
SiSSA: An Infrastructure for Developing NLP Applications

Alberto Lavelli
�
, Fabio Pianesi

�
, Ermanno Maci

�
, Irina Prodanof

�
,

Luca Dini
�
, Giampaolo Mazzini

�

�
ITC-irst

via Sommarive 18, 38050 Povo (TN) ITALY�
lavelli, pianesi � @itc.it

�
Istituto di Linguistica Computazionale.

Area di Ricerca CNR
Via Alfieri 1, San Cataldo, 56010 Pisa ITALY�

maci, irina � @ilc.pi.cnr.it
�
CELI

Corso Moncalieri 21, 10131 Torino ITALY�
dini, mazzini � @celi.it

Abstract
In recent years there has been a growing interest in the commercial deployment of NLP technologies. This paper presents SiSSA, a
project whose main aim is that of developing an infrastructure for prototyping, editing and validation of NLP application architectures.
The system will provide the user with a graphical environment for (1) selecting the NLP activities relevant for the particular NLP task and
the associated linguistic processors that execute them; (2) connecting new linguistic processors to SiSSA; (3) checking that the chosen
architectural hypothesis corresponds to the functional specifications of the given application. The proposed infrastructure makes crucial
use of state-of-the-art software technologies (CORBA, XML, RDF) to integrate different linguistic processors in an effective way. In the
paper the definition of a metaformalism for the unification of different formalisms for grammar description is also briefly presented.

1. Introduction
In recent years there has been a growing interest in the

commercial deployment of NLP technologies. Such inter-
est makes more and more urgent the availability of toolsets
that allow an easy and quick integration of linguistic re-
sources and modules and the rapid prototyping of NLP ap-
plications. An example of the efforts in such a direction is
GATE (a General Architecture for Text Engineering, (Cun-
ningham et al., 1997)), which provides a software infras-
tructure on top of which heterogeneous NLP processing
modules may be evaluated and refined individually, or may
be combined into larger application systems.

This paper presents SiSSA (Sistema integrato di Sup-
porto allo Sviluppo di Applicazioni - Integrated System
of Support to Application Development), a project with a
twofold aim:

� the implementation of an infrastructure for the rapid
prototyping and testing of architectures for NLP sys-
tems, starting from linguistic processors made avail-
able by SiSSA itself;

� the definition of a common metaformalism (called
FIST) for the unification of different formalisms for
grammar description, and the implementation of a
Grammar Repository for storing grammars written us-
ing FIST.

In this paper we concentrate mainly on the former as-
pect, i.e. the infrastructure for designing NLP architectures.

To this end, SiSSA provides the user with a graphical en-
vironment for (1) selecting the linguistic activities which
are relevant to the particular application at hand, along with
the linguistic processors that execute them; (2) checking
that the chosen architectural hypothesis corresponds to the
functional specifications of the application; (3) connecting
to SiSSA new linguistic processors, this way making them
available for the prototyping/design activities.

Thus, the design of the architecture of an NLP system
amounts to a) identifying a sequence of linguistic activities
to be performed; b) connecting them in a specific process-
ing chain; and c) associating each linguistic activity to a
suitable processor, selected among those made available by
SiSSA. We use the term project to refer to the product of
the user’s activity, namely, the architecture of the NLP ap-
plication the user is building. A project encodes processing
flows among basic units, each consisting of a linguistic task
that is executed by a linguistic processor.

Projects have two uses. First, they store the status of
a user session. Second, they are the main units of run-
time modules: the SiSSA Manager (see below) interprets
projects by executing the procedures chosen by the user and
applying them to the document selected for execution.

SiSSA consists of two parts: an autonomous applica-
tion (called SiSSA Manager) and a set of executable mod-
ules, henceforth called processors. The SiSSA Manager
provides an infrastructure for architecture composition and
processor integration. That is, it provides all the necessary
support to allow the user to select linguistic activities, con-
nect them in an overall processing chain, and associate each



activity to a linguistic processor. Moreover, it takes care of
executing the processing flow encoded in the project, re-
porting results to the user, etc.

A major goal we had in mind while designing SiSSA
was to allow the system to reuse existing processors as
much as possible. Already existing processors are written
in different programming languages and run on different
hardware and software platforms; so this objective required
the adoption of a distributed (or componentware) architec-
ture, providing:

� flexibility (processors can be developed and updated
independently);

� expandability (new processors can be added);

� independence from the programming languages em-
ployed to implement the processors;

� distribution of execution on different hardware plat-
forms.

