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Abstract
In human language technology, it is becoming more and more common to run systematic evaluations in which two or more systems, or
two or more versions of the same system, are pitted one against the other. We propose the binomial cumulative distribution function as
a way to assess the cumulative effect of the measures collected in such evaluations. We present an application of this measure to the
evaluation of the NL interface to an Intelligent Tutoring System. We conclude by discussing a few issues pertaining to this statistical

measure.

1. Introduction

In human language technology, it is becoming more and
more common to run systematic evaluations in which two
or more systems, or two or more versions of the same sys-
tem, are pitted one against the other (Young, 1997; Carenini
and Moore, 2000; Reiter et al., 2001). Such evaluations are
generally conducted by having each system run in the same
condition: for example, different groups of users of com-
parable size interact with each system following a prepared
script. During the experiments, a number of measures are
collected. Measures may concern performance (e.g., time
on task), or usability (i.e., answers to questions such as, was
the system friendly?). These measures are then assessed
in a pairwise fashion (Young, 1997; Carenini and Moore,
2000; Reiter et al., 2001). For example, to show that sys-
tem B is better than system A, one could stipulate that there
must be at least one statistically significant measure in favor
of B and no significant measure in favor of A.

However, reality is often much murkier that the ideal re-
sult just described. A typical result of an evaluation may be
that out of ten measures eight favor B and two favor A, but
only two show statistical significance and those two point
to opposite conclusions. In these situations, the evaluation
does not support any conclusion on whether B is better than
A. However, because the vast majority of measures is in fa-
vor of one of the evaluated systems, a legitimate question
arises: does the cumulative effect of the measures in favor
of system B warrant the conclusion that B is better than A?

The binomial cumulative distribution function (or sign
test (Siegel and Castellan, 1988)) is the statistical measure
that can answer this question. To our knowledge, it is not
used in Human Language Technology. To use it, each mea-
sure must be labeled as a success for one of the evaluated
systems. In the example above, we have 2 successes for A
and 8 for B. The binomial cumulative distribution function
(BCDF for short) answers the question: what is the proba-
bility that m successes out of n independent measures are
due to chance (in our example, 8 successes out of 10 mea-

sures)?

We will illustrate the usage of the BCDF in an evalu-
ation we ran to assess the improvement to the NL inter-
face of an Intelligent Tutoring System (ITS). We pitted two
versions of the same system one against the other; the two
versions differ in that the first produces very repetitive feed-
back, the second more fluent feedback by using aggregation
strategies. We collected 10 measures pertaining to the stu-
dent’s performance, the knowledge s/he acquired, and the
usability of the system.

By using the conventional pairwise assessment of mea-
sures, only one measure approaches, but does not reach,
statistical significance in favor of the second version of the
system. However, all measures but one show a moderate
preference for the second version. The BCDF confirms
that the cumulative effect of these measures is not due to
chance, i.e., it shows that the second version of the system
outperforms the first.

In the last part of the paper, we will address a few is-
sues pertaining to the usage of the BCDF. They include how
to deal with ties and with apparently contradictory results.
The latter situation arises when one or two statistically sig-
nificant measures favor system A, but the cumulative effect
favors system B.

2. The binomial cumulative distribution
function

The BCDF is applied to the case of two related sam-
ples when the experimenter wishes to assess whether the
two conditions are different. The null hypothesis tested by
means of the BCDF is

P(Xi>}/i):P(X1<}/¢):0.5

In statistics books, the BCDF is usually applied to ex-
periments in which a subject receives some treatment, and
the experimenter is interested in the changes in the vari-
able of interest before and after the treatment. For example,
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does the weight of a college freshman go up or down after
the fi rst semester? does the attitude of adults with respect
to severity of punishment for juvenile delinquents change
after seeing a certain documentary (Siegel and Castellan,
1988)? However, nothing in the assumptions underlying
the BCDF prevents its application to different situations.
The only assumption underlying the test is that the variable
under consideration has a continuous distribution. It does
not require that the subjects are all drawn from the same
population, it only requires matched pairs, i.e., that within
each pair the experimenter has achieved matching with re-
spect to the variable of interest.

