiments did not know the source language (See
Section 2.2) and so, as effective monolinguals, had no
basis for moderation.

We are also basing our intuition on experiments which
required judgments on whole texts rather than on single
sentences. Clearly, a given MT system may produce a
translation of a single sentence that is indistinguishable
from a human translation and thus qualify for the highest
mark on the rating scale. On that used by (Papineni et al,
2001), that equates to: ‘Has writing proficiency equal to
that of a well-educated native’. But sustaining such a
performance over a number of sentences in a naturally
occurring text is highly unlikely. Errors made by MT
systems are qualitatively different from those made by a
human translator, even by one who does not have the
target language as their mother tongue; (Papineni et al.,
2001) found a marked gap between the worst human
translation and the best machine translation in their
experiment.

There are clearly general questions about the how the
profile of the evaluators (monolingual or bilingual), the
nature of the input (sentences or texts) and the terms of the
scale affect the results. For example, how the evaluators
employed by (Papineni et al., 2001) were able to award
the lowest mark on their scale – ‘Writing tends to be a
collection of sentences on a given topic and provides little
evidence of conscious organisation’ – when they were
judging single sentences selected at random, is unclear to
us. It is also hard to see how the criterion ‘Can write
simply about a very limited number of current events or
daily situations’ can be applied to single sentences.
Moreover, it relates to the subject matter, which is given
by the source text, and so could harshly penalise an
accurate translation of simple input.

More work is clearly called for to better understand the
implications of using single sentences or whole texts as
the input to the evaluation tasks, and of using evaluators
with no or considerable knowledge of the source
language.

Another open research question is whether we can
extend our evaluation framework with a good automated
predictor that reliably distinguishes between a machine-
generated text and a human-generated text, without
relying on several reference translations produced by
human translators. Evaluation of the applicability of the
method presented in (Papineni et al., 2001) to our data is
currently ongoing.
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