As a result, the user can exploit for his/her needs pro-
cessors that are located anywhere, provided that they have
been notified to SiSSA, and enclosed in a wrapper so as to
comply with SiSSA interface (see Sections 2.2. and 2.3.).

The core of SiSSA has been developed in Java; hence
it can run both on PC/Windows and Unix platforms. From
the point of view of software technologies, it is also worth
noticing that SiSSA makes crucial use of CORBA and
XML in order to integrate the various modules in an ef-
fective way.

In SiSSA the usage of CORBA (Common Object Re-
quest Broker Architecture - http://www.corba.org),
which is usually restricted to projects with an industrial per-
spective, is motivated by the need of a distributed architec-
ture. The choice of XML (Bray et al., 2000) is more obvi-
ous, provided that it has been adopted as the standardized
encoding format in several recent NLP projects (e.g., AT-
LAS, XCES, ANC). ATLAS (Architecture and Tools for
Linguistic Analysis Systems, (Bird et al., 2000)) addresses
application needs spanning corpus construction, evaluation
infrastructure, and multi-modal visualization. The goal of
ATLAS is to provide abstractions over annotation tools
and formats in order to maximize flexibility and extensibil-
ity. ATLAS utilizes an XML-based interchange format for
data storage and exchange. XCES (XML Corpus Encoding
Standard, (Ide et al., 2000)) instantiates the EAGLES Cor-
pus Encoding Standard (CES) for linguistic corpora. The
American National Corpus (ANC, (Macleod et al., 2000))
project is fostering the development of a corpus comparable
to the British National Corpus (BNC), covering American
English. The ANC will be encoded according to the speci-
fications of the XML version of the Corpus Encoding Stan-
dard (CES), which specifies a flexible document structure
that is suitable for delivery on the World Wide Web, easy
to modify or add to, and allows for “layered” annotation
documents that can be added incrementally at later stages.

In the following sections, we first present a detailed de-
scription of SiSSA. Then some considerations on the practi-
cal use of the system are introduced. Afterwards we briefly
describe FIST (Formato di Interscambio SiSSA-TAL -

SiSSA-TAL Interchange Format), a common metaformal-
ism for the unification of different formalisms for gram-
mar description, and the facilities provided by a Grammar
Repository which stores grammars written using FIST. Fi-
nally some details about the current status of the SiSSA
implementation and the future work follow.

2. SiSSA
The SiSSA system consists of:

� the SiSSA Manager;

� the processors;

� the grammars contained in the Grammar Repository;1

� formal specifications of the interfaces each processor
has to provide in order to be “integrable” in SiSSA
(this part is based on CORBA);

� protocols for communication and formats for repre-
sentation and exchange of information (achieved using
XML).

The difference between the fourth and the fifth element
above is that the CORBA-based part specifies the details of
the communication process without any reference to the lin-
guistic characteristics of the integrable processors (this part
could be largely reused in other non linguistic projects in-
volving a distributed architecture); the specifically linguis-
tic details are embedded in the XML documents passed be-
tween the processors.

2.1. SiSSA Architecture

The central element in the SiSSA architecture is the so-
called SiSSA Manager, an autonomous multi-user applica-
tion server accessible through the Internet using any Java-
enabled web browser. It is autonomous since it takes the
initiative in the management of the processing flow of the
SiSSA system. Its main tasks are the following:

� to interact with the Processor Repository (the place
where information about processors known to SiSSA
is stored) to take a census, activate and connect the
processors notified to the system;

� to present the system functionalities to the user by
means of a web-based graphical interface. To this end,
the SiSSA Manager acts as a server with respect to the
processors towards which it mediates the “centralized”
GUI. Through the latter, the SiSSA Manager not only
interprets the user’s actions but also gives her/him a
report on the ongoing processing, storing and present-
ing logs and status messages coming from the active
processors;

� to manage the access to the system by authorized
users, according to their permissions;

� to manage and interpret the projects built by the user.

1This part is dealt with in Section 4..



