

From DTD to relational dB. An automatic generation of a lexicographical station
out off ISLE guidelines

Marta Villegas, Nuria Bel

Grup d'Investigació en Lingüística Computacional - Universitat de Barcelona (gilcUB)
Adolf Florensa s/n

08028 Barcelona, Spain
{ tona,nuria} @gilcub.es

Abstract
This paper describes the Lexicographic Station Development Platform and how it has been used to implement the resulting lexicon

guidelines and standards generated by ISLE Computational Lexicon Group in a prototype tool for lexical encoding. The aims of the
work described here were to (i) exempli fy and disseminate the Multilingual ISLE Lexical Entry (MILE) using an actual model and
available monolingual data (ii) make extensive use of already existing PAROLE and SIMPLE lexicons and (iii) to eventually test the
goodness of the guidelines by using a real scenario. To cope with these aims, the LSDP was designed as a tool generator which could
automatically generate a prototype lexicographic station out of ISLE guidelines when formally expressed in a DTD. Thus, we have
tested and exemplified the recommendations expressed in MILE but in addition we have also proved that MILE can be implemented
on already existing monolingual resources.

1. Introduction
This paper describes: (i) the lexicographic station

development platform used to automatically generate a
prototype tool out off ISLE1 guidelines which has been
formally implemented in a DTD. (ii) An actual
implementation of the ISLE guidelines expressed in
MILE. And (iii) the use of the lexicographic station
development platform for generating a prototype lexical
tool for MILE/ISLE guidelines.

The aim of ISLE is to develop, disseminate and
promote de facto HLT standards and guidelines for
language resources, tools and products within an
international framework, in the context of the EU-US
International Research Cooperation initiative.

In the 'multil ingual computational lexicon' area, ISLE
has extended EAGLES2 work on lexical semantics to
design standards for multili ngual lexicons. The central
outcome of ISLE is the definition a general schema for
multil ingual lexical entry (MILE) which is to be the basis
for a standard framework for multili ngual computational
lexicons. In addition, ISLE is to develop a prototype tool
to assist the development of multilingual lexical resources
following MILE schema.

The aim of this prototype tool is to (i) exemplify the
MILE entry (ii) make extensive use of already existing
monolingual resources and (ii i) eventually test the
guidelines in a real scenario.

Three aspects crucially determined the definition of
the lexicographic station development platform we are

1 See Atkins, S., Bel, N., Bertagna, F., Bouillon, P., Calzolari,
N., Fellbaum, C., Grishman, R., Lenci, A., MacLeod, C., Palmer,
M., Thurmair, G,. Villegas, M., and Zampolli, A. From resources
to Applications. Designing the Multilingual ISLE Lexical Entry,
in these proceedings for further information.
2 Expert Advisory Group in Lexical Standards. See references
for further information.

describing here: (a) MILE is built as an additional layer on
top of monolingual descriptions. In most cases, these
monolingual layers are already existing resources which
must be reused. The possibil ity to automatically generate a
prototype tool out off already existing monolingual lexical
resources seemed to be the right approach as this
guarantees and facilitates the usability of already existing
data and resources. (b) MILE is a general schema liable to
be customized according to in-house needs in real
scenarios. (c) Both, the definition of the prototype tool and
the definition of the MILE itself, were parallel tasks. This
meant that the prototype tool had to implement ongoing
specifications which were not finished at that time.

This situation led us to define a Lexicographic Station
Development Platform that guarantee the portability of the
final prototype to the final specifications as well as to
existing monolingual resources which will serve as the
basic data for MILE. The lexicographical station
development platform has been designed as a tool
generator which parses any DTD describing an Entity
Relationship model to (i) automatically map the DTD into
a relational dB and (ii) build up a user-friendly interface
able to cover the most common lexicographic
requirements –such as means to automatically load -
download the database from/into external SGML/XML
files.

This article is organised as follows:
Section 2 describes the lexicographical station

development platform. Section 3 contains the software
specifications for the resulting prototype tool. Section 4
describes the implementation of the MILE (Multilingual
ISLE Lexical Entry) module on the top of the prototype
tool.

2. Lexicographic station development
platform

The Lexicographical Station Development Platform is

a prototype tool generator that reads and parses a DTD
and generates a relational data base and a core dB web
interface.

