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Abstract
We present an algorithm which translates the Penn Treebank into a corpus of Combinatory Categorial Grammar (CCG) derivations. To
do this we have needed to make several systematic changes to the Treebank which have to effect of cleaning up a number of errors and
inconsistencies. This process has yielded a cleaner treebank that can potentially be used in any framework. We also show how unary
type-changing rules for certain types of modifiers can be introduced in a CCG grammar to ensure a compact lexicon without augmenting
the generative power of the system. We demonstrate how the combination of preprocessing and type-changing rules minimizes the lexical
coverage problem.

1. Introduction
Expressive lexicalized grammar formalisms such as

HPSG, LFG, TAG and CCG yield richer and semantically
more accurate structural representations than plain phrase
structure grammars. However, when creating resources
for these grammar formalisms from corpora like the Penn
Treebank (see related work on the extraction of LTAGs
(Xia, 1999; Chen and Vijay-Shanker, 2000) and LFG F-
structures (Frank et al., forthcoming) from treebanks), in-
accuracies and inconsistencies in the annotation present a
more serious problem than they do for approaches which
rely directly on the backbone phrase structure grammar.
The reason is that noise in the data engenders non-compact
grammars and further exacerbates the problem of unseen
word-category combinations that arises because of the rich
category set these formalisms assume.

We present an algorithm which translates the Penn Tree-
bank into a corpus of Combinatory Categorial Grammar
(CCG) derivations. This is an extension of an algorithm to
extract a CCG lexicon from the Penn Treebank, presented
in Hockenmaier et al. (2002). The basic algorithm is a
simple recursive, top-down procedure. However, in order
to obtain the desired categorial derivation trees, some sys-
tematic changes on the original Treebank trees need to be
performed. This preprocessing step also corrects a num-
ber of inconsistencies and annotation errors in the data. As
a result, we create a cleaner version of the original Penn
Treebank which we hope will also be usable for other ap-
proaches and grammar formalisms.

Furthermore, we show how unary type-changing rules
for certain types of adjuncts can be introduced into the
grammar to ensure a compact lexicon without augmenting
the generative power of the system. This demonstrates that
a wide coverage CCG does not require a prohibitively large
lexicon.

2. Combinatory Categorial Grammar
We give only a brief introduction to CCG here, referring

the reader to Steedman (2000) for more detail. In catego-
rial grammar, information about word order and valency is
encoded directly in syntactic categories which are assigned

to words. These syntactic categories specify the number of
arguments a word can take, as well as the relative position
of arguments with respect to the head. For instance, the
category of the transitive verb bought is as follows:

(1) bought �������
	�����
	��
A syntactic category is also paired with a semantic inter-
pretation, such as ����� ����� �������������� , but in this paper we
are only concerned with syntactic derivations. In addi-
tion to standard function application ( � �! below), CCG al-
lows constituent to combine via a set of combinatory rules,
which are stated as schemata over categories (forward com-
position � �#"� and forward type-raising � �%$! in the fol-
lowing example):&
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&

� �!&
�(' '%�+* )
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The normal-form derivation of ordinary sentences such
as IBM bought shares only requires function application:

(2) IBM bought Lotus02143�576�021�8:9;021 021 <
576�021 =5

Composition and Type-raising are syntactically necessary
to capture argument-cluster coordinations (see section 5)
and long-distance dependencies:

(3) what IBM bought3 021�6�021�8:9;3 579;021�8 021 3 576�021�8:9;021<?>
579;3 576�021�8 <
@

579;021 <
021�6�021

The construction of non-standard constituents of type���
	�� corresponding to the residues of relativization is per-
fectly general, extending to unbounded or recursive traces,
such as A BDC�EGF7H.I�FKJML�JMN OQPSR.PUT�V�W�XMH.IYR�R�F�JMR2Z�[-\]E^H_N_NG`Ya
O+b .
However, the presence in the grammar of constituents of
this kind allows alternative derivations for sentences like
example 2 such as the following:



(4) IBM bought Lotus

	�� �����
	�����
	�� 	��������
�����
	��� ������
	�� ��
Such alternative derivations are grammatically impeccable,
since the semantics of combinatory rules guarantees them
to deliver the same predicate-argument relations as tradi-
tional derivations like example 2. They are sometimes for
this reason referred to (misleadingly) as “spurious” ambi-
guities. For the parser, though, they present a problem,
as they engender a potentially exponential growth in the
search space.