The Processor Repository classifies the processors, by
associating each of them to the appropriate class of lin-
guistic processors (e.g., morphological analyzers, PoS tag-
gers, etc.).2 The Processor Repository also provides func-
tionalities for permanently storing the properties associated
with the processors registered in the repository. Among
them, the properties that specify the methods for activat-
ing a processor are crucial. As a matter of fact, the sin-
gle processors must be active in order to be available for
use by SiSSA. The activation of a processor takes place by
means of an Activation Server3 reachable via CORBA at
the URL stored in the Processor Repository and specify-
ing the corresponding activation string. The information is
stored in the repository using RDF4 and RDFS5 (Resource
Description Framework and RDF Schema). RDF Schema
makes available tools to check that the descriptions of the
processors’ characteristics comply with SiSSA Manager’s
constraints. The RDF specification of the processors made
available in SiSSA is usually built using a graphical inter-
face. The adoption of RDF and RDF Schema enhances the
generality of SiSSA, by avoiding ad hoc languages for re-
source description, and ad hoc schemas for the validation
of documents describing the processors.

Turning to the processors classified in the repository,
they mainly play the role of servers which are activated
upon request by the SiSSA Manager.

A distributed architecture defined in SiSSA is actu-
ally instantiated by a suitable middleware for the man-
agement of interprocess communication, namely CORBA
(Common Object Request Broker Architecture - http:
//www.corba.org, developed by the OMG industry
consortium), which acts as the glue keeping together the
executable parts of SiSSA.6 To be available to SiSSA, pro-
cessors must be registered in the Processor Repository. To
this end, they must exhibit interfaces that comply with a set
of specifications defined using the CORBA Interface Def-
inition Language (IDL). Thus, providing the compliant in-
terfaces is a necessary step towards integrating new proces-
sors within SiSSA.

As to communication formats, the overall goals of
SiSSA made the adoption of XML (Bray et al., 2000) a
natural choice. Thus messages are exchanged in the form
of XML documents of type process-data (see Section
2.3.). These documents incorporate in a single structure:
the object to be processed, and information relevant for the

2Currently the following classes of processors are defined in
SiSSA: documentProc, preprocessorProc, textZonerProc, nERe-
cognizerProc, morphologyProc, poSTaggerProc, syntaxProc, se-
manticsProc, DiscourseProc, XSLProc.

3In case the processor resides on a computer directly accessi-
ble to the SiSSA Manager, it can be activated by means of a shell
command. In the following we always consider the case in which
the activation server is needed.

4RDF is a W3C Recommendation of 22 February 1999 (Las-
sila and Swick, 1999) that specifies a declarative language (based
on XML) formally equivalent to propositional logics. RDF is usu-
ally employed to describe resources on the web.

5RDF Schema Specification 1.0, published as a W3C Candi-
date Recommendation in March 2000 (Brickley and Guha, 2000).

6The SiSSA Manager uses ORBacus 3.3.2, http://www.
ooc.com/ob/.

processing itself (metadata). The generality of such a for-
mat permits its use both for the communication between the
SiSSA Manager and the processors, and for those directly
taking place among the processors.

2.2. Communication Protocols
As said above, SiSSA provides a set of public software

interfaces, formally expressed in IDL, describing the ba-
sic components of any SiSSA architecture, i.e. proces-
sors, servers for their activation, data containers, notifica-
tion events and so on (see below and Figure 1).

The scenario of the cooperation between the SiSSA
Manager and a generic processor can be described as fol-
lows:

� the processor’s activation server starts and connects on
the CORBA bus as a named server at a specified URL
(i.e., the corbaloc: URL stored in the Processor
Repository);

� the SiSSA Manager, in its turn connected to the
CORBA bus, can contact the activation server us-
ing the corbaloc: URL specified in the Processor
Repository; using the processor’s activation string it
can ask the server to activate the corresponding pro-
cessor;

� from now on, the interaction takes place directly be-
tween the SiSSA Manager and the processors whose
interface it obtained;

� the SiSSA Manager can in this way act as a true man-
ager, establishing and removing the connections be-
tween the processors according to the design of the
processing flow decided by the user.

In SiSSA, the communication is asynchronous, and is
implemented by means of a flow of XML documents of
type process-datawhich carry both linguistic data and
metadata. The processors and the SiSSA Manager can be
both the source and/or the target of communication. More-
over, each communication can have more than one target.