To apply the BCDF to the evaluation of two systems,
or of two versions of the same system, it is then necessary
to collect the same (independent) measures under the same
condition for each system. Each matched pair consists of
the pair of values of measure X, one value for system A,
the other for system B. Each pair is coded as a success for
system A or B, as in Table 4.

To compute the probability that m successes out of n in-
dependent measures are due to chance, we start by comput-
ing the BCDF through m — 1 for sample size n and prob-
ability p = 0.5, i.e., bedf (m — 1,n,0.5). The BCDF is
computed as follows, with p = ¢ = 0.5:

m—1

X (1)we

=0

It gives us the probability that out of n trials, the number
of successes will fall between 0 and m — 1, inclusive. Thus,
1 — bedf (m — 1,n,0.5) will give us the probability that m
or more successes out of n are due to chance.

The test based on the BCDF can be two-tailed or one-
tailed. A two-tailed test simply measures whether the two
conditions are different, regardless of which one is better.
A one-tailed test measures which condition is better. The
one-tailed test is appropriate for system evaluation of the
sort we describe in this paper.

The BCDF is usually referred to as the Sign Test in
statistics books (Siegel and Castellan, 1988). We keep the
name BCDF because we are using it on slightly different
kinds of data.

3. Anillustrative example

We will illustrate the usage of the BCDF via an evalua-
tion we ran of the NL interface to an ITS. We improved the
feedback capability of an existing ITS, and we evaluated
the two versions of the system via a user study. The ITS in
question teaches troubleshooting of a home heating system.
It is written within DIAG (Towne, 1997), an authoring sys-
tem to develop ITSs to troubleshoot complex mechanical
systems and circuitry.

A typical session with a DIAG application presents the
student with a series of troubleshooting problems of in-
creasing diffi culty. To solve the problem, the student tests
indicators and tries to infer which faulty part (RU) may
cause the detected abnormal states. RU stands for replace-
able unit, because the only course of action open to the stu-
dent to fi x the problem is to replace faulty components in

the graphical simulation. Figure 1 shows the furnace sys-
tem, one of the subsystems of the home heating system in
our DIAG application. Figure 1 includes indicators (e.g.,
the gauges labeled Burner Motor RPM and Water Tem-
perature), replaceable units, and other complex modules
(e.g., the Oil Burner) that contain indicators and replace-
able units. Complex components are zoomable.

At any point, the student can consult the built-in tutor
via the Consult menu, activated by the Consult button (cf.
Figure 1). For example, if the student has noted an abnor-
mal reading of an indicator, s/he can ask the tutor for a hint
regarding which RUs may cause the problem. After de-
ciding which content to communicate, the original DIAG
system (DIAG-orig) uses very simple templates to assem-
ble the text to present to the student. The result is that the
feedback that DIAG provides is repetitive, both inter- and
intra-turn. In many cases, the feedback presents a single
long list of many parts. The top part of Figure 2 shows the
reply originally provided by DIAG to a request of infor-
mation regarding the indicator named “Visual Combustion
Check”.

We set out to rapidly improve DIAG’s feedback mech-
anism. Our main goals were to to assess whether simple
NLG techniques would lead to measurable improvements
in the system’s output, and to conduct a systematic evalua-
tion that would focus on language only. Thus, we did not
change the tutoring strategy, or alter the interaction between
student and system in any way. Rather, we concentrated
on improving each single turn by avoiding excessive rep-
etitions. We chose to achieve this by: introducing syntac-
tic aggregation (Dalianis, 1996; Huang and Fiedler, 1996;
Shaw, 1998; Reape and Mellish, 1998) and what we may
call functional aggregation, namely, relating the parts men-
tioned to the structure of the system; and improving the
format of the output.

