
An API for Discourse-level Access to XML-encoded Corpora

Christoph Müller, Michael Strube

European Media Laboratory GmbH
Villa Bosch

Schloß-Wolfsbrunnenweg 33
69118 Heidelberg, Germany�

christoph.mueller, michael.strube � @eml.villa-bosch.de

Abstract
We describe a simple and efficient Java object model and application programming interface (API) for (possibly multi-modal) annotated
natural language corpora. Corpora are represented as elements like Sentences, Turns, Utterances, Words, Gestures and Markables. The
API allows linguists to access corpora in terms of these discourse-level elements, i.e. at a conceptual level they are familiar with, with
the flexibility offered by a general purpose programming language. It is also a contribution to corpus standardization efforts because it is
based on a straightforward and easily extensible data model which can serve as a target for conversion of different corpus formats.

1. Introduction
A lot of effort is normally put into the development of

powerful and expressive representation formats for natural
language corpora. Initiatives like EAGLES1 attempt to de-
velop recommendations and guidelines for corpus encoding
(like CES2), with the overall goal of establishing standards
or quasi-standards to foster reusability and exchange of cor-
pora among researchers.

In contrast to this, natural language corpora exploitation
often is highly specialized and implies development over-
head on the part of the researcher. This is because the cor-
pus, even if it does conform to some standard, does not nor-
mally offer a defined set of methods to access its contents in
a task-independent way. The result is that in many research
projects software is created from scratch, used once for a
particular corpus processing task, and is then discarded.

One way to maximize reusability not only of corpora,
but also of the software components processing them, is the
definition and implementation of programming interfaces
to complement standardization efforts of natural language
corpus representation.

The remainder of this paper is structured as follows. In
section 2., we argue in favor of standardization in natural
language corpora access methods. We then (section 3.) out-
line two existing approaches to this problem. Section 4.
describes our own approach, the MMAX Discourse API,
which is focussed on discourse-level phenomena. In sec-
tion 5. we briefly sketch a selection of possible and actual
use cases.

2. The Need for Standards in Corpus Access
In the field of corpus encoding, it is common practice

to distinguish between the logical and the physical level of
representation.�

The logical level defines an abstract data model which
describes a corpus and its annotation in terms of con-
ceptual elements, their attributes and possible values,
and their relations to each other (Ide and Brew, 2000).

1http://www.ilc.pi.cnr.it/EAGLES/home.html
2http://www.cs.vassar.edu/CES

�
The physical level implements the logical level data
model in a way which allows its elements to be ma-
nipulated computationally and to be stored in and read
from files.

For the latter task, XML is most often used nowadays. It
allows the modelling of arbitrary elements with arbitrary
relations, and thus supports the straightforward mapping of
elements of the data model to elements of the physical level
(i.e. XML tags). The XML-related technologies XLink
and XPointer support ”stand-off annotation”3, a formalism
which has emerged as a quasi-standard for the modelling of
(possibly overlapping) relations between XML elements.

While the use of XML makes different language cor-
pora similar on a technical level, they are obviously not
compatible with one another unless there is agreement on
the logical level as well. Required agreement would include
basic issues like�

the granularity of the model, i.e. what the smallest in-
dependently accessible corpus element should be (e.g.
phones, morphemes, words, discourse entities, or oth-
erwise unspecified timed units), or�
the internal principle of organization of the model,
i.e. which higher-level elements are used to impose a
structure on the basic elements (e.g. sentences, turns,
dialogue moves, or just time spans).

Corpus standardization initiatives like EAGLES attempt
to provide answers to these questions. One of the major
principles behind their work is theory-independence of the
model, because it facilitates exploitation for as many differ-
ent uses as possible. The problem with many standardized
natural language corpora as they are used nowadays is that
standardization ends as soon as their exploitation begins.
To a large extent, this is due to the highly specialized tasks
that corpora are used for: In the area of discourse process-
ing, e.g., automatic dialogue-act tagging has entirely differ-
ent requirements than anaphora resolution, and accordingly

3Introduced as ”remote markup” by (Ide and Priest-Dorman,
1996).