Being a possible target of communications, each reg-
istrable processor provides the functionalities of the inter-
face IObserver. The SiSSA Manager’s way to estab-
lish/remove the relationships between processors according
to the user requirements amounts to inserting/deleting ob-
servers into a processor’s list of observers.

Besides the communication related to the linguistic pro-
cessing, other relevant communication flows concern er-
ror messages, and information tracing. Logs and mes-
sages directed to the user are managed through the interface
IMsgMonitor. Finally, the interface IStateMonitor
(provided by the SiSSA Manager) allows each processor
to signal its callers the status of its own processing (an ex-
ample of its use is shown in the bottom bar of the window
shown in Figure 3).

An important service provided by the SiSSA Manager is
the XSLT7 processing of XML documents. To this end, the

7XSLT (Extensible Style Language Transformations (Clarke,
2001)) is a language for transforming XML documents into other
XML documents..



Figure 1: The UML diagram of the SiSSA IDLs.

SiSSA Manager provides the interface XSLProcServer,
through which XSLProcessor (a processor specialized in
XSL transformations) is made available. This feature al-
lows the insertion of XSL transformations between any pair
of processors, this way providing the possibility of adapt-
ing one processor’s output to the requirement of the fol-
lowing one(s). This feature is of the utmost importance for
augmenting SiSSA’s capabilities of integrating and success-
fully making available a wide range of processors.

2.3. Communication and Representation Formats

Communications take place using a “data container”
modeled by the interface IDataStream. An object that
implements such interface is sent by a processor to each of
its observers on completion of its processing.

IDataStream is designed as a container rather than
as a structured model of the data exchanged. The defini-
tion of structured models for data is completely indepen-
dent from IDataStream, and is obtained through differ-
ent means. Indeed, given that the contents of data streams
are XML documents, their structure is made explicit by
means of Document Type Definitions (DTDs).

Although it does not seem necessary, nowadays, to em-
phasize the importance of XML as a data exchange format,
let us mention again a few characteristics of SiSSA which
are relevant for this choice. SiSSA is a development envi-
ronment, meant to be open to the integration of new com-
ponents, whereby the latter can differ among them along a
number of dimension, including the input/output formats.
At the same time, SiSSA should allow the user an adequate

level of control over the intermediate results produced dur-
ing the computation (i.e., the output of each processor).
XML allows a representation of data which is transpar-
ent and accessible to the developer, without the need for
her/him to know the details of the implementation of the
single components. At the same time, it does not increase
the complexity of the CORBA interfaces that encapsulate
such data.

The data defined in XML are associated to a docu-
ment of type process-data. Each document of type
process-data necessarily includes two parts:

� linguistic data, usually corresponding to the result of
the computation done by the source processor;

� metadata. Their role is to specify: the level of analysis
accomplished by the source processor (e.g., tokenisa-
tion, parsing, etc.); the unique identifier of the pro-
cessor originating the data; further useful information
about processing (time of execution, rules applied,
etc.). Moreover, metadata make available a unique
identifier for the process-data document. This
is useful so to associate the input with the different
output structures produced by the different processing
steps.

The linguistic data have to comply with the def-
initions specified for the different classes of proces-
sors. Such classes are identified by the attribute
level-of-analysis present in the metadata (e.g.,
morphological analyzer, PoS tagger, chunk parser, etc.) and



should take into account (at least to a certain extent) id-
iosyncrasies of specific processors. For instance, a mor-
phological analyzer can adopt a set of category labels not
entirely coincident with that of another morphological ana-
lyzer.

Obviously, a structure that aims to carry linguistic data
of different nature, and so differently represented, can be-
come quite complex when the levels of analysis taken into
consideration increase. Moreover, during the development
phase, the problem arises of the integration of data struc-
tures relative to levels of analysis previously not taken into
consideration, as well as of data structures idiosyncratic to
processors belonging to some classes. The modular na-
ture of the DTDs for XML allows a neat distinction among
metadata, and data relative to classes of processors (id-
iosyncratic data). The former are described in a single
DTD, defined as part of the resources internal to SiSSA,
while the latter can be conveyed by various DTDs, possibly
made available in SiSSA along with each processor.