Our lexicographical station development platform
guarantees that already existing monolingual resources
expressed in SGML/XML can be easily reused by and
ported to MILE.

Basically, the lexicographic station development
platform includes a generation module, a customisation
module and a core web interface module, which can be
briefly described as follows.

The generation module automatically generates a
relational dB out off a DTD. The project benefits from the
fact that a conceptual model expressed in terms of Entity-
Relationship model can be easily mapped into a relational
dB.

The customisation module allows to modify certain
aspects of the dB at the time that overcomes some of the
well known shortcomings of DTD' s such as typed
references and type declaration.

The core web interface module consists of a series of
scripts that allow to manage the dB with a friendly
interface. Although user requirements differ from site to
site according to in-house needs, the tool comes equipped
with a set of basic functionalities. Our experience in past
lexicographic projects led us to define an accurate list of
requirements which include (i) query and browsing
facilities, (ii) import, export and migration of data, (iii)
easy encoding of new data, (iv) test and validation of both
the data and the model, (v) customisation facilities, and
(vi) lexicographic functionalities such as type definition,
class extraction and statistical facilities.

 As in the case of the generation module, the web
interface module acts on the model expressed in the DTD
in order to make the necessary calculations to access,
manipulate and display data from relevant tables. The web
interface module, therefore, only needs a DTD and its
corresponding dB to be able to work.

Figure 1 reflects the general architecture underlying
the lexicographical station development platform.

Figure 1. General view of the lexicographical station
development platform

2.1. The generation module
The generation of the data base is done by means of a

perl script that, making extensive use of the perlSGML
module, reads the DTD and generates three output scripts:

��CreateDB: is an output file containing the relevant

‘CREATE TABLE’ instructions. This output file
can be edited to make the desired modifications
(shorten or length the fields, delete tables,...) and
can be executed by MySQL by typing ' mysql>
data_base_name < script.file'

��TabularDTD: is a perl script that reads an SGML

data file and distributes the data it contains into a
series of tabular files which exactly correspond to
the tables in the dB. TabularDTD is sensitive to
the hierarchic relations between SGML elements
and keeps track of the foreign keys involved in
each content element (see section 3.2 for further
details).

��LoadDB: is an output file containing the relevant

‘ INSERT’ statements and is responsible of
loading the tabular files in the corresponding
tables.

2.1.1. Tables definition

BuilDB reads the DTD looking for all elements and

classifies them into main or content elements. Main
elements are top elements having an ID-type attribute.
For each main element, BuildDB creates a corresponding
main table. Two additional types of tables can be also
created. These are content tables and list tables. Content
tables are created whenever an element has a content
element. List tables are created whenever an element
includes an IDREFS-typed attribute (that is, an attribute
valued as a list of IDs).

<!ELEMENT Element - - ContentElement>

<!ATTLIST Element
 attribute1 ID #REQUIRED
 attribute2 IDREFS ...
 ...

CREATE TABLE Element (...
CREATE TABLE Element_ContentElement (...
CREATE TABLE Element_List_attribute2 (...

Figure 2: Tables definitions

The name of the tables derive from the name of the

elements, thus, main tables have the same name as the
corresponding main object. Content tables names result of
the concatenation of the parent and the content element
and, finally, list table names result from the concatenation
of the element and the IDREFS-type attribute name. This
can be see in Figure 2 above.

dB generator

Customisation

Data Base

DTD

dB interface

DTD
DTD

Data Base

Data Base

2.1.2. Fields definition
Attributes in the element' s ATTLIST description of

elements are directly mapped into fields in the
corresponding table definition according to the following
criteria: ID and IDREF(s)-typed attributes translate as
VARCHAR, NUMBER attributes translate as INT,
CDATA and NUMBERS attributes translate as varchar.

Content tables include two additional fields: one
corresponds to the table ID and is defined as an auto
increment primary key; the other serves to relate the
content element with the relevant parent element and acts
as foreign key

List tables serve to encode list-typed attributes. They
include two fields which are defined as primary keys. One
is defined as ‘ id_parent’ and serves to indicate the element
containing the list-typed attribute. The other is defined as
‘ id_attibute’ and serves to indicate the attribute itself.

 In the following figures we exemplify the mapping of
a given element Element as described in Figure 3. Thus, in
figure 4, we can see attributes mapping into table’s fields.
Figure 5 describes the mapping of a content element.
Finally, figure 6 exempli fies the mapping of an IDREFS-
typed attribute into a list table.