different operations have to be performed on the corpus.
Thus, what is common to all but the most simple tasks is
that they require computational corpus processing of some
kind. For many corpora there are tools for querying and ex-
tracting information (e.g. TIGERSearch4 for treebanks like
the Penn Treebank, the Susanne corpus, and the Negra cor-
pus, tgrep, or TTT, the Text Tokenization Tool5), but these
are often very specialized. If more flexibility is needed, lin-
guists either have to fall back on generic XML or SGML
processing tools, or they have to implement the required
parsing capabilities themselves from scratch. The MUC-
7 event, for which textual data was distributed as a set of
SGML files, is a relevant example of how this was done in
the recent past. This way of natural language corpus ex-
ploitation has several shortcomings:�

Linguists have to deal with technical intricacies of
mark-up languages instead of being allowed to focus
on the data at the conceptual level.�
Rapid-prototyping approaches to corpus processing
are not encouraged because of pre-processing over-
head.�
Algorithms (e.g. for anaphora resolution) imple-
mented for use with certain corpora cannot easily be
applied to other corpora because they probably access
the data in a non-standard way. This complicates their
re-use and in particular their evaluation.

3. Corpus Access via APIs
One way to avoid the disadvantages described above

is to extend natural language corpus standardization to in-
clude the definition of standard corpus access methods as
well. Like the model they operate on, these methods should
be theory-independent and impose as little constraints as
possible in terms of the applications that can be created with
them. At the same time, technicalities of the physical level
should be hidden from the user.

Corpus access methods can be defined in terms of ap-
plication programming interfaces (APIs) to corpora. On a
logical level, these formally describe�

the names and properties of the objects in terms of
which the corpus is represented,�
the names of procedures that can be applied to them,�
the input parameters that a particular procedure may
require, and�
the result of the procedure, which may be e.g. a string
or a number, but also an object of a type defined in the
model.

In order for an API to be practically applicable to existing
corpora, it has to be implemented for a particular program-
ming language like e.g. Java, C/C++, Tcl, or Perl. It is
this language that users can then write their corpus process-
ing applications in. Obviously, the choice of programming

4http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch
5http://www.ltg.ed.ac.uk/software/ttt

language should restrict as little as possible the type of ap-
plication that can be created with it. It has to be noted,
however, that there is some kind of trade-off between the
power and flexibility of the programming language on the
one hand and the demands it makes on the user in terms of
programming skills and experience on the other. As the fol-
lowing brief discussion of some existing approaches shows,
this trade-off appears to be commonly resolved in favor of
greater power and flexibility.

3.1. GATE
GATE (General Architecture for Text Engineering)6

is the result of research conducted at the University of
Sheffield (Cunningham et al., 1996). It consists of, among
other things, a number of Java applications for perform-
ing recurrent tasks in natural language processing, like e.g.
tokenization, sentence boundary detection, and named en-
tity recognition, and the GATE Document Manager, a data
infrastructure through which these applications communi-
cate. In GATE 1, this infrastructure is based on an im-
plementation of the TIPSTER7 document model. In this
model, documents and their annotations are represented
by associating attributes with spans of characters in the
text, with the spans being identified by character offset and
length. While this formalism is sufficiently powerful to
model conventional documents, it does not appear to be
extensible to cover non-hierarchical structures like over-
lapping in dialogues. The main reason for this is that the
TIPSTER model was primarily designed for information
retrieval and extraction tasks in a text-only domain. It is in-
teresting to note that in the current version (GATE 2) (Cun-
ningham, 2000) the original data model has been modified
in order to comply with ”Annotation Graphs”, a much more
flexible formalism also underlying the ATLAS approach
(cf. section 3.2.). The field of application of GATE, how-
ever, appears to be restricted to uni-modal and non-dialogue
domains.

3.2. ATLAS
ATLAS (Architecture and Tools for Linguistic Analy-

sis Systems)8 is a joint effort of NIST, LDC and MITRE. It
comprises, among other things, a data model for language
corpora and an API to access these corpora from program-
ming languages like Java or C++. The data model is based
on the notion of ”Annotation Graphs” (Bird and Liberman,
1999). Within this framework, corpora and their annota-
tions are represented as a set of labelled arcs connecting
nodes on a common timeline. Each arc is associated with a
particular type (like e.g. phone, word, dialogue act etc.) and
a set of arbitrary attribute-value pairs. Embedded or over-
lapping phenomena on different levels can be represented
in an elegant and straightforward way by arcs of different
types which may share none, one or both of their nodes.
Annotation graphs are read from and written to files in a
special XML-based ATLAS Interchange Format (AIF).

