Signatures, Typed Feature Structures and RDFS

M atthias Denecke*

*Interactive Systems Laboratories
Carnegie Mellon University
Pittsburgh, PA, 15213
US.A.
denecke@cs.cmu.edu

Abstract

In this paper, we examine how attribute logic signatures and typed feature structures can be serialized using emerging semantic web
standards RDF and RDFS. Inversely, we also consider to which degree the logic of typed feature structure is capable of representing and

drawing inferences over RDF and RDFS documents.

1. Introduction

The representation of task related concepts is part of
many natural language processing systems. Recently,
there have been several projects involving several sites and
project partners each of which develops a component that
needs to receive data from other components, process it
and resend the output to a subsequent component. Con-
sequently, there is the issue to agree upon, to specify and to
represent the concepts the system can understand. This can
be seen as the vocabulary of the language in which compo-
nents communicate with each other or in which knowledge
sources are serialized. Note that this issue is orthogonal to
the issue of deciding in which format the concepts should
be exchanged. This can be seen as the syntax of the lan-
guage in which components interact. For example, the fact
that the exchange format has been decided to be XML does
not describe the content of the exchanged messages.

For this reason, implemented systems often incorpo-
rate, or have access to, an ontology that represents the
understood concepts and the relationships between them.
This is particular prevalent in machine translation systems
that employ an interlingua representation (see for example
(Woszczyna et al., 2000)) and task oriented spoken dia-
logue systems.

In several systems, typed feature structures (Carpen-
ter, 1992) have been shown to be popular representations.
Originally developed with applications in grammar devel-
opment in mind, the fact that the atoms of typed feature
structures are partially ordered in a type hierarchy make
this particular formalism appealing for task oriented nat-
ural language processing. In addition, efficient and simple
implementations of subsumption and unification algorithms
are available.

On the other hand, emerging w3cC standards are
concerned with semantic annotations of web resources.
These efforts include the Resource Description Frame-
work (RDFMS, 1999) and its Schema language RDFS (RDF
Schema, 2000), and, building on top of RDFS, the Darpa
Agent Markup Language (DAML for short) and and the
Ontology Inference Layer (OiL for short). Both efforts
recently joined forces and produced the DAML+OIL lan-
guage.

In this paper, we look at how the logics of typed feature

structures and the RDF and RDFS semantic web standards
complement each other. The paper is organized as follows.
In section 2, we give an overview of RDFS. In section 3, we
give an overview of those aspects of typed feature structures
that are relevant to our discussion. In section 4, we compare
the two representations. In section 5, we preent mappings
from signatures to RDFS documents and from typed feature
structures to RDF documents, respectively. In section 6, we
provide inverse mappings from particular RDFS documents
to signatures and form particular RDF documents to typed
feature structures, respectively. In section 7, we discuss the
application of the techniques here presented to task oriented
spoken language processing.

2. RDF und RDF Schema

RDF defines a simple data model for describing prop-
erties of and interrelationships between resources. It does
not, however, provide any typing mechanism or content re-
striction. This functionality is provided by RDF Schema.
A schema defines the kind of resources that are being de-
scribed, and imposes semantic restrictions on the relation-
ships between the described resources.

The RDF schema (RDFs for short) provides thus a basic
type model to be used in RDF data models.

2.1. Classes

RDFsS allows for the introduction of concepts by means
of the r df s: cl ass tag. For example,

<rdfs:C ass rdf: | D="notorvehicle"/>

declares a class not or vehi cl e. It is possible to create
subclasses using the r df s: subC assOF tag, asin

1314

sportscar pickuptruck minivan semitruck
passengervehicle utilityvehicle
motorvehicle

Figure 1: A class hierarchy.

<rdfs:Class rdf:ID="utilityvehicle">
<rdfs:subd assO
rdf : resour ce="not orvehicl e">
</rdfs: d ass>
<rdfs: Cl ass rdf: | D="passengervehicle">
<rdfs: subCl assO
rdf : resource="not orvehi cl e">
</rdfs: d ass>

Multiple inheritance is equally possible:

<rdfs:C ass rdf: | D="m ni van">
<rdfs:subd assCO
rdf:resource="utilityvehicle">
<rdfs:subd assCO
rdf : resour ce="passenger vehi cl e" >
</rdfs: C ass>

Instances of classes are RDF descriptions. Their class
membership is indicated by means of the r df : t ype tag.