<!ELEMENT Element –0- ContentElement>
<!ATTLIST
id ID #REQUIRED
attData CDATA #IMPLIED
attEnum (A|B) A
attIdref IDREF #IMPLIED
attIdrefs IDREFS #IMPLIED>

Figure 3. DTD description for Element

Field Type Null Key Default Extra
Id Varchar PRI
AttData Varchar YES NULL
AttEnum Enum(A|B) A
AttIdRef Varchar YES MUL NULL

Figure 4. Main table definition for Element

Field Type Null Key Default Extra
Id Varchar PRI 0 Auto

increment
Id-
parent

Varchar MUL

…. … … … … …
… … … … … …

Figure 5. Content table definition for ContentElement

Field Type Null Key Default Extra
Id Varchar PRI
Id-parent Varchar PRI

Figure 6. List table definition for AttIrefs attribute

2.2. Customisation module
In order to overcome some of the well known

shortcomings of DTD' s (typed references, type

declaration, inheritance...) the prototype includes a
customisation module.

This customisation module serves a double purpose.
On the one hand, it allows to express type constraints
which cannot be expressed in SGML DTD' s. On the other
hand, it becomes crucial to define the ‘domain’ of a given
element. Relations among elements can be established as
‘vertical’ or ‘horizontal’ relations. Vertical relations are
the standard hierarchical relations between an element and
its content elements. Horizontal relations are those
established by IDREF or IDREFS typed attributes which
serve to relate a given element with any other element of
the model. Both, vertical and horizontal relations between
elements define the domain or scope of an element. In the
following example we describe the domain an imaginary
element Element 2 containing one IDREF attribute typed
as element 5. In this example, the domain for our
imaginary Element 2 includes all nodes dominated by
Element 2 plus the domain of the Element 5.

Top
 Element 1
 Element 2
 Element 2.1
 Element 2.1.1
 Element 2.1.2
 Element 2.2
 Element 2.3
 Element 3
 Element 4
 Element 5
 Element 5.1

Figure 6 Scope for Element 2

This domain is needed to provide a better functionality

to the system. As we will see in next section, the prototype
tool comes equipped with some basic functionalit ies.
These functionalities are better tuned if type references are
explicitl y established in this customisation module.

2.3. Core dB interface
Besides tables definition described in previous section,

the system provides with a user interface able to manage
the dB in a friendly and explanatory fashion.

The aim of the lexicographical station development
platform is to provide the resulting prototype tool with a
minimum set of build in functionalities that cover the most
common lexicographic requirements. In addition, the
explanatory and dissemination purpose of ISLE project,
lead us to include a number of functionali ties which serve
to know and understand the resulting prototype tool and
the model this is managing.

All this is to be achieved without facing lexicographers
with the technicalities of a dB. Lexicographers are only
required to know the model expressed in the DTD and,
therefore, they deal with the elements defined in the DTD.
It is the system which makes the necessary calculations to
access and manipulate data from the relevant tables.

The prototype tool, therefore, is designed as DTD
dependant rather than dB dependant and includes a good
number of scripts that, taking the DTD structure as input,
make the necessary calculations to act on the relevant
tables in the dB. Essentially these facilities include (i)

loading and downloading data from and into SGML files,
(ii) making forms to manage the dB, (iii) browsing data
and (iv) learning about the model.

download data in SGML/XML fashion. The user is
given a tree representation of the DTD and selects one
element. The system, then, makes the necessary
calculations to extract data in SGML/SML format for the
desired element.

define forms to extract or load data. The system
allows to define online forms to manage the data base.
The first step in this process is to define the domain of the
form. Here is where the customisation process explained
above becomes crucial. The user selects the top most
element he wants to include in the form. The system
calculates the domain of the selected element by taking
into account the horizontal and vertical relations it
participates in. Once this is done, the system displays a
form with the relevant fields. Fields in the form are
defined following attribute’s definition in the DTD. Thus,
CDATA attributes translate into text fields, ENUM
attributes translate into pop-up fields, customised IDREF
attributes translate into pop-up menus, and IDREFS
attributes translate into multi valued scrolling list fields.
Once the user has filled in the form, the system makes the
necessary calculations to build up the relevant SQL query.

