
Corpora as Object-Oriented System. From UML-notation to Implementation

Serge A. Yablonsky
 Petersburg Transport University, Computer Department, Russicon Company;

Kazanskaya str., 56, ap.2, St.-Petersburg, Russia, 190000
phone/fax: +7-812-3127213, email: root@russicon.spb.su, URL: www.russicon.ru;

Abstract

The paper descusses the complete process of building and managing a corpora warehouse, including case study involving the
development of UML-specifications and patterns, architecture and examples of actual implementations of DBMS tools to support
strategic corpora analysis.

1. Introduction

2.

2.1.

2.2.

Documental systems with large-scale linguistic

annotation are in service of a wide range of research and
commercial applications. However, the research progress
in this area is restricted by the lack of infrastructure for
annotation technologies supported with special-purpose
tools, making it difficult either to develop new coding
systems or to place multiple annotations on the same
source (Carletta, J., McKelvie, D., Isard, A., 2002).

For successful development of corpora invironment
the needs in several inter-related areas are considered to
be necessary (Ide, N. & Brew, C., 2000):
� Annotation and encoding formats;
� Data and tools architecture.
Reusability of linguistic resources is achieved by

describtion of the data and its annotations using a common
data model. For that purpose the XML and related
standards such as the Resource Definition Framework
(RDF) are widely used (Ide, N., Romary L., 2001). For
example, the XML Corpus Encoding Standard (XCES,
http://www.xml-ces.org) (Ide, et al., 2000) is designed to
be optimally suited for use in language engineering
research and applications, in order to serve as a widely
accepted set of encoding standards for corpus-based work
in natural language processing applications. It has been
widely adopted by the language processing community (a
list of European and US projects using the CES is at
http://www.cs.vassar.edu/CES/CES-P.html).

In the corpora case study we describe how XML
linguistic annotation can be supported using XML as the
data format. We provide a view on the corpora together
with corpus-handling environment as object-oriented
system. That suggests strategies for development of a
widely reusable and extensible data and tools.

The paper descusses the complete process of building
and managing a corpora warehouse based XML encoding,
including the development of UML-specifications,
architecture and examples of actual implementations of
DBMS tools to support strategic corpora analysis. Open
UML-specification of object-oriented corpora system
could be expanded in future by community of language
and speech software and resources developers. The set of
different types of UML-specifications brings us to full
three-level system, including data, business and user
services.

We present the basic features of a prototype corpora
knowledge management system under development
intended to support linguists in their daily work. The

system offers facilities to assist liguists and internet users
as they search for relevant material, and then classify and
annotate this material in a repository. In general the main
features of corpora warehouse (Sullivan D., 2001) are
implemeted using commercial DBMS Oracle9i.

Corpora System UML Notation

UML: A standard notation for object-
oriented systems

Today Unified Modeling Language (UML) defines a
standard notation for object-oriented systems (Booch G.,
Rumbaugh J., and Jacobson I., 1998). The objective of
modeling is to complete a rigorous design with quality
checks before we build a corpora system. The UML is an
object-oriented methodology that standardizes modeling
language and notation, not a particular method.

UML supports several different views of a system -
class diagrams, behavior diagrams, use-case
diagrams, and implementation diagrams. Use-case
diagrams let UML users define how actors participate in
an interaction with the system. UML users can capture the
system's dynamic behavior by using activity diagrams,
collaboration diagrams, sequence diagrams, and state
diagrams. To document the lower-level details of a
system, UML users can develop component diagrams and
deployment diagrams. The UML is also extensible to
support new modeling concepts by the use of stereotypes
and patterns. The UML is a powerful solution for
application object modeling.

Using UML enhances communication between
linguistic experts, workflow specialists, software
designers and other professionals with different
backgrounds. UML can be used on a general level, which
is intuitive for the users of workflow systems. In spite of
this, UML symbols also have defined semantics, which
means that the visual workflow description can be used as
a software specification.

Mapping RDF/XML to UML
The RDF schema model itself is equivalent to a subset

of the class model in UML. So RDF schema elements map
directly into UML class model elements (A Discussion…,
1998). RDF schema uses a DLG (Directed Labeled
Graph) model for describing schemas. Class schemas
expressed in UML can be viewed also as DLGs.

To support mapping XML to UML, UML is extended
with stereotypes for XML elements, element attribute
lists, entities, and notations. Element attributes are like

2.3.

2.3.1.

UML class attributes. Stereotypes or tagged values
represent XML operator symbols, sequence lists, choice
lists, and element and element attribute multiplicity.