As said, each processor at the end of its processing
makes available a document of type process-data,
which contains exclusively the output data of the specific
processor – and obviously the corresponding metadata.
Such a document is a representation of the output of the
processor that generated it, and does not contain any rep-
resentation relative to previous levels of analysis, the in-
put text or the history of the processing done so far. Thus,
process-data are not incremental collection of all the
data produced by the various processors. Such a choice is
due to efficiency reasons:

� each processor in order to find the part of the structure
relevant as its input should navigate potentially very
complex DOM trees, or parse XML strings;

� the communication between system components takes
place within a distributed architecture based on
CORBA interfaces. So, the fact that an object contains
data not relevant for the processor invoked represents
a not negligible cost.

At the same time, the need to keep a link between the
input test and the output produced by the system cannot be
ignored. It is also reasonable that in certain situations (e.g.,
during testing and debugging) the structures produced by
the intermediate processors, as well as the metadata of the
various processors, are needed to show or save tracing in-
formation. In the proposed architecture, this task is accom-
plished by the SiSSA Manager, that can register itself as
an observer of any processor; in this way it can access the
processor output and show it to the user or build a tracing
structure.

The SiSSA Manager makes use of tools provided
by the Apache XML Project (http://xml.apache.
org), i.e. the Xerces XML parser and the Xalan XSLT
processor.

3. SiSSA at Work
There are two main activities regarding the characteris-

tics of SiSSA described in this paper: the development of
projects and the integration of processors.

3.1. Projects

The creation and editing of projects takes place exclu-
sively via the SiSSA graphical interface. First the user
decides which linguistic activities are relevant to her/his
project. Then s/he can browse the Processor Repository,
searching for those which are suitable to realize each lin-
guistic activity. Finally, s/he composes them into a project.

When it is necessary to test a given project on
a text the SiSSA Manager prepares a suitable stream
(IDataStream) and sends it to the processor selected as
the first in the analysis chain. The processor interprets the
metadata, executes the specified operation on the linguistic
data and finally sends its output to all its observers; some of
them can be required to perform further processing on the
linguistic data. The output produced by a processor is sent
to the SiSSA Manager as well, so that it can be shown to
the user in a suitable form.

In Figure 2 the starting page of the SiSSA system is
shown. In the upper part of the window there are a few
buttons that are present in all the pages of SiSSA. From left
to right:

� Home: a link to the starting page of SiSSA;

� SiSSA Manager: a link to the page of the SiSSA
Manager;

� Progetti (projects): a link to the page that allows
to create, edit, and activate the user’s projects;

� Repository: a link to the page for interacting with
the Processor Repository;

� Help: an online help.

Figure 3 shows the applet that interactively monitors
the status of the project currently active and displays it to
the user. In the upper part of the window the details of
the active project are shown: the processors (left), the con-
nections between processors (middle), and the XSL filters
(right). In the lower part of the window the messages com-
ing from the processors are shown. The bottom bar shows
which of the processors/filters is currently active (using the
IStateMonitor interface described in Section 2.2.).

3.2. Integration of processors

Differently from the activity of creation and editing of
projects, only the final part of the work involved in the inte-
gration of processors is accomplished via the SiSSA graph-
ical interface (more precisely, the registration in the Proces-
sor Repository of the availability of the processors).

In order to make a processor SiSSA-compliant, the fol-
lowing steps are necessary:

� to provide it with a wrapper so that it communicates
via the CORBA IDLs of SiSSA;

� to make a translation between the processor’s native
input/output and the corresponding linguistic repre-
sentation specified by process-data;

� to register the processor in the Processor Repository
using the SiSSA graphical interface; during this step



Figure 2: The starting page of SiSSA.

Figure 3: The applet that shows the connections between processors.

the class of the processor (i.e., the level of analysis
which the processor cope with), its corbaloc: URL
and activation string have to be specified. When intro-
ducing a new processor, or when editing one of her/his
own processors, the user may also restrict its accessi-
bility for use within projects: for instance, s/he might
want to make the processor accessible only for her/his

projects in order to test it before making it available to
all SiSSA users, or to make it completely unavailable
without deleting the repository entry if it is affected by
some temporary problem.

The processors currently available within SiSSA are
some of those developed by the partners of the project:



the morphological analyzer and the parser of NLGRADE
(ILC, written in C and running under Windows: (Prodanof
et al., 1998; Prodanof et al., 2000)) and the preprocessor
and the parser of GEPPETTO (ITC-irst, written in Common
Lisp and running under Solaris: (Ciravegna et al., 1997;
Ciravegna et al., 1998)).

