Towar ds Automatic Evaluation of Question/Answering Systems

Bernardo Magnini, Matteo Negri, Roberto Prevete,
and Hristo Tanev

ITC-irst, Centro per la Ricerca Scientifica e Tecnologica,
Via Sommarive, 3850 POVO (TN), Italy
{magnini,negri,prevete,tanev} @itc.it

Abstract
This paper presents an innovative approach to the automatic evaluation of Question Answering systems. The methodology relies on the
use of the Web, considered as an “oracle” containing all the information needed to check the relevance of a candidate answer with respect
to a given question. The procedure is completely automatic (i.e. no human intervention is required) and it is based on the assumption
that the answers’ relevance can be assessed from a purely quantitative perspective. The methodology is based on a Web search using
patterns derived both from the question and from the answer. Different kinds of patterns have been identified, ranging from “lenient”
(i.e. boolean combinations of single words), to “strict” patterns (i.e. whole sentences or combinations of phrases). A statistically-based
algorithm has been developed which considers both the kinds of patterns used in the search and the number of documents returned from
the Web. Experiments carried out on the TREC-10 corpus show that the approach achieves a high level of performance (i.e. 80% success

rate).

1. Introduction

Textual Question Answering (QA) aims at identifying
the answer to a question either on the Web or in a local
document collection. QA systems are presented with natu-
ral language questions and the expected output is either the
actual answer identified in a text or small text fragments
containing the answer.

Automatic or semi-automatic evaluation techniques are
of great interest for QA for several reasons. On one hand,
most QA systems rely on complex architectures including
modules in charge of the linguistic processing of the ques-
tion, search in textual databases, and extraction of relevant
text portions. Performance evaluation of such systems re-
quires a huge amount of work. As a consequence, from
the software engineering point of view, the automatic as-
sessment of an answer with respect to a given question is
important in the phases of algorithm refinement and test-
ing. On the other hand, the availability of a completely au-
tomatic evaluation procedure makes feasible QA systems
which are based on generate and test approaches. In this
way, the system will carry out different refinements of its
search criteria checking the relevance of new candidate an-
swers until a given answer is automatically proved to be
correct for a question.

Although there is some recent work addressing the eval-
uation of QA systems, it seems that the idea of using an
automatic approach has still not been fully explored.

(Breck et al., 2000) presents a semi-automatic approach
which relies on computing the overlap between the system
response to a question and the stemmed content words of
an answer key. Answer keys are manually constructed by
human annotators using the TREC question corpus and ex-
ternal resources like the Web.

Several systems apply automatic answer validation
techniques with the goal of filtering out improper candi-
dates by checking how adequate an answer is with respect
to a given question. These approaches rely on discovering
semantic relations between the question and the answer. As
an example, (Harabagiu and Maiorano, 1999) describes an-

swer validation as an abductive inference process, where an
answer is valid with respect to a question if a logical justi-
fication of its correctness can be provided. The justification
is based on a backchaining proof from the logical form of
the answer to the logical form of the question. Although
theoretically well motivated, the use of semantic techniques
on open domain tasks is quite expensive both in terms of
the involved linguistic resources and in terms of computa-
tional complexity, thus motivating research on alternative
solutions to the problem.

The approach we present attacks the problem from a
new point of view, exploiting the amount of information
present in the Web for a fully automatic answer validation
process. Our methodology considers both the search crite-
ria used for querying the Web and the number of hits. The
underlying intuition is that, given a question/answer pair,
the number of Web-retrieved documents in which the ques-
tion and the answer keywords co-occur can be considered a
significant clue to the validity of the answer. Following this
intuition, different query formulation criteria ranging from
gtrict (i.e. close to the actual form of a question) to more
lenient (i.e. traditional word level queries) search patterns
are possible. The trade-off between the use of different
search patterns and the number of documents retrieved is
thoroughly investigated in order to maximize the effective-
ness of a statistical approach.