To improve on DIAG-orig, we integrated the original
system with EXEMPLARS (White and Caldwell, 1998),
a surface generator from CoGenTex Inc. We call the sec-
ond version of the system DIAG-NLP. EXEMPLARS is an
object-oriented, rule based generator. It mixes template-
style and more sophisticated types of text planning. The
bottom part of Figure 2 shows our sentence planning com-
ponent at work. The revised output groups the parts under
discussion by the system modules that contain them (Oil
Burner and Furnace System), and by the likelihood that
a certain RU causes the observed symptoms. Notice how
the Ignitor Assembly is singled out in the revised answer.
Among all mentioned units, it is the only one that cannot
cause the symptom. This fact is lost in the original answer.

3.1.

We conducted an empirical evaluation designed as a
between-subject study. Both groups interact with the
same DIAG application that teaches them to troubleshoot a
home-heating system. One group interacts with DIAG-orig
and the other with DIAG-NLP.

Seventeen subjects were tested in each group. The 34
subjects were all science or engineering majors affi liated
with our university. Each subject read some short material
about home heating, went through the first problem as a
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Figure 1: A screen from a DIAG application on home heating

trial run, then continued through the curriculum on his/her
own. The curriculum consists of three problems of increas-
ing diffi culty. As there was no time limit, every student
solved every problem. At the end of the experiment, each
subject was administered a questionnaire.

A detailed log was collected for each subject. It in-
cludes, for each problem: whether the problem was solved;
total time, and time spent reading feedback; how many and
which indicators and RUs the subject consults DIAG about;
how many, and which RUs the subject replaces.

The questionnaire is divided into three parts. The first
part tests the subject’s understanding of the domain. Be-
cause the questions asked are fairly open ended, this part
was scored as if grading an essay. The second part of the
questionnaire asks the subject to rate the system’s feedback
along four dimensions on a scale from 1 to 5 (see Table 3).
The third part concerns the subjects’ remembering their ac-
tions, specifi cally, the RUs they replaced. We quantify the
subjects’ recollections in terms of precision and recall with
respect to the log of the subject’s actions that the system

collects. We also compute the F-measure, g%ﬁ;ﬂ, that
smooths precision and recall off, with 5 = 1. In Table 2,
we report the F-measure (precision and recall are .74 and
.73 respectively for DIAG-orig, and .65 and .63 for DIAG-

NLP).

I | DIAG-orig | DIAG-NLP ||

Total Time 29.8’ 28.0°
Feedback Time 6.9’ 5.4
Indicator consultations 11.4 5.9
RU consultations 19.2 18.1
Parts replaced 3.85 3.33

Table 1: Performance measures

Results. Tables 1, 2, and 3 show the results for the cumu-
lative measures across the three problems (individual prob-
lems show the same trends).

I | DIAG-orig | DIAG-NLP ||

Essay score 81/100 83/100
RU recollection 72 .63

Table 2: Learning and recollection measures

l | DIAG-orig | DIAG-NLP ||

Usefulness 4.35 4.47
Helped stay on right track 4.35 4.35
Not misleading 4.00 4.12
Conciseness 3.47 3.76

Table 3: Usability measures

Differences on individual measures are not statistically
signifi cant;indicator consultations comes closest to statis-
tical signifi cance, as it exhibits a non-signifi cant trend in
favor of DIAG-NLP (Mann-Whitney test, U=98, p=0.11).
However, given that almost all individual measures are in
favor of DIAG-NLP, we use the BCDF to assess whether
cumulatively these measures show that DIAG-NLP outper-
forms DIAG-orig.

We consider only independent measures (total time and
feedback time in Table 1 are not independent). For each
measure, we decide for which system its value indicates a
success — the magnitude of the difference is irrelevant.