4. FIST - A Formalism for Grammar
Interchange

As part of SiSSA we have defined FIST (Formato di
Interscambio SiSSA-TAL - SiSSA-TAL Interchange For-
mat). FIST is a common metaformalism for the unification
of different formalisms for grammar description and was
designed with the following goals:

� to allow the definition of grammatical resources inde-
pendently of the processor that will use them;

� to ease the exchange and integration of grammatical
information coming from different sources;

� to define a uniform framework for describing gram-
mars and grammatical constructions.

Currently there is not a commonly accepted formalism
for the description of grammatical resources. Each project
uses a different (and often proprietary) formalism. This
situation makes it difficult to exchange and integrate al-
ready existing resources and often much effort is required
for adaptation. SiSSA tries to address this problem defin-
ing a “neutral” formalism, compilable into different propri-
etary formalisms (a strategy recommended by the EAGLES
Formalisms Working Group (1996)). Currently SiSSA pro-
vides tools for compiling FIST into the formalisms used by
the partners in the project.

FIST facilitates the exchange and integration of already
existing grammatical resources. The starting point is the
availability of tools for converting proprietary formalisms
into FIST (and vice versa) and the existence of a Grammar
Repository where the FIST grammars are stored.

FIST envisions three descriptive levels:

1. Rule Level. Information related to the rule by itself:
author, revisions, coverage (grammatical phenomenon
dealt with, language, stylistic registry, domain, a text
of description of the rule, examples analyzable using
the rule, structural representation produced), lexical
and structural prerequisites, constraints on the appli-
cability of the rule.

2. Grammar Level. Each rule is part of a grammar and
so the relations between it and the other relevant rules
must be described. Such relations include, for in-
stance: alternation between rules that deal with the
same phenomenon (use of one rule instead of another),
complementarity (a rule copes with a phenomenon to-
gether with other rules), necessity (a rule can be ap-
plied only in conjunction with other rules), compati-
bility or incompatibility with given sets of rules.

3. Repository Level. At this level it must be speci-
fied: the context of application, the commercial status,

the development status (version number, commercial
property, intellectual property, contexts of use, com-
ments by the users, possible alternatives in the reposi-
tory, etc).

FIST is defined using XML. The choice is due to:

� the availability of tools for the conversion from and to
XML (XSL filters), which facilitates the implementa-
tion of converters between FIST and proprietary for-
malisms;

� the possibility of easily migrating XML documents
from and to databases, facilitating the management of
the Grammar Repository.

FIST acknowledges the relevance of unification-based
approaches in NLP (e.g., HPSG, LFG). Thus, FIST defines
two levels of descriptions:

� a core level that incorporates the mechanisms common
to all unification-based formalisms plus some features
that, even if not present in all the formalisms, can be
somehow emulated during the compilation between
formalisms;

� a periphery level that accommodates mechanisms
which are peculiar to specific formalisms.

The second level permits to extend FIST, and to make it
compatible with a specific proprietary formalism.

4.1. Grammar Repository

Turning to the Grammar Repository, it is realized
through the Networked Rule Archive (NRA), where all
FIST linguistic descriptions are stored. The Networked
Rule Archive is an integrated web server, with a set of spe-
cialized facilities for storing and manipulating XML docu-
ments and for managing transactions. Two kinds of users
are addressed: (1) end users, searching for linguistic re-
sources suitable for specific applicative needs; (2) NRA
content providers, i.e. the developers and maintainers of
the linguistic resources.

The Networked Rule Archive provides different func-
tionalities for different users. End users can visualize,
search, check and download the grammatical resources.
Upon identification, content providers can upload new re-
sources (upgrade), take care of versioning, recover previous
versions, etc. The Networked Rule Archive is implemented
using Java and PostgreSQL.

5. Conclusions
The release 2.0 of the SiSSA Manager was completed

during 2001 and is currently under use at the sites involved
in the SiSSA project. So far SiSSA has been used only by
the partners of the project and a reduced number of proces-
sors have been integrated; hence only a preliminary eval-
uation of the effectiveness of the approach is possible. A
point that needs further investigation is the evaluation of
the linguistic data associated with the different levels of lin-
guistic analysis. As a matter of fact, the starting point for
designing the linguistic description currently provided by



the documents of type process-data was the informa-
tion supplied by the processors developed by the partners
of the project. The adequacy of such description has to be
confronted with the needs of other processors and possibly
changed and refined.