<rdf: Description rdf:|D="MCar">
<rdf:type rdf:resource="#sportsvehicle">
</rdf: Description>

Note that a description may have multiple types as in

<rdf: Description rdf:|1D="d dvan">
<rdf:type rdf:resource="utilityvehicle">
<rdf:type rdf:resource="passengervehicle">
</rdf: Description>

Figure 1 shows the class hierarchy used in the examples
in this paper.

It should be noted that the relationship between classes
induced by the r df s: subCl assOf tags may contain cir-
cular references (RDFMT, 2002). This is a recent change
from the previous requirement disallowing circular refer-
ences.

2.2. Properties

Properties are resources that express relationships be-
tween resources. The types of resources a property
relates can be restricted with the rdf s: domai n and
r df s: r ange tags. For example, the declaration

<rdf: Property rdf:|D="requiresLi cense">
<rdfs: domai n rdf:resource="Mt or Vehicl e">
<rdf s: range rdf:resource="Li cense">
</rdf: Property>

allows for the expression of relationships between motor
vehicles and the licenses necessary to operate them.

The rdf s: subPropertyOF tag represents the re-
lationship corresponding to the r df : subCl assOF rela-
tionship between classes. For example,

sportscar pickuptruck minivan semitruck

v

passengerandutilityvehicle

T T~

passengervehicle utilityvehicle

v

motorvehicle

Figure 2: A type hierarchy.

<rdf: Property rdf:1D="requiresSpeci al Li cense">
<rdfs:domai n rdf:resource="Seni Truck">
<rdf s: range rdf:resource="Speci al Li cense" >
</rdf: Property>

allows for the expression of relationships between semi
trucks and the special kind of licenses required for them.
As a note, it is possible to have multiple domain and
range constraints for the same property, in which case they
are interpreted conjunctively (RDFMT, 2002), i.e. the prop-
erties need to set in relationship objects that are members
of all classes declared in the domain and range constraints.

3. Signaturesand Typed Feature Structures

Carpenter (1992) (LTFs henceforth) proposes to repre-
sent concepts in a so-called type hierarchy where the un-
derlying partial order is a meet-semilattice, i.e. if any pair
of types has upper bounds there is a unique upper bound.

3.1. Ordering of the Types

Type hierarchies (Type, C) are required to be meet semi
lattices. This implies that if any set of types S C Type has
an upper bound, this upper bound is uniquely determined.
A consequence of this and the fact that unification of typed
feature structures is defined in terms of upper bounds makes
unification of typed feature structures unique. Throughout
the paper, we will use the type hierarchy shown in figure 2
as an example.

3.2. Appropriateness Conditions

Appropriateness conditions restrict feature structures in
constraining both the features that are appropriate for a
given type as well as the values features may take.

Definition 3..1 (Appropriateness Specifications) An
appropriateness specification over the type hierarchy
(Type, C) and a set of features Feat is a partial function
Approp : Type x Feat — Type that meets the following
conditions

(i) Feature Introduction
for every feature f € Feat, there is a most general type
Intro(f) € Type such that Approp(Intro(f), f) is
defined, and

(if) Upward Closure/Right Monotonicity
if Approp(o, f) is defined and ¢ C 7, then
Approp(r, f) is also defined and such that
Approp(o, f) T Approp(r, f)

1315

A type hierarchy (Type, C), a set of features Feat and
an appropriateness condition Approp over (Type, C) and
Feat is called a signature (Penn, 2001).

An example for appropriateness conditions is given by

Approp(motorvehicle, requiredLicense)
= license

Approp(semitruck, requiredLicense)
= trucklicense

3.3. Typed Feature Structures

Typed feature structures are labelled rooted acyclic
graphs in which each node is annotated with a type symbol
7 € Type and each arc is annotated with a feature symbol
f € Feat. Furthermore, for each node there may be at most
one arc that is annotated with a given feature f. Figure 3
shows three typed feature structures.