The paper is structured as follows. Section 2 introduces
the problem of the evaluation of QA systems, fixing the
context of this work. Section 3 illustrates the concept of
validation patterns and presents the basic distinction be-
tween lenient and strict patterns. Section 4 describes a sim-
ple pattern extraction technique. Section 5 addresses the
problem of statistical answer validation, presenting an al-
gorithm for estimating an answer’s relevance. Section 6
discusses the results of an automatic evaluation experiment
carried out using the TREC-10 question corpus as data set.

128



2. Answer Relevance

The evaluation of QA systems can be carried out from
different perspectives, taking into consideration either their
usability and the time of execution or the “quality” of the
output they provide. Until now, most of the effort in de-
veloping QA systems still deals with the second aspect of
the challenge, focusing on the problem of an answer’s “cor-
rectness”. Although the QA roadmap (Burger et al., 2001)
includes the analysis of other aspects of the task (real-time
QA interactive QA, user profiling, etc.) in the future, so far
the TREC competition guidelines only asked participants to
provide “correct” answers to open-domain natural language
questions.

The definition of correctness depends both on the kind
of questions systems have to deal with, and on the com-
plexity of the required answers. Some questions are much
harder than others because they require explanations (e.g.
“How to assemble a computer?”) or definitions (e.g. “Who
was Galileo?”). In these cases it is not clear what makes a
good answer because of the inherent ambiguity of the ques-
tions. (Harabagiu et al., 2000) points out that for the same
question, the answer may be easier or more difficult to ex-
tract depending on how it is phrased in the text. For instance
lists (eg. “Name 9 countries that import Cuban sugar”),
opinions (eg. “Should the Fed raise interest rates at their
next meeting?”) and summaries (eg. “What are the ar-
guments for and against prayer in school?”) are difficult to
provide because they require dealing with information scat-
tered throughout a document or across multiple documents.
In these cases, the problem of finding answers depends on
factors (for example reasoning mechanisms and knowledge
of the world) that exceed traditional natural language pro-
cessing techniques. As a consequence, the definition of an
answer’s correctness is also quite problematic because it is
not a simple text portion found verbatim in sentences or
paragraphs.

So far, the difficulty of dealing with such kinds of ques-
tions and answers has confined most of the research efforts
to the study of questions with short factual answers (eg.
“When did Elvis Presley die?”). Different criteria have
been proposed for judging this kind of answers. For in-
stance, (Hirschman and Gaizauskas, 2001) considers rele-
vance, correctness, conciseness, completeness, coherence
and justification as possible features of a good answer and
points out that, according to the TREC evaluation criteria,
so far evaluations have focused primarily on relevance (i.e.
is the answer actually responsive to the question?) and par-
tially on justification (i.e. is the answer supplied with suf-
ficient context to allow a reader to determine why this was
chosen as an answer to the question?).

This work is focused on the first of these two aspects:
given a question ¢ and a candidate answer «, we define the
answer validation task as the capability to assess the rele-
vance of a with respect to ¢. We assume fact-based open-
domain questions and that both answers and questions are
texts composed of few tokens (usually less than 100). This
is compatible with the TREC-10 data, which will be used
as an example throughout this paper. We also assume the
availability of the Web, considered to be the largest open
domain text corpus containing information about almost all

areas of the human knowledge.

3. Validation Patterns

The use of patterns has recently emerged as an inter-
esting approach to the QA task. For example (Soubbotin
and Soubbotin, 2001) describes a QA system based on
searching for predefined patterns of textual expressions that
may be interpreted as answers to certain types of questions.
Given a question and a list of candidate answers, the system
considers as correct only the text portions matching any of
the pattern strings corresponding to the question type cate-
gory.

Our approach to answer validation benefits greatly from
using patterns. The motivation for a pattern-based approach
is that patterns represent an effective way for capturing both
explicit and implicit information from text documents. An-
swers, in fact, may occur in text passages with low sim-
ilarity with respect to the question. Passages containing
facts’ descriptions may use different syntactic construc-
tions, sometimes are spread in more than one sentence, may
reflect opinions and personal attitudes, and often use ellip-
sis and anaphora. For instance, consider the question “What
is the capital of the USA?” and the answer “Washington”.
Using patterns we can find Web documents containing pas-
sages like those reported in Table 1, which contain a signif-
icant amount of knowledge about the relations between the
question and the answer. We will refer to these text frag-
ments as validation fragments.