Given the emphasis on rapid prototyping, SiSSA has
been developed with flexibility during the development
phase as a primary goal. Obviously this flexibility is no
longer needed when an application is delivered (on the con-
trary flexibility can considerably reduce the performances
of the system). We are currently studying approaches to
allow the delivery of efficient runtime processors.

Initially the SiSSA Manager was developed as a single-
user application. We are currently working on release 3.0,
where it will be possible to have more than one person that
uses the system at the same time. We are also planning to
make the system available on Internet so that people can
experiment with it and provide us useful feedback.

The SiSSA system has been developed as part of the
TAL project. TAL is a project partially funded by the Italian
Ministry for University and Scientific Research.

6. References
Steven Bird, David Day, John Garofolo, John Henderson,

Christophe Laprun, and Mark Liberman. 2000. ATLAS:
A flexible and extensible architecture for linguistic anno-
tation. In Proceedings of the Second International Con-
ference on Language Resources & Evaluation (LREC-
2000), Athens, Greece.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and
Eve Maler. 2000. Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommendation 6 October
2000. http://www.w3.org/TR/REC-xml/.

Dan Brickley and R.V. Guha. 2000. Resource De-
scription Framework (RDF) Schema Specifica-
tion 1.0. W3C Candidate Recommendation 27
March 2000. http://www.w3.org/TR/2000/
CR-rdf-schema-20000327/.

Fabio Ciravegna, Alberto Lavelli, Daniela Petrelli, and
Fabio Pianesi. 1997. Participatory Design for Linguis-
tic Engineering: the case of the GEPPETTO Develop-
ment Environment. In Proceedings of the ACL/EACL’97
Workshop on Computational Environments for Gram-
mar Development and Linguistic Engineering, Madrid,
Spain.

Fabio Ciravegna, Alberto Lavelli, Daniela Petrelli, and
Fabio Pianesi. 1998. Developing language resources
and applications with GEPPETTO. In Proceedings of the
First International Conference on Language Resources
& Evaluation (LREC’98), Granada, Spain.

James Clarke. 2001. XSL Transformations (XSLT) Ver-
sion 1.0. W3C Recommendation 16 November 1999.
http://www.w3.org/TR/xslt/.

Hamish Cunningham, K. Humphreys, Robert Gaizauskas,
and Yorick Wilks. 1997. Software infrastructure for nat-
ural language processing. In Proceedings of the Fifth
Conference on Applied Natural Language Processing
(ANLP-97), Washington, DC.

EAGLES Formalisms Working Group. 1996. Formalisms
Working Group. Final Report.

N. Ide, P. Bonhomme, and L. Romary. 2000. XCES:
An XML-based Encoding Standard for Linguistic Cor-
pora. In Proceedings of the Second International Con-
ference on Language Resources & Evaluation (LREC-
2000), Athens, Greece.

Ora Lassila and Ralph R. Swick. 1999. Resource Descrip-
tion Framework (RDF) Model and Syntax Specifica-
tion. W3C Recommendation 22 February 1999. http:
//www.w3.org/TR/REC-rdf-syntax/.

C. Macleod, N. Ide, and R. Grishman. 2000. The American
National Corpus: A Standardized Resource for Amer-
ican English. In Proceedings of the Second Interna-
tional Conference on Language Resources & Evaluation
(LREC-2000), Athens, Greece.

I. Prodanof, A. Cappelli, L. Moretti, M. Carenini, P. Mores-
chini, and M. Vanocchi. 1998. A grammar develop-
ment environment for reusable and easily customizable
NL applications. In Proceedings of the First Interna-
tional Conference on Language Resources & Evaluation
(LREC’98), Granada, Spain.

I. Prodanof, A. Cappelli, and L. Moretti. 2000. Reusability
as easy adaptability: A substantial advance in NL tech-
nology. In Proceedings of the Second International Con-
ference on Language Resources & Evaluation (LREC-
2000), Athens, Greece.


	1047: 1047
	1048: 1048
	1049: 1049
	1050: 1050
	1051: 1051
	1052: 1052
	1053: 1053
	1054: 1054