The ATLAS Java API offers access to a corpus in terms
of elements like Annotation, Region, Content, Anchor, and

6http://gate.ac.uk
7http://www.itl.nist.gov/iad/894.02/related projects/tipster
8http://www.nist.gov/speech/atlas

Signal.9 These are generalisations of arcs and nodes, which
have been adopted to be able to cover data with more than
one dimensionality, like e.g. video (Bird et al., 2000).

The ATLAS approach has several strengths: Since it is
so general, it is very powerful and can be used to model a
wide variety of phenomena as long as these can be mapped
to sequentially aligned elements which have a temporal ex-
tension. Moreover, graphs and graph traversal are mathe-
matically well-understood notions for which efficient algo-
rithms exist. Therefore, ATLAS is certainly going to estab-
lish itself as a useful and widespread standard for natural
language (including multi-modal) corpora.

On the other hand, the expressive power of ATLAS is
based on a high level of detail in the data model. This com-
plicates access to higher-level elements via the API. What
is more, the elements in terms of which this access takes
place are rather abstract and not of the kind that a linguist
is familiar with. It could thus turn out that technical in-
tricacies of representation languages, from which the API
abstracts, are replaced by intricacies on another level.

4. The MMAX Discourse API
The MMAX Discourse API is an approach towards

the development of reusable software components for dis-
course processing tasks. It is centered around a Java Dis-
course object building on a simple discourse model which
has originally been developed as the basis for the MMAX
annotation tool10. The logical level discourse model is
physically implemented in XML. Figure 1 shows the struc-
ture of a small fragment of a sample dialogue which has
been converted from the Switchboard SWBD-DAMSL cor-
pus11.

4.1. Logical Level

The discourse model can represent two basic types of
corpora: textual and (possibly multi-modal) dialogue cor-
pora. Depending on the type, different structural, pragmatic
and base level elements are modelled. Apart from a set of
system attributes (some of which will be mentioned in the
following), each of these elements can be associated with
a set of arbitrary attribute-value pairs. These are mapped
from the XML files from which a particular instance of a
Discourse object is created.

Structural level The structure of texts is described in
terms of text elements, which contain a number of sentence
elements.

Accordingly, dialogue structure is described in terms of
a dialogue element containing a number of turn elements.
System attributes of turn elements include e.g. a speaker
attribute (A and B in turns 7-10 in the dialogue in figure 1).

Pragmatic level On the pragmatic level, both texts and
dialogues can optionally be segmented into utterances,
which can, but do not have to correspond to elements on
the structural level. For dialogues, in particular, this al-
lows for the representation of discontinuous utterances re-
sulting from speakers interrupting each other or speaking

9http://www.nist.gov/speech/atlas/develop/core.html
10Download at http://www.eml.org/nlp
11http://www.colorado.edu/ling/jurafsky/ws97/dataindex.html

at the same time (cf. e.g. utterance 13 and 15 in figure
1). Among others, utterance objects contain a dialogue act
attribute (e.g. aa, qy in figure 1)12.

Base element level The model at this time supports up
to three base level elements corresponding to three differ-
ent modalities: word, gesture, and keyaction, the latter be-
ing intended to capture human-machine interaction (like the
pressing of buttons) through a GUI or on a remote con-
trol. For text corpora, only word elements are permitted,
whereas dialogue corpora may be multi-modal. In that case,
the base level elements’ system attributes starttime and end-
time must be specified in order to assure correct chronolog-
ical ordering of elements across modalities.

Annotations Finally, corpus annotations are represented
in terms of markable elements which specify (single or
sequences of) base level elements and associate an arbi-
trary set of attribute-value pairs with them. A generic type
attribute can be used to distinguish different classes13 of
markables. Relations between markables are modelled by
two attributes: a member attribute, which describes un-
ordered sets of markables, and a pointer attribute which
states an ordered relation between two markables. The se-
mantics associated with each relation is not pre-defined by
the discourse model itself. Instead, it is supplied by the an-
notation scheme used in the production of the annotation
and can be different for different annotations, but also for
different types of markables within the same annotation.
Though simple, the two relations are sufficiently powerful
to express a number of relevant concepts: E.g., if a par-
ticular annotation scheme uses markables to identify dis-
course entities, sets of markables with identical values in
their member attributes can be interpreted as equivalence
classes, thus allowing the modelling of coreference, and the
pointer attribute can be used to identify a discourse entity’s
direct antecedent within such a class (Müller and Strube,
2001). If, on the other hand, markables represent syntactic
phrases, hierarchical tree structures can be modelled using
pointers from child to parent constituents.