Browsing the data and the model. The tool contains a
good number of facilities to browse both the data and the
model and its mapping into the database. The prototype
allows the user to see the data in a DTD fashion and
benefits from the fact that it knows the relational
component of the database since this is formally expressed
in the DTD.

Section 5 of this paper includes sample screens of the
functionalities described here.

The overall system can be described as in Figure 7.

 DTD

Figure 7. Functionalities

3. Software Specifications

The prototype is implemented using well supported

open source resources which can be easily portable.
Essentially these include MySQL database server and
Apache server:

Database server: 3.23.16-alpha version of MySQL
which can be downloaded from www.mysql.com.

Perl support for MySQL: Perl support for MySQL is
provided by means of the ’DBI/DBD’ client interface. The
Perl ‘DBI/DBD’ client code requires Perl5.004 or later.
Perl DBI/DBD modules can be downloaded from
www.symbolstone.org/technology/perl/DBI/index.html or
www.perl.com/CPAN/modules/by-module/DBIx/i. among
others. You should get the Data-Dumper, DBI and Msql-
Mysql module distributions and install them in that order.

Web Server: Version 1.3 of the Apache web server
which can be downloaded from www.apache.org/httpd.

Perl support for the Apache server: modperl is the
Apache/Perl integration project. Modperl can be
downloaded from a CPAN site under modules/by-
module/Apache

4. MILE module

ISLE defines the multilingual layer as an additional

layer on top of the monolingual ones. Thus, whereas
monolingual layers collect morphological, syntactic and
semantic information needed to describe monolingual
lexicons, the multilingual layer defines correspondence
objects which describe relations between monolingual
representations. This approach guarantees the
independence of monolingual descriptions at the time that
allows the maximum degree of flexibility and consistency
in reusing existing monolingual resources to build new
bilingual lexicons.

Bilingual correspondences between source and target
unit elements can be rather complex and may involve
different transfer conditions. In these cases, the bilingual
layer allows to establish tests and/or actions upon
monolingual descriptions in source and target lexicons
respectively. Tests and actions are constraints or
enrichments on monolingual descriptions needed only
when moving from one language to another. More
exactly: tests specify a condition in source language under
which a given translation is valid; and, actions specify a
condition in the target language under which a given
translation is valid.

These transfer conditions include semantic transfer
conditions and syntactic transfer conditions which can be
briefly summarized as follows:

Semantic transfer conditions:

��Argument correspondences between source and

target predicates.
��Addition of semantic feature(s) to source or target

SemUs.
��Addition of semantic feature(s) to an argument of

source or target predicate.

Syntactic transfer conditions:

��Constrain the head of the syntactic description by

adding syntactic or semantic features.
��Link source and target positions (i.e. syntactic

arguments)
��Adding a syntactic position to source or target

syntactic descriptions.

createDB

tabularDTD

loadD

BuildDB

dB interface

download sgml

forms

browsing
 model

DTD

��Changing the optionality status of a given
syntactic position.

��Prohibit the realization of a given syntagma in a
given syntactic position.

��Adding semantic or syntactic features to
syntagmas filling a given syntactic position.

��Lexicalizing the syntagma filling a given syntactic
position.

The kind of tests and actions involved in each

correspondence depends on the words involved and on the
kind of information included in both source and target
lexicons. More crucially, the set of transfer conditions
involved in a given bilingual correspondence acts on
descriptive elements which, in most cases, vary from unit
to unit.

This scenario makes it impossible to define a static
fixed form (or template) for encoding bilingual
correspondences. Notice that the number and kind of
transfer conditions, and the number and kind of objects
these transfer conditions apply on will change from
correspondence to correspondence depending on the kind
of monolingual descriptions we are trying to link.

The complex nature of bilingual correspondences led
us to define the MILE module as an object and the list of
admissible transfer conditions as a set of methods that
further enrich the initial MILE object in order to collect
the desired information.

Formally, the ISLE MILE object has been
implemented following the bilingual correspondence
elements defined in the Genelex bilingual DTD. This
allows us to (i) exemplify the MILE entry in an actual
model (ii) to make extensive use of already existing
PAROLE and SIMPLE lexicons which, in fact, are
instances of the EAGLES / Genelex monolingual model
(iii) to eventually test the model in a real scenario and (iv)
to include MILE component on the top of the prototype
tool.