There are two standard techniques for eliminating this
problem while retaining the linguistic advantages of flex-
ible constituency. The first is logical form subsumption-
checking table-driven parsing (Karttunen (1989)), in which
a chart of canonical forms such as old-style deep structures
is maintained, and on deriving a new constituent, before
that constituent is added to the chart the parser first checks
that such a form is not already there. If it is, the newly de-
rived one can safely be discarded, since all rules of CCG
depends solely on categorial types, not on derivation.

The other technique is “normal form” parsing (Hepple
and Morrill (1989); König (1994); Eisner (1996)), accord-
ing to which derivations including type-raising and compo-
sition are only used as a last resort, in cases where there is
no other way to get an analysis, as in example 3.

In order to build parsers of both kinds, we needed a tree-
bank exhibiting the predicate-argument relations delivered
by both. For the normal form parser (Hockenmaier and
Steedman (to appear)) it is useful if the trees in the tree-
bank are themselves normal forms. For the other kind of
parser (Clark et al. (to appear)) the underlying dependen-
cies can be recovered from them. Such trees can also be
readily transduced into other forms suitable for use with
other grammatical formalisms. Furthermore, the normal-
form derivation arises naturally from the translation pro-
cedure described below. We therefore chose to build a
normal-form CCG treebank.

3. The Penn Treebank
The Wall Street Journal subcorpus of the Penn Treebank

contains around 1 million words of parsed and tagged Wall
Street Journal text collected in 1989.

Since the Penn Treebank annotation scheme is designed
to encode the underlying predicate-argument structure, it
is intended to allow for a clear distinction between argu-
ments and adjuncts. However, this distinction is not always
marked explicitly. Therefore we use a heuristic procedure
which relies on the label of a node and its parent to deter-
mine whether a node is a complement or a modifier. Syn-
tactic heads are also not indicated explicitly, but we adapted
the head-finding procedure originally given by Magerman
(1994) to our purposes.

In addition, the Treebank markup contains different
types of null elements encoding traces, multiple attach-
ments and attachment ambiguities. The presence of these

null elements makes it possible to translate the Treebank
trees to the corresponding CCG derivations for relative
clauses, wh-questions and coordinate constructions such as
right-node raising. Before explaining how this can be done,
we present the basic algorithm.

4. Translating the Penn Treebank to CCG
The basic algorithm for translating the Penn Treebank

to CCG consists of three steps, each of which is a simple
top-down recursive procedure:

foreach tree � :
determineConstituentType( � );
makeBinary( � );
assignCategories( � );

First, the constituent type of each node (head (h), com-
plement (c), or adjunct (a)) is determined, using a method
adapted from Magerman (1994) and Collins (1998).

VP

ADVP:a

just

VBZ:h

opened

NP:c

its doors

PP-TMP:a

in July

Then the flat trees are transformed to binary trees.

VP

ADVP:a

just

VP:h

VP:h

VBZ:h

opened

NP:c

its doors

PP-TMP:a

in July

This binarization process inserts dummy nodes into the tree
such that all children to the left of the head branch off in a
right-branching tree, and then all children to the right of the
head branch off in a left-branching tree:

X
X

... X
X

H ...
...

Categories are assigned to the nodes in a binary tree in the
following manner (corresponding to a reverse CCG deriva-
tion):

� The category of the root node is determined by its
Treebank label (eg.

��� � ��	�
� � ��� ��� � ).

� The category of a complement child is defined by a
similar mapping from Treebank labels to the atomic
categories.

� Given a parent category

&
, the category of an ad-

junct child is a unary functor

&
�
&

if the adjunct child
is the left daughter, or

&
�
&

if it is the right daugh-
ter. The fact that English CCG allows the combina-
tory rules of forward (non-crossing) composition and
backward (crossing and non-crossing) composition al-
lows us to strip off complements of

&
when assign-

ing categories to modifiers. This means for example



that a postverbal modifier within a verb phrase will be�����
	�����
�����
	��� , even if its parent does not have the
category ���
	�� , but �����
	�����
	�� or similar.

� The category of a punctuation mark is the punctuation
mark itself.

� The head child of a parent with category

&
has cate-

gory

&
if the non-head child is an adjunct or a punc-

tuation mark. If the non-head child is a complement
with category ' , the category of the head child is

&
�('

if the head child is left, and

&
�(' if the head child is

right.