1. Capital Region USA: Fly-Drive Holidays in and
Around Washington D.C.

2. the Insider’s Guide to the Capital Area Music Scene
(Washington D.C., USA).

3. The Capital Tangueros (Washington, DC Area, USA)

4. | live in the Nation’s Capital, Washington Metropoli-
tan Area (USA).

5. in 1790 Capital (also USA’s capital): Washington
D.C. Area: 179 square km

129

Table 1: Validation fragments

Given a question/answer pair, we use the term valida-
tion patternsto indicate queries built with different combi-
nations of words extracted both from the question and from
the answer. The underlying intuition is that if a certain an-
swer is relevant with respect to a given question, then a Web
search using validation patterns will result in a large set of
documents connecting question and answer concepts. On
the contrary, validation patterns built combining the ques-
tion keywords with keywords extracted from a wrong an-
swer will lead to few documents.

Considering the above example, the problem of vali-
dating the answer “Washington” can be tackled searching
the Web for documents in which the concepts “capital of
the USA?" and “Washington” co-occur. Our hypothesis
is that the co-occurrence tendency of question and answer
concepts (i.e. the number of retrieved documents) can be
considered a significant clue to the validity of the answer.

Different kinds of patterns can be used in order to
cover a large portion of validation fragments, including



those lexically similar to the question and the answer
(eg. fragments 4 and 5 in Table 1) and also those that are
not similar (eg. fragment 2 in Table 1). A search query
covering all the validation fragments of our example can
be generalized by the pattern:

[capital <text> USA <text> Washington]

where <text> is a place holder for any portion of text.

The construction of a validation pattern is not straight-
forward. The advanced search modalities of modern search
engines allow the user to put together query keywords in a
number of ways, narrowing or enlarging the search space.
Validation patterns can be classified according to their de-
gree of generality, and range from lenient (i.e. boolean
compositions of single words) to strict (i.e. search queries
using strings) patterns.

3.1. Lenient Patterns

Lenient patterns, or word level patterns, represent the
easiest way of combining the search keywords. At this level
question and answer keywords are simply put together as
separate words using boolean (i.e. AND/ OR operators) or
more sophisticated operators (eg. the NEAR operator pro-
vided by AltaVista, which searches for pages where two
words appear in a distance of no more than 10 tokens).

For example, consider the TREC-10 question: “Who
discovered X rays?” and the correct answer “Roentgen”.
The following lenient patterns, in decreasing order of
generality, can be created combining question and answer
keywords:

[discovered OR X OR rays OR Roentgen]
[discovered AND X AND rays AND Roentgen]
[discovered NEAR X NEAR rays NEAR Roentgen]

The first two patterns are the most general, and retrieve re-
spectively pages containing at least one of the keywords
and pages containing all the search keywords. The third
pattern represents a further narrowing of the search space,
and leads to documents containing all the query keywords,
each of which separated by at most 10 tokens.

A common feature of lenient patterns is that they
usually produce a large number of hits but present a
low degree of reliability. Even in the case of retrieved
documents containing all the search keywords, there is no
guarantee that the relation between these concepts is of
the expected type. As an example, lenient patterns built
with the AltaVista NEAR operator lead respectively to 414
documents justifying the right answer (i.e. “Roentgen”)
and five documents for the wrong answer “Einstein”. One
of the phrases covered by the wrong answer pattern is:

“Historical Timeline. 1895 - Wilhelm Roentgen discovered
X-rays. 1905 - Albert Einstein developed the theory about
the relationship of mass and energy”.

The fact that “Einstein” is in proximity of “discovered”,
“X" and “ rays” is enough for the word level pattern to
cover the text even if the co-occurrence of the these words

is purely accidental.