REQUIREDLICENSE
|
motorvehicle license

(@)

privatelicens

REQUIREDLICENSE

]
COLOR

passengervehicle
green

(b)

COLOR
"™ &=
semitruck red

(©
Figure 3: Three typed feature structures in graph notation.

More formally:

Definition 3..2 (Typed Feature Structure) A feature
structure F' = (@, g, 6, 6) consists of a set of nodes @) with
a distinguished root node ¢ € @, a total type function
that assigns each node g its type 6(¢) and a partial feature
function § defining the structure of the graph in that (g, f)
gives the root node of the structure if feature f is applied
togq.

There is a structural algorithm that decides if one fea-
ture structure F” is at least as informative as ', or in other
words, if F' subsumes F’.

Definition 3..3 (Subsumption) A feature structure F' sub-
sumes another feature structure F” iff there is a homomor-
phism A from the nodes in F' to the node in £’ such that

1. h(g) = ¢ (the correspondent of the root node in F' is
the root node in F"),

2. ifd(q, f) is defined then &' (h(q), f) is also defined and
such that h(d(q, f) = ¢'(h(q), f) (h is a homomor-

phism w.r.t. the graph that underlies the feature struc-
ture),

3. if h(q) = ¢' then 8(q) C 6(q") (if ¢’ is the correspon-
dent of some node ¢ then the type of ¢’ is at least as
informative as the type of q.

Informally, conditions (i) and (ii) ensure that the underlying
graph of F' is a subgraph of the underlying graph of F’
while condition (iii) ensures that the type information in F’
is at least as specific as the type information in F'.

In figure 3, feature structure (a) subsumes feature struc-
ture (b) but not feature structure (c).

4. Comparison between RDF Schema and
Type Hierarchies

4.1. Classes and Types

Both LTFS and RDFS provide representations of rela-
tions between concepts. Since the requirements on a type
hierarchy are stricter than those on a class hierarchy in
RDFS, type hierarchies can easily represented in RDFS but
not any set of classes in RDFS is a type hierarchy. We
will see below how in certain cases a set of classes can be
converted in order to satisfy the conditions on type hier-
archies. The contentious conditions include the fact that
the r df s: subd assOF relationship is not necessarily a
meet semilattice; indeed due to circular references it might
not even be a partial order.

4.2. Appropriateness Specifications and Properties

It is impossible in LTFS to express inheritance relation-
ships between features. In other words, a signature exhibits
a ”flat” partial order between features where any two differ-
ent features f; and f; are incomparable. On the other hand,
there is no equivalent to the increasing specificity of the
appropriateness constraints (see definition 3..1 (ii)) as do-
main and range constraints are interpreted conjunctively*
(RDFMT, 2002). This means that the naive translation of
the appropriateness specification 3.2. into

<rdf: Property rdf:|D="requiresLi cense">
<rdf s: domai n rdf:resource="senitruck">
<rdfs:range rdf:resource="speciallicense">
</rdf: Property>
<rdf: Property rdf:|D="requiresLicense">
<rdf s: domai n rdf:resource="notorvehicle">
<rdf s: range rdf:resource="1icense">
</rdf: Property>

is equivalent to

<rdf: Property rdf:|D="requiresLicense">
<rdfs: domain rdf:resource="sem truck">
<rdf s: range rdf:resource="special license">

</rdf: Property>

which, in turn, does not correspond to the appropriateness
specification.

4.3. Instantiations of Classes

As noted above, RDF descriptons can be instances of
two or more classes. There is no possibility to represent
equivalent information in LTFS. The workaround described

'Note that in an earlier draft (RDF Schema, 2000), the inter-
pretation of multiple range restrictions was digunctively

1316

in more detail below consists of adding additional types as
needed if descriptions are instances of multiple classes.

Furthermore, due to the fact that instantiations of RDFS
classes can have multiple types, together with the fact that
the language does not contain negation, there are no incon-
sistent RDF descriptions. In LTFS, however, the process of
unification assigns multiple types to nodes. If there is no
upper bound for these types, the description is said to be
inconsistent, and the unification fails.

5. Representing Signaturesin RDFS

After having compared the differences and similarities
between signatures and RDFS in the last section, we pro-
ceed to define a mapping m from signatures to RDFS doc-
ument fragments and from typed feature structures to RDF
document fragments.