4.2. API Level

The MMAX Discourse API maps the elements of the
logical level to Java classes and defines a set of basic op-
erations to be performed on them. The entire discourse is
wrapped in a Java Discourse object which serves as the sin-
gle entry point to the corpus and its annotation. The Dis-
course object itself is created from a set of XML files by a
DiscourseLoader class which parses the files and resolves
references between elements on different levels. The result
is a tree-like structure (cf. figure 2) which can be navi-
gated by accessing elements on a particular level and re-
trieving their ”child” elements, which can then be used as
entry points to their ”child” elements as well.

The syntax and semantics of the methods which im-
plement these navigation operations conform to the stan-
dard object-oriented way. Example: getTurnCount(), when

12http://www.colorado.edu/ling/jurafsky/manual.august1.html
13Our annotation tool MMAX, e.g., uses the type attribute to

implement user-definable constraints on permitted markable at-
tributes and possible values.

���
���
���

���
���
���

���
���
���
���
���
���

��������������������

	�	�		�	�		�	�		�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������
���������������������������
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

okay

turn_7:A

turn_8:B

turn_9:A

turn_10:B

okay

does it usually make a recording or s−

well utt_13:qy

i

utt_12:aa

utt_14:b

utt_15:sd

well i don’t remember

it seemed like it did

but it might not

utt_16:sd

utt_17:sd

Figure 1: SWBD-DAMSL corpus sw 0001 4325 (fragment)

Discourse

Utterances

well does it usually make a recording or s− i well i don’t remember

Turns

Markables

turn_7:A turn_8:B turn_9:A turn_10:B utt_13:qy utt_15:sd

markable_1: type=anaphor
np_form=pronominal

Figure 2: Discourse ”tree” representation of a fragment of the Switchboard SWBD-DAMSL corpus

called on the Discourse object in figure 2, returns the
number of Turn elements contained in the discourse (i.e.,
four, in this fragment). This number can be used to it-
erate through all Turn objects in the discourse, using get-
Turn(position). For position=3, this method would thus
return turn 9 (the third in the fragment). Since each turn
retrieved in this way is itself a Java object of type Turn,
processing on this level can continue in the same man-
ner: getElementCount(), when called on turn 9, returns the
number of base level elements this turn consists of (i.e.
eight). The method getElement(position), finally, returns
the element at the specified position as a Java object of type
Word, Gesture, or Keyaction. Thus, getElement(2) returns
the word ”it”. The base level element representing this
word is at the same time annotated as being a Markable
with one user-defined (np form) and one system attribute
(type).

On each level in the entire Discourse object, user-
defined as well as system attributes can be accessed using
a generic getAttributeValue(attribute name) method: getAt-
tributeValue(”np form”), e.g., when called on markable 1,
returns ”pronominal”. In addition to vertical navigation
through the discourse, horizontal navigation between ele-

ments on the same level (e.g. from one word in a turn or
sentence to the next), is supported in the same way.

Apart from turn- and sentence-based access, the dis-
course can also be traversed in terms of its pragmatic com-
position, i.e. based on its segmentation into utterances.
Since one step in the creation of a Discourse object is the
mapping of elements from the structural and the pragmatic
level onto each other, it is possible at every stage to ac-
cess corresponding elements on the other level. Example:
getTurns(), when called on utterance 13 in the above exam-
ple, returns the set of Turn objects (i.e. turn 7 and turn 9)
that it is mapped to. Mapping of elements of the structural
and the pragmatic level is done by virtue of shared base
level elements: Each base level element can be part of at
most one pragmatic and one structural element, which can
be retrieved by getUtterance() and getTurn() resp. getSen-
tence().

In addition, the API supports a set of basic methods for
procedures like determining the formal relation between el-
ements (e.g., embedding or overlap of markables), filtering
elements on particular attribute values, and the like.