3.2. Strict patterns

Strict patterns represent a refinement of the searching
criteria which combines question and answer keywords
ranging from the phrase level to the sentence level. As
a result, the casual co-occurrence of query keywords is
considerably reduced, while co-occurrences resulting from
a semantic relation between these concepts will tend to
remain stable. For instance, considering the verb-phrase
“discovered X rays” as a search unit, our question about
X-rays can be combined with the respective correct answer
into the following strict patterns:

[“discovered X rays” OR Roentgen]
[“discovered X rays” AND Roentgen]
[“discovered X rays” NEAR Roentgen]

Since the string “discovered X rays” is less likely to ap-
pear in a written text with respect to any of the unordered
combinations of the words “discover”, “X” and “rays”, we
would expect that strict patterns will cover a smaller por-
tion of Web documents. However, we expect that the right
answer “Roentgen” will continue to appear in the context of
the verb-phrase, while the wrong answer “Einstein” would
disappear or rarely appear in the same context. A new Web
search using the NEAR operator provided by AltaVista con-
firms our hypothesis. In fact, the verb-phrase “discovered X
rays” appears close to the answer “Roentgen” in 215 doc-
uments, while it appears close to “Einstein” only in one
document.

Further refinements of the search criteria are possible in
order to create more and more strict patterns. For example,
the question analysis of “Who discovered X rays?” shows
that we are looking for a person, which may be the subject
of a sentence whose verb phrase is “discovered X rays”.
Using syntactic information we can move from the phrase
level to the sentence level in order to build the following
stricter patterns:

[‘Roentgen discovered X rays”]
[‘Einstein discovered X rays”]

A Web search using the first pattern returns 106 documents,
while the second pattern is not found on the Web.

The trade-off between the use of different search pat-
terns and the number of documents retrieved has to be
considered for statistically-based answer validation. The
longer the phrases or sentences that the patterns contain,
the less probable they become and the risk of missing a
right answer increases. Moreover, the small number of text
fragments covered by strict patterns makes the application
of any statistical approach difficult. On the other hand, the
less probable the pattern is, the higher the information value
of its appearance in a text collection. Therefore, the ap-
pearance of a low-probability pattern can be considered a
significant clue to the validity of an answer. The different
ways in which facts can be reformulated makes the very
strict patterns inapplicable in some cases.

130



4. Using Patternsfor Answer Validation

In the experiments reported in this paper we have used
only one type of the patterns mentioned above, namely
phrase-level patterns. This kind of pattern represents a good
test for checking the validity of the statistical answer val-
idation technique. Moreover, phrase-level patterns allow
for a good compromise between the number of documents
returned from the Web and the possibility of casual co-
occurrence of the query keywords.

From this point on, we will use Qsp to denote the ques-
tion sub-pattern (i.e. the portion of pattern derived from the
input question) and Asp to denote the answer sub-pattern
(i.e. the portion of the pattern derived from a candidate an-
swer).

Question sub-pattern (Qsp). During the construction of
the Qsp phrases are identified by means of a shallow parser.
Keywords are then expanded with both synonyms and mor-
phological forms in order to maximize the recall of re-
trieved documents. Synonyms are automatically extracted
from the most frequent sense of the word in WordNet (Fell-
baum, 1998), which considerably reduces the risk of adding
disturbing elements. As for morphology, verbs are ex-
panded with all their tense forms (i.e. present, present con-
tinuous, past tense and past participle). Synonyms and mor-
phological forms are added to the Qsp and combined in an
OR clause. As an example, consider the following TREC-
10 question: “George Bush purchased a small interest in
which baseball team?” There are two uninterrupted se-
quences to be considered here: “George Bush purchased a
small interest” and “baseball team”. After the keyword ex-
pansions phase described above, the two token sequences
are combined in the following Qsp:

[George Bush (purchased OR purchase OR purchasing OR
buy OR bought...) (small OR little) (interest OR involve-
ment) <text> (baseball OR ball-game) (team OR squad)]

Answer sub-pattern (Asp). An Asp is constructed in two
steps. First, the answer type of the question is identified
considering both morpho-syntactic (a part of speech tag-
ger is used to process the question) and semantic features
(by means of semantic predicates defined on the WordNet
taxonomy; see (Magnini et al., 2001) for details). Possible
answer types are: DATE, MEASURE, NAME, DEFINITION
and GENERIC. The first two categories are obviously re-
lated to questions asking respectively for dates and mea-
sures. NAME is a broad class related to questions asking for
person, organization or location names. DEFINITION is the
answer type peculiar to questions like “What is an atom?”
which represent a considerable part (around 25%) of the
TREC-10 corpus. The answer type GENERIC is used for
non-definition questions asking for entities that can not be
classified as names, dates or measures (e.g. the questions:
“Material called linen is made from what plant?” or “What
mineral helps prevent osteoporosis?”)