5.1. Mapping Types

The mapping m of a type hierarchy (Type, C) to an
RDFS class hierarchy is straightforward, as (Type, C) is a
partial order. The distinguished type L is mapped onto

<rdfs:Class rdf: | D="bot"/>

All other types ¢ with direct super types t¢y,...t, are
mapped onto

<rdfs:Class rdf:I1D="¢t"/>
<rdfs:subC assOf rdf:resource="#t"/>

<rdfs:subd assOF rdf:resource="#t,"/>
</rdfs: C ass>

5.2. Mapping Appropriateness Conditions

The mapping of appropriateness conditions takes ad-
vantage of the trick described in the previous section. In
order to avoid redundancy in the specification, we con-
sider the appropriateness function Approp for those places
where it changes.

In the following, an equation of the form
Approp(r,f) = o for types o,7 and a feature f is
called an appropriateness constraint. An appropriateness
constraint is called redundant if it can be inferred form
another appropriateness constraint. For example, if 7 C
and Approp(r,f) = o, then Approp(m,f) = o is
redundant. A non-redundant appropriateness constraint
is called informative. The name of an appropriateness
constraint Approp(r, f) = o is f_r_o?. An appropri-
ateness constraint Approp(r, f) = o subsumes another
appropriateness constraint Approp(ri,g9) = o1 iff f = ¢
and7 C 7 and o C oy.

As an example, we consider again the ap-
propriateness specification 3.2.. The constraint
Approp(passengervehicle, requiredlicense) =
license is redundant as it can be inferred from
Approp(motorvehicle, requiredlicense) =
license, together with the knowledge that

2For expository reasons, we assume that the character '’ does
not appear in the names of the classes and properties. If it does,
some more elaborate name mangling mechanisms would have to
take place

motorvehicle C passengervehicle. On the other hand,
Approp(semitruck, requiredlicense) = trucklicense
is informative.

Given a signature, we construct property constraints
for all informative appropriateness constraints induced by
Approp. Let Approp(r, f) = o be an informative appro-
priateness constraint. In order to correctly construct RDFS
properties, we need to distinguish between the "roots” in
the constraint hierarchy (the constraints covered by the fea-
ture introduction condition in definition 3..1) and those that
specialize other constraints (the constraints covered by the
Upward Closure condition in definition 3..1). This can be
determined by looking at 7: if 7 = intro(f), then the first
case holds, otherwise the second case holds.

Let first 7 = intro(f). The generated RDFS fragment
is then given by

<rdfs: Property rdf: I D="f.ro">
<rdfs:domain rdf:resource="7r"/>
<rdf s: range rdf:resource="¢"/>
</rdfs: Property>

In the other case, the appropriateness constraint special-
izes one or more less specific appropriateness constraints
Approp(ti, f) = ;. In this case, we generate the follow-
ing RDFS code.

<rdfs: Property rdf: I D="f.ro">
<rdfs:domain rdf:resource="7r"/>
<rdfs:range rdf:resource="¢"/>
<rdfs: subPropertyX™ rdf:resource="#f_r _o:">

<rdfs:subPropertyO> rdf:resource="#f_r,.0,">
</rdfs: Property>

The appropriateness conditions above generate the fol-
lowing document fragment.

<rdfs: Property

rdf : 1 D="reqLi censenmt orvehi cl el i cense" >
<rdfs: domai n rdf:resource="#notorvehicle"/>
<rdf s: range rdf:resource="#license"/>

</rdfs: Property>

<rdfs: Property

rdf: | D="reqgLi censesem truck._trucklicense">

<rdfs:domai n rdf:resource="#semtruck"/>
<rdfs:range rdf:resource="#trucklicense"/>
<rdfs: subPropertyC
rdf : resour ce="#reqLi censenot orvehi cl elicense">
</rdfs: Property>

5.3. Mapping Feature Structures

In mapping feature structures to RDF documents, we
need to make sure to capture all information from the fea-
ture structures in RDF. We propose to create a new blank
node for each node in the typed feature structure, and to
link the nodes through properties. More specifically, if
F = (Q,q,0,) then for each node ¢ € @ witht = 6(q)
we generate the following RDF fragment.