For example, Rational Rose (Rational Rose Enterprise
Edition, 2001) represents XML DTD elements as
stereotyped classes. The list below shows the primary
stereotypes for XML DTDs:

- <<DTDElement>> represents all elements in the

DTD;
- <<DTDGroup>> represents the grouping type for

a specific element;
- <<DTDEntity>> represents the entities declared

in an XML DTD;
- <<DTDNotation>> represents the notations

declared in an XML DTD.
XML DTDs declare the elements and structural

relationship between elements. XML DTD stereotypes
graphically depict the DTD elements and the structural
relationship between elements using UML constructs,
such as multiplicity and association relationships.
Multiplicity is the number of occurrences for a given
instance of the XML element. Because the relationship
between elements in XML DTDs is structural, XML
elements map to association relationships. In XML,
DOCTYPE name is the root element of the DTD. If XML
documents are represented as a tree structure, then
elements in the document are nodes on the tree. Each node
on the tree contains actual data in the document. UML
notation of XML Corpus Encoding Standard DTD is
shown on the figure 1 (fragment).

XML structured data representation
The database research community has been actively

investigating XML (see, for example, Didier M., et al.,
2000).

Much of the effort has been directed at using XML as
a database wrapper and mediation medium, storing and
indexing XML in traditional database systems,
understanding the interaction of DTDs with constraint
mechanisms, and designing query languages for XML.

When database systems are used for XML, data
structuring is systematic and explicitly defined by a
database schema.

One of the main questions in the XML/SGML markup
technologies for working with linguistic data and paticular
with corpora is how to map XML/SGML to database
system.

We descuss four mappings of XML/SGML to
databases:

� a table-based mapping;
� an object-relational (object-based) mapping;
� direct XML maping;
� hybrid XML mapping.

Table-based and object based XML mappings
Two first mappings model the data in XML documents

rather than the documents themselves. This makes these
mappings good for data-centric documents and poor for
document-centric documents.

Both mappings are commonly used as the basis for
software that bidirectionally transfers data between XML
documents and databases: from XML documents to the
database and from the database to XML documents. In
this approach a relational or object-oriented database
system is extended to support XML data management. All
current commercial database systems provide XML
support of that kind. For example, Oracle’s XML SQL
Utility (Oracle9i Database Online Documentation, 2002)
and IBM’s DB2 XML Extender (Bertino, E., Castano, S.,
Ferrari, E., and Mesiti, M., 2001). For the sake of
discussion, we consider Oracle XML SQL Utility as
representative of the many systems following this
approach.

In Oracle 9i complex XML documents can be stored
as object-relational instances and indexed efficiently. Such
instances fully capture and express the nesting and list
semantics of XML. With Oracle's extensibility
infrastructure, new types of indixes, such as path indixes,
can be created for faster searching through XML
documents. XML SQL Utility (XSU) stores XML and
converts SQL query results into XML. XSU provides the
means to store an XML document by mapping it to the
underlying object-relational storage, and conversely,
provides the ability retrieve the object-relational data as an
XML document. XSU converts the result of an SQL query
into XML by mapping the query alias or column names
into the element tag names and preserving the nesting of
object types. The result can be in text or a DOM
(Document Object Model) tree. The generation of the
latter avoids the overhead of parsing the text and directly
realizes the DOM tree.

2.3.2.

2.3.3.

Direct (composed) XML maping
The third mapping is likely to be used as a direct

mapping of any XML document in database system as if
XMLType is the database data type and is good for
managing document-centric documents.

Oracle9i stores XML data in its special XMLType or
CLOB/BLOB columns and use XMLType functions or
Oracle Text indexing to search these documents (Oracle9i
Database Online Documentation, 2002). XMLType or
CLOBs/BLOBs are used to store XML documents if the
incoming XML documents do not conform to one
particular structure. Storing an intact XML document in a
CLOB or BLOB is a good strategy if the XML document
contains static content that will only be updated by
replacing the entire document. Corpora include written
text such as articles, advertisements, books, legal
contracts, and so on. Documents of this nature are known
as document-centric and are delivered from the database
as a whole. Storing this kind of document intact within
database gives the advantages of an industry-proven
database and its reliability over file system storage.

Oracle Text (interMedia Text) indexing enables fine
grain searching of XML element content. Oracle allows
the creation of Oracle Text (interMedia Text) indexes on
LOB columns, in addition to URLs that point to external
documents. This indexing mechanism works for XML
data as well. Oracle9i recognize XML tags, and section
and sub-section text searching within XML elements'
content. The result is that queries can be posed on
unstructured data and restricted to certain sections or
elements within a document.