In the second step, a rule-based named entities recog-
nition module identifies in the answer string all the named
entities matching the answer type category. If the category
is NAME, DATE Or MEASURE, this step of the algorithm cre-
ates an Asp for every selected named entity. If the answer
type category is DEFINITION Or GENERIC, the entire answer

string except the stop-words is considered. In addition, in
order to maximize the recall of retrieved documents, the
Asp is expanded with verb tenses. The following example
shows how the Asp is created. Given the TREC question
“When did Elvis Presley die?” and the candidate answer
“though died in 1977 of course some fans maintain”, since
the answer type category is DATE the named entities recog-
nition module will select [1977] as an answer sub-pattern.

5. Estimating Answer Validity

In contrast with qualitative approaches to Web mining
(eg. (Brill et al., 2001)) based on the analysis of the re-
trieved documents’ content, we use a quantitative algorithm
that considers the number of hits. As a result of this ap-
proach, we consider a large number of pages whereas qual-
itative approaches can only work on a relatively small num-
ber.

5.1. Queryingthe Web

The answer validation module submits three searches
to the search engine: the sub-patterns [Qsp] and [Asp] and
the validation pattern [QAp] built as the composition of the
two sub-patterns using the AltaVista NEAR operator. Af-
terwards, a statistical algorithm considers the output of the
Web search for estimating the consistency of the patterns.

Several pattern relaxation heuristics have been defined
in order to gradually increase the number of retrieved docu-
ments. If the question sub-pattern @) sp does not return any
document or returns less than a certain threshold (experi-
mentally set to 7) the question pattern is relaxed by cutting
one word; in this way a new query is formulated and sub-
mitted to the search engine. This is repeated until no more
words can be cut or the returned number of documents be-
comes higher than the threshold.

Pattern relaxation is performed using word-ignoring
rules in a specified order. Such rules, for instance, ignore
the question focus, because it is unlikely that it occurs in a
validation fragment; ignore adverbs and adjectives, because
they are less significant; and ignore nouns belonging to the
WordNet classes “abstraction”, “psychological feature” or
“group”, because usually they specify finer details and hu-
man attitudes. Names, numbers and measures are preferred
over all the lower-case words and are cut last.

5.2. Egimating pattern consistency

As a result of the Web search with patterns, the
search engine returns three sets of documents: hits(Qsp),
hits(Asp) and hits(Qsp NEAR Asp). The probability
P(A) of a pattern A in the Web is calculated by:

. hits(A)
Pia) = NWeb — pages

where hits(A) is the number of pages in the Web where
A appears and NWeb—pages is the maximum number of
pages that can be returned by the search engine. We set
this constant experimentally. However in the both formulas
we use (i.e. Pointwise Mutual Information and Corrected
Conditional Probability) NTWeb—pages may be ignored.

The joint probability P(Qsp,Asp) is calculated by means
of the validation pattern probability:

131



P(QAp) = P(QspNEARAsp)

We have tested two alternative measures to estimate the
degree of relevance of Web searches: Pointwise Mutual In-
formation and Corrected Conditional Probability, a variant
of Conditional Probability which considers the asymmetry
of the question-answer relation. Each measure provides an
answer validity score: high values are interpreted as strong
evidence that the validation pattern is consistent. This is a
clue to the fact that Web pages where this pattern appears
contain validation fragments which support the candidate
answer.

Pointwise Mutual Information (PMI). PMI (Manning
and Schiitze, 1999) has been widely used to find co-
occurrence in large corpora.