<rdf: Description rdf:|D="nodeID">
<rdf:type rdf:resource="t"/>
</rdf: Description>

1317

Here nodel D is a name uniquely generated for each
node q € Q.

In addition, if §(q, f) is defined in ¢ for any feature f,
then we need to add that information to the description as
well. This is done by mapping features to properties. The
name of the property is chosen to be the most specific one
that subsumes the the property given by f,6(q) and 6(q’).
In this case, the description created for that node becomes

<rdf: Description rdf:|D="node— ID">
<rdf:type rdf:resource="t"/>
<featurename, rdf:resource="#nodelID:" />

<featurename, rdf:resource="#nodelD," />
</rdf: Description>

For example, the feature structure shown in figure 3 (b)
shown here in attribute value matrix notation,

passengervehicle
REQUIREDLICENSE privatelicense
COLOR green

is mapped to the document fragment

<rdf: Description rdf:I|D="node3">

<rdf:type rdf:resource="passengervehicle"/>

<requi redLi cense_passvehi cl eprlicense
rdf : resour ce="#node5"/ >

<col or rdf:resource="#node4"/>
</rdf: Description>
<rdf: Description rdf:|D="node5">

<rdf:type rdf:resource="privatelLi cense"/>
</rdf: Description>
<rdf: Description rdf:|D="node4">

<rdf:type rdf:resource="green"/>
</rdf: Description>

The graph representing the feature structure is shown in fig-
ure 4.

Note that the RDF graph constructed that way is a plain
graph in RDFs parlance, meaning that it does not contain
literals. On the other hand, since the nodes of feature struc-
tures are mapped to blank nodes in RDF descriptions, the
graph is not ground.

5.4. Properties of the mapping

Before we discuss how subsumption is preserved
through the mapping, we need to introduce the concept of
simple entailment and RDFs entailment. In the process,
we will refer to RDFsS closure rules which are defined in
(RDFMT, 2002). According to (RDFMT, 2002), one graph
E simply entails another graph E’ if every interpretation
that satisfies every member of E also satisfies every mem-
ber of E. In this section, we will use the graph notation of
document fragments. Furthermore, one graph RDFS entails
another if the closure of the RDFS graph simple entails the
closure of the other graph. The closure operation has the
function of pulling in all the schema information. For ex-
ample, the closure of the graph shown in figure 4 will add
the nodes and the arc

rdf :type

nodeg = motorvehicle

Svehicle_prlicense

reqLicense_| rdf:type

color
rdf:type
passenger
Vehicle rdf.type

Figure 4: A feature structure in graph notation.

since the schema contains

rdf s:subClassO
if b f

passengervehicle motorvehicle

and the graph representing the feature structure contains

rdf :type

nodeg = passengervehicle

In addition, the closure will also generate the tran-
sitive closure of the rdfs:subC assOf and
rdf s: subPropertyO relationships.

The mapping from typed feature structures to RDF doc-
uments has the desirable property that F' C F" implies that
m(F) is rdfs-entailed by m (F"). This can be seen as fol-
lows. F' C F' implies the existence of the homomorphism
h with the properties given in definition 3..3. Then, for
each pair of nodes ¢ € Q, ¢’ € Q' with h(q) = ¢' we know
by assumption that 6(¢q) C 6'(¢"). The generation of the
RDF schema from the signature using the proces described
above ensures that the graph contains a chain of subclass
relationships

m(0'(¢")) rdfs:subClassOf ¢

.cn rdf s : subClassO f m(0(q))

The closure rule RDFS 8 adds the statement

m(6(q))

The RDF document fragments representing F' and F’ con-
tain the triples

rdfs : subClassOf m(6'(q")) 1)

m(q) rdf : type m(6(q)))

and

m(q') rdf :type m(6'(q')) ®)

1318

respectively. Closure rule RDFS 9, when applied to 1 and 3
will add the statement

m(6(q)) (4)

to the document fragment representing . This is due to
the fact that the sublass relationship in (3) holds.

Similar closure rules exist for properties that inherit
from superproperties. To summarize, the closure rules will
add all weaker class membership and property membership
statements to the graph. Since by assumption, the class and
property membership statements of m (F') are weaker than
those of m(F") the closure of m(F") is a superset of the
closure of m(F) modulo node IDs. This is sufficient to
prove simple entailment.