Table 4 combines the independent measures from Ta-
bles 1, 2 and 3 and shows whether they represent a success
for DIAG-orig or DIAG-NLP. Because Helped stay on right
track is a tie and can therefore be considered a success for
either system, we will report two sets of statistics (see dis-
cussion of ties below). The probability of 9 successes out of
10 measures is p = 0.011, of 8 successes out of 10 measures
is p = 0.0545 (in the former case, we consider Helped stay
on right track a success for DIAG-NLP, in the latter, for
DIAG-orig). The former is signifi cant, the latter marginally
signifi cant, and in fact, very close to signifi cance (we fol-
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I || DIAG-orig | DIAG-NLP ||

Total Time

Indicator consultations
RU consultations
Parts replaced

Essay score

RU recollection Vv
Usefulness
Helped stay on right track Vv
Not misleading
Conciseness

L R

Table 4: Successes for each system

low standard practice and consider p < 0.05 signifi cant, and
0.05< p <0.1 marginally signifi cant). It may be questioned
whether Total Time is an independent measure, as total time
may have decreased in DIAG-NLP because of fewer consul-
tations. If we leave it out, the probability of 8 successes out
of 9is p = 0.02 , and of 7 successes out of 9 is p = 0.09
(respectively signifi cant and marginally signifi cant). Note
that if we eliminate Helped stay on right track altogether,
as suggested by (Siegel and Castellan, 1988), we obtain
p=0.02 and p=0.035, respectively, according to whether 7o-
tal Time is included or not (both signifi cant). We can then
conclude that the better measures for DIAG-NLP, albeit in-
dividually not statistically signifi cant, cumulatively show
that DIAG-NLP outperforms DIAG-orig.

4. Further discussion of the BCDF

4.1. Ties

In our discussion of the DIAG application, we provided
three sets of measures, according to how the tied measure
is considered. In one case we consider it as a success for
DIAG-orig, in the second a success for DIAG-NLP, in the
third case we throw it out altogether.

Statistics books such as (Siegel and Castellan, 1988) do
in fact suggest that ties should be disregarded when apply-
ing the Sign Test. There are two justifi cations for such an
approach. First, ties are in theory impossible and in practice
extremely unlikely because the variable of interest is con-
tinuous (Walpole et al., 1998). Second, disregarding ties
will not appreciably affect the results, if the number of ties
is small with respect to the sample size n.!

However, it seems to us that in general this approach
cannot be correct. It amounts to disregarding evidence that
there is no difference between the two conditions, when in
fact the BCDF is computed to try to reject the null hypoth-
esis, i.e., to prove they are different. Such an approach
boosts success in the case of a high number of ties. Sup-
pose that in our evaluation of DIAG-NLP we had 10 more
measures, all of them ties, with a resulting sample size of
n = 20. If we disregarded the 11 ties, we would conclude
that 9 measures out of 9 are in favor of DIAG-NLP, i.e., that
DIAG-NLP is much better than it really is.

'Tt is questionable whether the number of ties in the two ex-
amples in (Siegel and Castellan, 1988) is really negligible: in one,
there are 3 ties out of n = 17, in the other, 15 out of n = 100.

We propose the following ways to deal with ties. In
case of a single tie, two sets of measures can be provided,
one in which the tie is turned into a success for system A,
one in which it is turned into a success for system B, as we
have done in this paper. This has the advantage of leaving
the sample size n unchanged. However, even if the single
tie were disregarded, we expect the results not to change
much. If there are two or more ties, we propose that half of
the ties are turned into successes for system A, and half for
system B. In the case of 2k + 1 tie, the remaining tie can be
disregarded. In this way, we don’t change the sample size
n, or only change it minimally.

4.2. Strength of results, and contradictory
conclusions

Two other issues related to the BCDF may be addressed:

1. If a large number of observations favor one side at rel-
atively strong levels of signifi cance, none of which are
statistically signifi cant, then the BCDF seems to be an
underestimate of the signifi cance of the difference.

2. What should be done if a large number of measures
favor one side without statistical signifi cance for any
one measure, but a small number favor the other side
at statistical signifi cance? These two results are appar-
ently contradictory.