P(Qsp,Asp)
PMI(QpASD) = 2 —
(QPAP) = 5iaw) + Pl
PMI(Qsp,Asp) is used as a clue to the internal coher-
ence of the question-answer validation pattern QAp. Sub-
stituting the probabilities in the PMI formula with the pre-
viously introduced Web statistics, we obtain:

hits(Qsp NEAR Asp)

hits (Qsp) + hits(Asp) * WV ebpages
Corrected Conditional Probability (CCP). In con-
trast with PMI, CCP is not symmetric (eg. gener-
ally CCP(Qsp, Asp) # CCP(Asp,Qsp)). This is

based on the fact that we search for the occurrence of
the answer pattern Asp only in the cases when Qsp is
present. The statistical evidence for this can be measured
through P(Asp|Q@sp), however this value is corrected with
P(Asp)?/? in the denominator, to avoid the cases when
high-frequency words and patterns are taken as relevant an-
Sswers.

P(Asp|Qsp)

P A = —
COP(Qsp, Asp) P(Asp)2/3
For CCP we obtain:

hits(Qsp NEAR Asp)
hits(Qsp) * hits(Asp)2/3

* NWeb—pag652/3

5.3. An Example

Consider the TREC-10 question: “Which river in US
is known as Big Muddy?”. The search of the question
sub-pattern:

[river NEAR US NEAR (known OR know) OR NEAR
“Big Muddy”]

returns O pages, so the algorithm relaxes the pattern by
cutting the initial noun “river”, according to the heuristic
for discarding a noun if it is the first keyword in the ques-
tion. The second Qsp also returns 0 pages, so we apply the
heuristic for ignoring verbs like “know”, “call” and abstract
nouns like “name”. The third Qsp [US NEAR “Big Mud-
dy"] returns 28 pages, which is over the experimentally set
threshold of seven pages.

One of the possible TREC-10 candidate answers is
“Mississippi River”. To calculate answer validity score (in
this example PMI) for [“Mississippi River"], the procedure
constructs the validation pattern:

[US NEAR “Big Muddy” NEAR “Mississippi River"]

as a conjunction of Qsp and the answer sub-pattern [“Mis-
sissippi River”]. These two patterns are passed to the
search engine, and the returned numbers of pages are sub-
stituted in the mutual information expression at the places
of hits(Qsp,NEAR, Asp) and hits(Asp) respectively; the
previously obtained number (i.e. 28) is substituted at the
place of hits(Qsp). Inthis way an answer validity score of
55.5 is calculated.

6. Experimentsand Discussion

A number of experiments have been carried out in order
to check the correctness of the proposed answer validation
technique. As a data set, the 492 questions of the TREC-
10 database have been used. For each question, at most
three correct answers and three wrong answers have been
randomly selected from the TREC-10 participants’ submis-
sions, resulting in a corpus of 2726 question/answer pairs
(some question have less than three positive answers in the
corpus). As mentioned previously, AltaVista was used as
the search engine.

A baseline for the answer validation experiment was de-
fined by considering how often an answer occurs in the top
10 documents among those (1000 for each question) pro-
vided by NIST to TREC-10 participants. An answer was
judged correct for a question if it appears at least one time
in the first 10 documents retrieved for that question, other-
wise it was judged wrong. Baseline results are reported in
Table 2.

Three independent factors were considered in the exper-
iment:

Estimation method. We have implemented two mea-
sures (reported in Section 5.2.) to estimate an answer va-
lidity score: PMI and CCP.

Threshold. We wanted to estimate the role of two differ-
ent kinds of thresholds for the assessment of answer vali-
dation. In the case of an absolute threshold, if the answer
validity score for a candidate answer is below the thresh-
old, the answer is considered wrong, otherwise it is ac-
cepted as relevant. In a second type of experiment, for
every question and its corresponding answers the program
chooses the answer with the highest validity score and cal-
culates a relative threshold on that basis (i.e threshold =
k x Max_V alidity_score). However the relative threshold
should be larger than a certain minimum value.

Question type. We wanted to check performance varia-
tion based on different types of TREC-10 questions. In par-
ticular, we have separated definition and generic questions
from factual questions whose actual answer is a named en-
tity.