As an example, the feature structure shown in figure 3
(a) shown here in attribute value matrix notation,

m(q') rdf : type

motorvehicle

REQUIREDLICENSE license

is mapped to the document fragment

motorv
nodex (5)
license

rdf : type
reqLicense_motorv_license

rdf : type

nodeo
nodeo
node1

The document fragment generated from the feature struc-
ture (b), shown above, shown in graph notation:

nodes rdf : type passengeruv.
nodes reqLicense_passv_prlicense mnodes

nodes color nodes (6)
nodes rdf : type prlicense

nodes rdf : type green

The closure rules RDFS 6 and RDFS 9 (see (RDFMT,
2002)) add the following triples to the graph, respectively:

nodes reqLicense_motorv_license nodey
nodes rdf : type motorv. (@)
nodes rdf : type license

If the triples in 6 and 7 are true, then the triples in 5 are
also true, choosing the assignment where nodeq and nodes,
aswell as node; and node, are assigned the same resource.

6. Interpreting RDFS as Signatures

The previous section addressed the issue of generating
an RDFS document that truthfully represents a signature. In
this section, we consider the inverse problem, that is, to in-
terpret an RDFS document as a signature. The requirements
on signatures are stricter than those on RDF schemas. Con-
sequently, and as also can be deduced from the discussion
in the last section, there is no hope that all RDFS documents
can be interpreted as signatures: in the last section, we re-
stricted degrees of freedom in designing the property con-
straints to express appropriateness conditions; if, in the in-
verse conversion, the RDFS document does not meet these
restrictions, there is no hope that it can be expressed as a
signature. There are, however, some requirements on sig-
natures that, if not satisfied in the RDF schema, can be me-
chanically restored. This includes the meet semilatticehood
condition.

6.1. Mapping Classes

The difficulty in interpreting an RDFS class hierarchy as
type hierarchy (Type, C) is due to the fact that the latter is
required to be a meet semi lattice while the former is only
guaranteed to be a partial order. This implies in particular,
that if a set of classes has an upper bound, there need not be
a uniquely determined least upper bound. The solution to
this problem is to apply the meet semilattice completion al-
gorithm (Penn, 2001) to the class hierarchy. This algorithm
inserts additional dummy classes where needed in order to
fulfil the meet semilatticehood condition. In addition, we
also add a distinguished element _L to the resulting order, if
there is no least element in the class hierarchy.

For example, the meet semilattice completion algo-
rithm, if applied to the class hierarchy shown in figure 1
will generate the meet semilattice shown in figure 2.

It is legal in RDFs to define circular in-
heritance relationships, i.e. relationships of
the form a; rdfs:subCl assOf a... a,

rdf s: subCl assOf aa;. The intended meaning is
to state that the classes a; to a, are equivalent. We can
transform an RDF schema specification with circular inher-
itance relationships into one without circular inheritance
relationships by factorization, whereby two classes a, b are
equivalent a = b iff a rdf s: subCl assOF* band b
rdf s: subCl assOF * a. This needs to be done before
the msL algorithm is applied.

6.2. Mapping Properties

Multiple domain and range restrictions are dealt with
as follows. Letcy,...,cn,n > 1 be the domain (range)
restrictions of any given property. If there is a class ¢ that
is a direct subclass of ¢1,...,¢,,n > 1 but that is not a
direct subclass of any other class, then replace the multiple
domain (range) restrictions with that class. If there is no
such class add the declaration

<rdfs:Class rdf:ID="¢">
<rdfs: subC assOf rdf:resource="¢;">

<rdfs:subCl assO rdf:resource="¢,">
</rdfs: d ass>

and replace any occurrence of rdfs:subd assOf
rdf:resource="¢;" in other class definitions with
rdf s: subCl assOf rdf:resource="¢".

As mentioned above, signatures do not allow to repre-
sent feature hierarchies. However, since we can encode ap-
propriateness conditions in property hierarchies, we should
inversely be able to interpret property hierarchies as appro-
priateness conditions. This, of course, can only succeed if
the property hierarchy in question satisfies the conditions
of the appropriateness conditions.