5. Sample Use Cases
Although still in an early stage of development, the

MMAX Discourse API has already been applied to a num-
ber of discourse processing tasks (in a wider sense). These
include�

implementation of a number of reference resolution al-
gorithms,�
generation of training and test data for machine learn-
ing for coreference resolution from annotated corpora,�
implementation of the coreference resolution evalua-
tion algorithm according to (Vilain et al., 1995),�
generation of training and test data for machine learn-
ing from an annotated corpus of multi-modal human-
computer interaction within the EMBASSI project14,�
generation of training data for an HMM-based di-
alogue act tagger from a converted Switchboard
SWBD-DAMSL corpus.

Despite the relatively low level of detail (as compared to
e.g. the ATLAS approach), the model and API proved suf-
ficient for each of these tasks. In fact, it had a positive effect
in many cases because the Java code that needed to be writ-
ten was more self-explanatory than it would have been if
the application had accessed the corpus using generic XML
processing methods. The simplicity of the data model is
also an advantage when it comes to converting corpora from
different formats. While the availability of our annotation
tool, which produces annotations in the required format, is
certainly a major advantage, we believe that our model, due
to its generality, is equally applicable as the target format
for conversion from other formats. Thus, the volume of
available corpora can easily be extended by writing conver-
sion programs which, once written, can be applied to any
number of available corpora in the particular format. Con-
version from other formats is supported in particular by the
fact that our model is open in the sense that arbitrary data
from the source corpus (e.g. POS tags, but also syntactic
markup) can be stored as XML attributes on the appropri-
ate level (i.e. the word element, or a markable element of
type ”constituent”, in which case the markable’s pointer at-
tribute can be used to relate it to its parent element), and is
mapped to the respective Java object in the Discourse ob-
ject.

6. Conclusions and Future Work
This paper described a simple Java object model and

API for the representation and discourse-level processing
of annotated corpora. Both the model and the API work in
terms of straightforward concepts that linguists are familiar
with. We outlined the structure of the model and the way in
which the API makes it accessible from Java. Apart from
continuing use of the API as outlined in section 5., future
work on the topic will include the following: We will de-
fine and implement more higher-level elements which are
derived from the simple basic elements supported so far.

14http://www.embassi.de

The suitability of our model as the target format for cor-
pus conversion will be further tested by developing conver-
sion tools from additional formats. Finally, we will investi-
gate ways to add methods not only for element access, but
also for element creation, which would allow the discourse
model and API to be used as the basis for the development
of annotation tools.

Acknowledgements We thank the anonymous reviewers
for their useful comments. The work presented here has
been partially funded by the German Ministry of Research
and Technology under grant 01 IL 904 D/2 (EMBASSI) and
by the Klaus Tschira Foundation.

7. References
Steven Bird and Mark Liberman. 1999. Annotation graphs

as a framework for multidimensional linguistic data anal-
ysis. In Proceedings of the ACL ’99 Workshop Towards
Standards and Tools for Discourse Tagging, College
Park, Md., 21 June, 1999, pages 1–10.

Steven Bird, David Day, John Garofolo, John Henderson,
Christophe Laprun, and Mark Liberman. 2000. Atlas: A
flexible and extensible architecture for linguistic annota-
tion. In Proceedings of the 2nd International Conference
on Language Resources and Evaluation, Athens, Greece,
May, 2000.

Hamish Cunningham, Yorick Wilks, and Robert
Gaizauskas. 1996. Gate – a general architecture
for text engineering. In Proceedings of the 16th In-
ternational Conference on Computational Linguistics,
Copenhagen, Denmark, 5–9 August 1996.

Hamish Cunningham. 2000. Software Architecture for
Language Engineering. Ph.D. thesis, University of
Sheffield.

Nancy Ide and Chris Brew. 2000. Requirements, tools and
architectures for annotated corpora. In Proceedings of
Data Architectures and Software Support for Large Cor-
pora. Paris: European Language Resources Association,
pages 1–5.

Nancy Ide and Greg Priest-Dorman. 1996. The corpus en-
coding standard. http://www.cs.vassar.edu/CES.

Christoph Müller and Michael Strube. 2001. Annotating
anaphoric and bridging relations with MMAX. In Pro-
ceedings of 2nd SIGDial Workshop on Discourse and Di-
alogue, Aalborg, Denmark, 1-2 September 2001, pages
90–95.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-theoretic
coreference scoring scheme. In Proceedings of the 6th
Message Understanding Conference (MUC-6), pages
45–52, San Mateo, Cal. Morgan Kaufmann.

	p1: 26
	p5: 30
	p4: 29
	p3: 28
	p2: 27