Essentially, the methods that our implementation of
MILE includes are those listed above. Each method takes
as input a relevant monolingual descriptive element and
the constraints or enrichments (i.e., its transfer conditions)
the user wants to apply on them. A simplified version of
some syntactic transfer conditions is listed below:

add_sem_feature_to_head(head, list_of_features)
add_synt_feature_to_head(head, list_of_features)
add_sem_feature_to_position(position, features)
add_synt_feature_to_position(position, features)
lexicalize_position(position, lexical_unit)
change_position_status(position, optional_status)
add_synt_position(synt_descripton, position)

 In order to lead the user through the whole process of
encoding complex transfer conditions, the system first
parses monolingual lexicons and collects the
morphological, syntactic and semantic descriptions of the
words to be linked. All this data is displayed in
SGML/XML format with browsing facilities. This allows
the user to have an exact idea of monolingual descriptions
and to select the relevant elements of the initial MILE
object (that is, relevant semantic units and relevant
syntactic descriptions in case transfer conditions are
needed). Once the basic MILE object is constructed, the
system parses the data it contains looking for the
monolingual descriptive elements it includes in order to
list the relevant methods that can be applied and the
elements these methods apply on (that is, the first
argument in the examples listed above). The user selects
the methods and fills in the data required (i.e., the second
argument in the examples listed above). Finally, the
system builds up the complex MILE object by applying
the set of selected methods.

All this process is possible because the system knows
the relations established among elements in the DTD. The
Genelex Bilingual DTD results from the adding of two
monolingual lexicons plus a bilingual layer that includes
correspondence elements which, essentially, are in charge
of relating monolingual elements. The type declaration
expressed in the customisation process explained above
allows the system to know the horizontal relations that
hold between bilingual correspondence elements and
monolingual descriptions. The way Genelex bilingual
layer is defined together with type declaration process
opens the possibility to include different monolingual
descriptions in the MILE implementation. In other words,
MILE object reflects MILE schema and object methods
reflect MILE transfer conditions. Object methods require
monolingual information in order to provide with the final
MILE complex object (that is, morphosyntactic
information of source and target words, the syntactic
environments these units occur in, etc.). In our case, this
monolingual information is expressed in the PAROLE
SIMPLE lexicons following the Genelex DTD but it could
be expressed otherwise if using different monolingual
resources.

5. Examples

Table 2: Customisation procedure

Table 2: Making a form

Table 2: Browsing the model

6. References
Bel, N., Busa, F., Calzolari, N., Ogonowski, A., Peters,

W., Ruimy, N., Villegas, M., Zampolli , A. 2000.
SIMPLE: a general Framework for the Development of
Multili ngual Lexicons. In LREC Proceedings, Athens.

Busa, F., Calzolari, N., lenci, A., and Pustejovsky, J. 1999,
Building a Semantic lexicon: structuring and
Generating Concepts. In The Third International
Workshop on Computational Semantics, Tilburg, The
Netherlands.

Calzolari, N. 1991. Acquiring and Representing
Information in a Lexical Knowledge Base, ILC-CNR,
Pisa ESPRIT BRA-3030/ACQUILEX – WP No. 16.

Calzolari, Nicoletta, Lenci, Alessandro, Zampolli ,
Antonio, Bel, Nuria, Villegas, Marta, Thurmaier,
Gregor., 2001. The ISLE in the Ocean Transatlantic
Standards for Multil ingual Lexicons (with an Eye to
Machine Translation). In Proceedings of MTSummiy
VIII, Santiago de Compostela, Spain.

Calzolari, N., Mc Naught, J., Zampoll i, A. 1996. EAGLES
Final Report. Pisa.

Fellbaum, C. 8ed.). 1998. Wordnet: An Electronic Lexical
database, Cambridge, MA: The MIT Press.

Fontenelle, T. 1997. Turning a bilingual dictionary into a
lexical-semantic database. Tübingen: Max Niemeyer,
(Lexicographica. Series maior; 79).

GENELEX Consortium. 1994. Report on the Semantic
Layer, Project EUREKA GENELEX, Version 2.2.

Underwood, N., Navarretta, C. 1997. A Draft Manual for
the Validation of Lexica. Final ELRA Report,
Copenhagen.

	694: 694
	695: 695
	696: 696
	697: 697
	698: 698
	699: 699
	700: 700