XMLType or CLOBs/BLOBs storage are ideal if the
structure of the XML document is unknown or dynamic,
but much of the SQL functionality on object-relational
columns cannot be exploited. Concurrency of certain
operations such as updates may be reduced. However, the
exact copy of the document is retained.

Hybrid XML maping
Hybrid XML mapping in many cases gives better

control of the mapping granularity. For example, when
mapping a text document, such as a book, in XML, it may
not be want for every single element to be expanded and
stored as object-relational. Storing the font and paragraph
information for such documents in an object-relational
format may not be useful with respect to querying. On the
other hand, storing the whole text document in a CLOB
reduces the effective SQL queriability on the entire
document. The alternative is to have user-defined
granularity for such storage. The metadata for the
document in this case can be stored in object-relational
tables in the server for fast indexing and access.

Figure 2 shows schematically how a hybrid approach
to storing XML documents in the database, provides finer
granularity for ease of data searches. In the book example,
it may not be wanted the following: to query on top-level
elements such as chapter, section, title, and so on. These
elements can be stored in object relational tables. To
query the book's contents in each section. These sections
can be stored in a CLOB. The granularity of mapping is
specified at table definition time.

The advantages of the hybrid XML mapping are the
following:

- it gives the flexibility of storing useful and
queryable information in object-relational format
while not decomposing the entire document;

- it saves time in reconstructing the document, since
the entire document is not broken down.

Figure 2. Hybrid XML mapping

2.3.4. UML specifications of three-level corpora
system

We present the open UML-specification of object-
oriented corpora system that could be expanded in future
by community of language and speech software and
resources developers. The set of different types of UML-

specifications brings us to full three-level system,
including user, business and data services.

UML specification of data services should use
standard XML DTD (or its part) as a basis. In the previous
sections we descussed the ways of selection of the type of
UML/XML mapping in database system.

UML specification of business services also should
use standard UML notations of standard linguistic
annotation and corpora manipulation procedures.
Reusability of linguistic and corpora manipulation
business services could be achieved by usage of a widely
accepted set of UML notation standards for corpus-based
work in natural language processing applications.

3.

3.1.

3.2.

3.3.

Corpora Management with DBMS
XML-Enabled Technologies

Customizing Presentation of Corpora
XML is increasingly used to enable customized

presentation of Corpora for different browsers and users.
By using XML documents along with XSL stylesheets on
either the client or server, XML data could be transform,
organize, and present tailored to individual users for a
variety of client devices. Using XML and XSL also makes
it easier to create and manage dynamic Corpora Web sites.
The corpora look is changed simply by changing the XSL
stylesheet, without having to modify the underlying
business logic or database code of corpora management
system. For new looks design new XSL stylesheets is
needed. This is illustrated in Figure 3.

Figure 3. Customizing Corpora Presentation

Publishing Composite Corpora Documents
Corpora has numerous document repositories of

SGML and XML marked up text fragments and
annotations. Composite documents must be published
dynamically. After data modeling and design guidelines
object views can more readily be created against the data.
For example, in Oracle DBMS documents are stored in in
XML format using XMLType, where the relational data is
updatable. Oracle9i's Internet File System (9iFS) as the
data repository interface and helps implement XML data
repository management and administration tasks.

Corpora management system can use XSL stylesheets
to assemble the document sections (fragments) or/and
annotations and deliver the composite documents to users.

One suggested solution is to use Arbortext and EPIC
(http://www.arbortext.com) for single sourcing and
authoring or multichannel publishing. Multichannel
publishing facilitates producing the same document in
many different formats, such as HTML, PDF, WORD,
ASCII text, SGML, and Framemaker.

These are the main tasks involved in such solution:
- Design of XML DTD and database.
- Storing document’s sections or fragments in

XMLType columns in CLOBs in the database.
- Create XSL Stylesheets to render the sections or

fragments into complete documents.
For Oracle such XML components are used
- XML Parser with XSLT ;
- XSQL Servlet and XSU to move sections or

fragments into and out of the database

Figure 4. Using XSL to Create and Publish Composite
Corpora Documents

Pilot Corpora Management System
A developer of a large corpora receives data from

various news sources. This data must be stored in a
database and sent to all linguists and users on demand so
that they can view (annotate) specific and customized
parts of new corpora. The developer uses XSL to
normalize and store the documents in a database. The
stored data is used to back several internet/intranet nodes.
These nodes receive HTTP requests from various wired
and unwired clients.

We use XSL stylesheets with the XSQL Servlet to
dynamically deliver appropriate rendering to the
requesting service. See Figure 5.