Tables 2 and 3 report the results of the automatic an-
swer validation experiments obtained respectively on all the
TREC-10 question corpus and on the subset of questions

132



asking for named entities. For each estimation method we
report precision, recall and success rate. Success rate best
represents the performance of the system, being the percent
of [¢, a] pairs where the result given by the system is the
same as the TREC judges’ opinion. Precision is the percent
of [g¢, a] pairs estimated by the algorithm as relevant, for
which the opinion of TREC judges was the same. Recall
shows the percent of the relevant answers which the system
also evaluates as relevant.

P(%) | R(%) | SR (%)
Baseline 50.86 4.49 52.99
PMI - abs. | 70.65 | 84.36 76.76
PMI - rel. 79.27 | 73.61 79.08
CCP-abs. | 76.96 | 75.30 78.35
CCP-rel. | 79.36 | 77.71 80.52

Table 2: Results: all 492 TREC-10 questions

P(%) | R(%) | R(%)
PMI-abs. | 80.13 | 79.77 | 82.01
PMI-rel. | 86.40 | 73.67 | 83.05
CCP-abs. | 8519 | 73.34 | 82.38
CCP-rel. | 87.71 | 76.82 | 84.83

Table 3: Results: 249 named entity questions

The best results on the 492 questions corpus (CCP mea-
sure with relative threshold) show a success rate of 80.5%,
i.e. in 80.5% of the pairs the system evaluation corresponds
to the human evaluation, and confirms the initial working
hypotheses. This is 27.5% above the baseline success rate.
Precision and recall are respectively 20-29% and 71-80%
above the baseline values. These results demonstrate that
the intuition behind the approach is well-motivated and that
the algorithm provides a workable solution for answer val-
idation.

The experiments show that the average difference be-
tween the success rates obtained for the named entity ques-
tions (Table 3) and the full TREC-10 question set (Table
2) is 4.4%. This means that our approach performs better
when the answer entities are well specified.

Another conclusion is that the relative threshold demon-
strates superiority over the absolute threshold in both test
sets (average difference 2%). However if the percent of the
right answers in the answer set is lower, then the efficiency
of this approach may decrease.

The best results in both question sets are obtained by ap-
plying CCP with a relative threshold. Such non-symmetric
formulas might turn out to be more applicable in general.
As Corrected Conditional Probability (CCP) is not a clas-
sical co-occurrence measure like PMI, we may consider its
high performance as proof of the difference between our
task and classic co-occurrence mining. It seems that other
measures are necessary for question-answer co-occurrence
mining.

7. Related Work

The idea of using the Web as a corpus is an emerging
topic of interest among the computational linguistics com-
munity. The TREC-10 QA track demonstrated that Web
redundancy can be exploited at different levels in the pro-
cess of finding answers to natural language questions. Sev-
eral studies (eg. (Clarke et al., 2001) (Brill et al., 2001))
suggest that the application of Web searching can improve
the precision of a QA system by 25-30%. A common fea-
ture of these approaches is the use of the Web to introduce
data redundancy for a more reliable answer extraction from
local text collections. (Radev et al., 2001) suggests a prob-
abilistic algorithm that learns the best query paraphrase of
a question searching the Web. Other approaches suggest
training a question-answering system on the Web (Mann,
2001).

The Web-mining algorithm presented in this paper is
similar to PMI-IR (Pointwise Mutual Information - Infor-
mation Retrieval) as described in (Turney, 2001). Turney
uses PMI and Web retrieval to decide which word in a list
of candidates is the best synonym with respect to a target
word. However, the answer validity task poses different pe-
culiarities. We search how the occurrence of the question
words influence the appearance of answer words. There-
fore, we introduce additional linguistic techniques for pat-
tern and query formulation, such as keyword extraction, an-
swer type extraction, named entities recognitionand pattern
relaxation.

8. Conclusion and Future Work

We have presented an approach to answer validation
based on the intuition that the amount of implicit knowl-
edge which connects an answer to a question can be quan-
titatively estimated by exploiting the redundancy of Web
information. Results obtained on the TREC-10 QA corpus
correlate well with the human assessment of answers’ cor-
rectness and confirm that a statistical Web-based algorithm
provides a workable solution for answer validation.