7. Applicationsto Task-Oriented Natural
L anguage Processing
The mappings from signatures and typed feature struc-
tures to RDFS and RDF document fragments, respectively,

demonstrate that RDF(S) can be used as a convenient (and
standardized) way to serialize signatures and typed feature

1319

structures. Denecke and Waibel (1997), Johnston (1998)
and Denecke and .Yang (2000) showed how signatures can
be used as domain models for spoken dialogue systems, as
the basis for generating efficient clarification questions and
for fusion of multimodal input streams in multimodal di-
alogue systems. Denecke and Waibel (1999) demonstrate
how the domain model of a spoken dialogue system can be
assembled from several smaller ontologies. This technique
is also supported by RDFS documents, their URIS serving at
the same time as namespaces.

Inversely, as the limited mappings from RDF and RDFS
documents to signatures and typed feature structures sug-
gest, LTFS can be used to represent and reason with certain
RDF(S) documents.

8. Conclusion

In this paper, we presented algorithms to convert signa-
tures for typed feature structures and typed feature struc-
tures to RDFS and RDF document fragments, respectively.
The resulting document fragments represent all the in-
formation encoded in the original signatures and feature
structures. We also presented algorithms that can con-
vert some RDFS and RDF document fragments to signa-
tures and typed feature structures, respectively. Further-
more, we gave examples of RDFS and RDF document frag-
ments that cannot be converted to signatures or typed fea-
ture structures without loss of information. In short, the
result of the paper is that RDFS documents without the
rdf s: subPropertyO tag can be converted to signa-
tures and RDF documents in which there are no two arcs
with the same label leaving any node can be converted to a
typed feature structure.

Applications of the algorithms include the exchange
of ontologies and semantic representation between compo-
nents in natural language processing applications.

Future work includes extension of the algorithms pre-
sented here to treat containers and integral datatypes cor-
rectly.

9. References

B. Carpenter. 1992. The Logic of Typed Feature Struc-
tures. Cambridge Tracts in Theoretical Computer Sci-
ence, Cambridge University Press.

M. Denecke and A.H. Waibel. 1997. Dialogue Strategies
Guiding Users to their Communicative Goals. In Pro-
ceedings of Eurospeech, Rhodos, Greece. Available at
http://www.is.cs.cmu.edu.

M. Denecke and A. H. Waibel. 1999. Integrating Knowl-
edge Sources for a Task-Oriented Dialogue System.
In Workshop on Knowledge and Reasoning in Practi-
cal Dialogue Systems, Stockholm, Sweden. Available at
http://www.is.cs.cmu.edu.

M. Denecke and J .Yang. 2000. Partial Informationin Mul-
timodal Dialogue Systems. In Proceedings of the Inter-
national Conference on Multimodal Interfaces. Avail-
able at http://www.is.cs.cmu.edu.

M. Johnston. 1998. Unification-Based Multimodal Pars-
ing. In Proceedings of the 17th International Confer-
ence on Computational Linguistics and the 36th An-
nual Meeting of the Association for Computational Lin-

guistics (COLING-ACL 98), Montreal, Canada. Associ-
ation for Computational Linguistics Press. Available at
http://www.cse.ogi.edu.

G. Penn. 2001. Tractability and Structural Closures in At-
tribute Logic Signatures. In Proceedings of the 39th An-
nual Meeting of the Association for Computational Lin-
guistics (ACL 2001), Toulouse, France.

RDF Schema. 2000. Resource description framework
schema specification. Technical report.

RDFMS. 1999. Resource description framework model and
syntax specification.

RDFMT. 2002. RDF model theory. Technical report,
W3C.

M. Woszczyna, M. Broadhead, D. Gates, M. Gavalda,
A. Lavie, L. Levin, and A. Waibel. 2000. Evaluation
of a practical interlingua for task-dependent dialogue.
In Proceedings of the AMTA SIG-IL Third Workshop on
Interlinguas and Interlingua Approaches, Seattle, Wash-
ington. Available at http://www.is.cs.cmu.edu.

1320

	1314: 1314
	1315: 1315
	1316: 1316
	1317: 1317
	1318: 1318
	1319: 1319
	1320: 1320