Consider the following example, with ten measures (we
don’t use the DIAG example because there is no statisti-
cally signifi cant measure). For each measure we have a
p-value, i.e., a signifi cance level. Suppose two measures
favor system A, with p-values

(0.02,0.17)
and eight measures favor system B, with p-values
(0.06,0.10,0.20,0.30,0.33,0.35,0.4,0.4)

This example illustrates both situations described
above. The BCDF gives a signifi cance level of 0.0547 for
system B, calculated with 1 — bedf (7,10, 0.5). However,
the BCDF only estimates the probability that eight of ten
measures will favor B randomly, and thus overestimates the
probability that eight of ten measures will favor B at a sig-
nifi cance level no greater than 0.4. The proposed test is to
consider the probability that, if system B is truly equivalent
to system A, eight of ten measures will have p-values less
than or equal to 0.4. This probability is 0.0123, calculated
by 1 — bedf (7,10,0.4). The new test is more accurate, and
gives a stronger indication of signifi cance.

It is, however, necessary to also calculate the signifi -
cance level for A over B, based on the two measures in A’s
favor. Using the same method, 1 — bedf (1,10, 0.17) gives
0.5270 as the probability that at least two measures will fa-
vor A at the 0.17 signifi cance level or better. In this case,
we can also consider the chance that one measure out of ten
will yield a p-value of 0.02 (the one signifi cant measure in
A’s favor): 1 — bedf (0,10, 0.02) gives 0.0861 as the level
of signifi cance in A’s favor. Recall that 0.0123 is the level
of signifi cance in B’s favor. This is fairly strong evidence
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|| Measure | p ||
1-bedf(7,10,0.4) 0.0123
1-bedf(5,10,0.35) | 0.0949
1-bcdf(4,10,0.33) | 0.2064
1-bedf(3,10,0.3) 0.3504
1-bedf(2,10,0.2) 0.3222
1-bedf(1,10,0.1) 0.2639
1-bcdf(0,10,0.06) | 0.4614

Table 5: p for different subsets of measures

that B outperforms A overall; still, in this case it seems that
it is worth considering individual performance measures.

The calculation of the p-value in favor of A shows that
it will not always be the case that the strongest signifi cance
will be obtained by considering the probability that all mea-
sures in favor of one system exceed the weakest measure in
favor of that system. For each system, one probability cal-
culation can be made for each subset of measures in favor
of that system, and the strongest signifi cance should be con-
sidered. We saw above which of two measures in favor of A
was the stronger. For B, there are seven possible measures
(not eight, because two measures have the same p-value,
p = 0.4), as illustrated in Table 5. Note that the signif-
icance level is not monotonic in the number of measures
considered.

5. Conclusions

We have proposed that the binomial cumulative distri-
bution function (or sign test) can be used to assess the cu-
mulative effect of the measures collected in systematic eval-
uations that pit two systems, or two versions of the same
system, one against the other. We have presented an appli-
cation of the BCDF to the evaluation of the NL interface to
an Intelligent Tutoring System. We have also discussed a
few issues pertaining to the usage of the BCDF. They in-
clude how to deal with ties, and with apparently contra-
dictory results. The latter situation arises when one or two
statistically signifi cant measures favor system A, but the cu-
mulative effect favors system B.
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The visual combustion check
combusting)
0il Nozzle always

produces this abnormality
0il Supply Valve always

produces this abnormality
0il pump always

produces this abnormality
0il Filter always

produces this abnormality

is igniting which is abnormal in this startup mode

when

when

when

when

System Control Module sometimes

produces this abnormality
Ignitor Assembly never

produces this abnormality
Burner Motor always

when

when

it

it

it

it

it

it

produces this abnormality when it
and, maybe others affect this test.

fails.

fails.

fails.

fails.

fails.

fails.

fails.

(normal is

The visual combustion check indicator is igniting which is abnormal in startup mode.
Normal in this mode is combusting.

Within the 0il Burner

These replaceable units always produce this abnormal indication when they fail:

0il Nozzle;

0il Supply Valve;
0il pump;

0il Filter;
Burner Motor.

The Ignitor assembly replaceable unit never produces this abnormal indication when

it fails.

Within the furnace system,

The System Control Module replaceable unit replaceable unit sometimes produces this
abnormal indication when it fails.

Also, other parts may affect this indicator.

Figure 2: Original (top) and enhanced (bottom) answers to the same Consult Indicator query
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