Several activities are planned in the near future. First,
a deeper analysis of the trade-off between the use of dif-
ferent levels of patterns and the number of documents re-
trieved from the web will be carried out. We plan to test
algorithms capable of deciding about the relevance of an
answer considering both the high value of a small number
of hits provided by a very strict pattern and the implicit in-
formation conveyed by the high number of hits provided by
word-level patterns.

Second, a generate and test module based on the vali-
dation algorithm presented in this paper will be integrated
into the architecture of our QA system under development.
In order to exploit the efficiency and the reliability of the
algorithm, such a system will be designed to maximize the
recall of retrieved candidate answers. Instead of perform-
ing a deep linguistic analysis of these passages, the system
will delegate to the evaluation component the selection of
the right answer.

9. References

E. J. Breck, J.D. Burger, L. Ferro, L. Hirschman, D. House,
M. Light, and I. Mani. 2000. How to Evaluate Your

133



Question Answering System Every Day and Still Get
Real Work Done. In Proceedings of LREC-2000, pages
1495-1500, Athens, Greece, 31 May - 2 June.

E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng. 2001.
Data-Intensive Question Answering. In TREC-10 Note-
book Papers, Gaithesburg, MD.

J. Burger, C. Cardie, V. Chaudhri, R. Gaizauskas,
S. Harabagiu, D. lIsrael, C. Jacquemin, C.-Y. Lin,
S. Maiorano, G. Miller, D. Moldovan, B. Ogden,
J. Prager, E. Riloff, A. Singhal, R. Shrihari, T. Strza-
Ikowski, Voorhees E, and R. Weishedel. 2001. Issues,
Tasks and Program Structures to Roadmap Research in
Question Answering (QA). Available at: http://mwww-
nl pir.nist.gov/projects/duc/roadmapping.html.

C. Clarke, G. Cormack, T. Lynam, C. Li, and G. McLearn.
2001. Web Reinforced Question Answering (MultiText
Experiments for TREC 2001). In TREC-10 Notebook
Papers, Gaithesburg, MD.

C. Fellbaum. 1998. WordNet, An Electronic Lexical
Database. The MIT Press.

S. Harabagiu and S. Maiorano. 1999. Finding Answers in
Large Collections of Texts: Paragraph Indexing + Ab-
ductive Inference. In Proceedings of the AAAI Fall Sym+
posium on Question Answering Systems, pages 63-71,
November.

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea,
M. Surdeanu, R. Bunescu, R. Grju, V. Rus, and
P. Morarescu. 2000. FALCON: Boosting Knowledge for
Answer Engines. In Proceedings of the TREC-9 Confer-
ence, pages 479-487.

L. Hirschman and R. Gaizauskas. 2001. Natural Language
Question Answering: the View from Here. Natural Lan-
guage Engineering, 7(4):275-300, December.

B. Magnini, M. Negri, R. Prevete, and H. Tanev. 2001.
Multilingual Question/Answering: the DIOGENE Sys-
tem. In TREC-10 Notebook Papers, Gaithesburg, MD.

G. S. Mann. 2001. A Statistical Method for Short An-
swer Extraction. In Proceedings of the ACL-2001 Work-
shop on Open-Domain Question Answering, Toulouse,
France, July.

C. D. Manning and H. Schiitze. 1999. Foundations of Sta-
tistical Natural Language Processing. The MIT PRESS,
Cambridge, Massachusets.

D. R. Radev, H. Qi, Z. Zheng, S. Blair-Goldensohn,
Z. Zhang, W. Fan, and J. Prager. 2001. Mining the Web
for Answers to Natural Language Questions. In Pro-
ceedings of 2001 ACM CIKM, Atlanta, Georgia, USA,
November.

M. M. Soubbotin and S. M. Soubbotin. 2001. Patterns of
Potential Answer Expressions as Clues to the Right An-
swers. In TREC-10 Notebook Papers, Gaithesburg, MD.

P. D. Turney. 2001. Mining the Web for Synonyms:
PMI-IR versus LSA on TOEFL. In Proceedings of
ECML2001, pages 491-502, Freiburg, Germany.

134



	128: 128
	129: 129
	130: 130
	131: 131
	132: 132
	133: 133
	134: 134