The Corpora management system application uses
Oracle XML platform components together with the
Oracle9i database to build a web-based news service. It
combines Java, XML, XSL, HTML, and Oracle9i.

The powefull search engine of prototype system
particular uses advantages of Oracle Text search and
services and includes:

• Content-based retrieval on free text with
both literal (word) predicates and thematic
predicates. It includes: a comprehensive
range of operators and index preferences
(e.g. Boolean, exact phrase match, proximity,
section searching, fuzzy, stemming,
wildcard, thesaurus, stopwords, case
sensitivity, and search scoring), "about"
search, structured search, broad document

format support and multi-language support.
For example, texts can be searched for stems
of word e.g “teach” would return “teaching”,
“taught” etc. Fuzzy match can be used if you
are not sure of the spelling of a word. A
search can be done to find words which are
close to each other within a word.
Documents can be searched on what a
document is about as opposed to the
existence of specific words. Gists or Theme
Summaries can be produced which produce a
summary of what a document is about (using
themes).

• For XML framework XPath searching
enables sophisticated queries which can
reference and leverage the embedded
structure of XML documents – instead of
using a text query to find documents, you use
a document to find queries. XML path
searching is able to perform sophisticated
section searches: doctype disambiguation,
attribute value searching, automatic section
indexing, and more.

Figure 5. Pilot Corpora Management System

In addition to the search capabilities, a number of other

features are provided to simplify application development.
• Corpora format support. In order to index

documents stored in a variety of native
formats, such as Word, Excel, PowerPoint,
WordPerfect, HTML, and Acrobat/PDF,
system supplies a broad variety of "filters"
that allow documents stored in their native
formats to be indexed. Support for more then
150 file formats in order to index files in a
large range of formats including Word,
Acrobat, HTML, WordPerfect, Powerpoint,

Excel Flexible Storage Location - documents
can be stored and indexed in the database, in
a location pointed to by a URL or in an
external file.

• Corpora viewing and highlighting. System
services can convert any supported document
format to either plain text or formatted text
(an HTML approximation retaining as much
as possible of the original formatting;
available for all formats except PDF). Both
plain text and HTML versions may be
viewed in a standard browser.

• Text manager. System supplies an
administration tool through which all major
text maintenance and administration
functions may be performed.

Today we use corpora system for Russian language

corpora (Yablonsky S.A., 2000). We plan to establish a
suitable portal for Web access language resources using
existing software.

4. References
Bertino, E., Castano, S., Ferrari, E., and Mesiti, M., 2001.

Controlled access and dissemination of XML
documents. In DB2 Universal Database XML Extender,
XML Extender Administration and Programming.
http://www-4.ibm.com/software/data/db2/extenders/
xmlext/ docs/v71wrk/english/index.htm, retrieved
August 2001.

Booch, G., Rumbaugh, J., and Jacobson, I., 1998. The
Unified Modeling Language user guide, Addison-
Wesley.

Carletta, J., McKelvie, D., Isard, A., 2002. Supporting
linguistic annotation using XML and stylesheets. In
G. Sampson and D. McCarthy (eds.) Readings in
Corpus Linguistics, , London and NY.

A Discussion of the Relationship Between RDF-Schema
and UML. W3C Note 04-Aug-1998,
http://www.w3.org/TR/NOTE-rdf-uml/.

Didier M., et al., 2000. Professional XML. Wrox Press
Ltd.

Ide, N., Romary L., 2001. XML Support for Annotated
Language Resources. In: Linguistic Exploration,
Workshop on Web-Based Language Documentation
and Description, Dec 12 - Dec 15, 2000, University of
Pennsylvania Philadelphia, Pennsylvania, USA.

Ide, N. & Brew, C., 2000. Requirements, Tools, and
Architectures for Annotated Corpora. In: Proceedings
of the EAGLES/ISLE Workshop on Meta-Descriptions
and Annotation Schemas for Multimodal/
MultimediaLanguage Resources and Data
Architectures and Software Support for Large Corpora.
Paris: European Language Resources Association.

Oracle9i Database Documentation (Release 9.0.1), 2002.
Rational Rose Enterprise Edition 2001, Documentation.
Sullivan D., 2001. Document Warehousing and Text

Mining, John Wiley & Sons, 542 p.
Yablonsky S.A., 2000. Russian Monitor Corpora:

Composition, Linguistic Encoding and Internet
Publication. Proceedings Second International
Conference on Language Resources & Evaluation,
Athens, Greece, 2000.

http://www-4.ibm.com/software/data/db2/

	1718: 1718
	1719: 1719
	1720: 1720
	1721: 1721
	1722: 1722