Here is the previous tree annotated with CCG cate-
gories:

5�� ����� � 6;021
3�576;021�8:9;3�576;021�8

just

5�� ����� � 6;021
5�� ����� � 6;021

3�5�� ����� � 6;021�8:9;021
opened

021
its doors

3�576;021�8:6;3�576;021�8
in July

We use atomic feature values to distinguish different types
of sentential and verbal categories (eg. ����A �
	�� b.�
	�����
	�� ):A �
	�� b for declarative verb forms, A �(b for bare infinitives (also
for subjunctives and imperatives), A ��+b for present partici-
ples, A ���:b for past participles used in active mode, A ����� b for
past participles used in passive mode, A ���%b for embedded
declarative sentences, A �����%b for embedded questions, A ���(b
for wh-questions, A �;b for yes-no questions, A ����	Sb for sen-
tences with topicalized noun or verb phrases and A � �!�+b for
sentence fragments. The A �
	�� b , A �(b , A ��+b , A ���:b and A ����� b fea-
tures are determined from the POS-tags of the head verbs
and the presence of passive traces. A ���%b , A �����%b , A �;b , A � �!�+b
and A ����	 are determined from the nonterminal labels of the
trees. Predicative adjectives are ��A "���#�b.�
	�� . Adjunct cate-
gories other than modifiers of adjectives do not carry fea-
tures.

The treatment of coordination Coordinate construc-
tions (or lists) are transformed into strictly right-branching
binary trees. The inserted dummy nodes receive the same
category as both conjuncts, but additionally carry a featureA 	%$&�#�b . A node with category

&
A 	%$&�#�b always has its head

daughter (with category

&
) on the right, and the left daugh-

ter is either a conjunction ( 	%$&�# ), or a punctuation mark,
such as a comma or semicolon:

021
021 021'� �)(�* +,�

- 021021 021'� �)(�* +,�
�)(�* + 021

The treatment of null elements In order to obtain the
correct analysis of long-distance dependencies, the pres-
ence of *T* traces in the Treebank is exploited: during cat-
egory assignment, *T* traces which stand for extracted ar-
guments are treated as ordinary complements, and a mecha-
nism similar to GPSG’s slash-passing (Gazdar et al., 1985)

is used to guarantee that the category of a sentence from
which an argument has been extracted is correct.

Here is the Treebank analysis of a relative clause:

(SBAR (WHNP-1 (WDT which))
(S (NP-SBJ (DT the) (NN magazine))

(VP (VBZ has)
(VP (VBN offered)

(NP (NNS advertisers))
(NP (-NONE- *T*-1)))))))

This is the same tree binarized and marked up with the
constituent type:

SBAR(h)

WHNP-1(h)

WDT(h)

which

S (c)

NP-SBJ (c)

DT (h)

the

NN (c)

magazine

VP (h)

VBZ(h)

has

VP (c)

VP (h)

VBN (h)

offered

NP (c)

NNS (h)

advertisers

NP (c)

-NONE-

*T*-1

The NP-node with a *T* null element underneath it is a
complement trace. The category of a complement trace
(here 	�� ) is determined (from its label) before the recur-
sive category assignment described above. This category is
then percolated up the head path of the parent of the trace
to the next clausal projection. Depending on the position of
the trace node within its local tree, this category is marked
as a forward (fw) or backward (bw) argument:

SBAR(h)

WHNP-1(h)

WDT(h)

which

S (c) fw:
021

NP-SBJ (c)

DT (h)

the

NN (c)

magazine

VP (h) fw:
021

VBZ(h)

has

VP (c) fw:
021

VP (h)

VBN (h)

offered

NP (c)

NNS (h)

advertisers

NP (c)
021

-NONE-

*T*-1

The S node is a complement, and receives category ��A �
	�� b .
However, since the S node also has a (forward) trace 	��
which is not percolated further to its parent, the head daugh-
ter (WHNP) subcategorizes for the unsaturated ��A �
	�� b.�
	�� .
Assuming that the category of the SBAR parent is 	��D�
	�� ,
the WHNP has category ��	��D�
	�����
����A �
	�� b.�
	��� :

SBAR(h)
021�6;021

WHNP-1 (h)
3:021�6;021�8:9;3�5�� ����� � 9;021�8

which

S (c) fw:
021 5�� ����� �

the magazine..advertisers

In the next step, the children of the S-node are assigned
categories. The NP-SBJ is a backward complement with
category 	�� , but since the S-node has a forward trace, it
is type-raised to ���
�����
	��� . (Like adjunct categories, type-
raised categories do not carry features). The forward trace



is also appended to the category of the parent S node to
yield ��A �
	�� b.�
	�� :

S (c)
5�� ����� � 9;021

579;3�576;021�8
NP-SBJ (c)

021
the magazine

VP (h) fw:
021 5�� ����� � 6;021

has..advertisers

Then, categories are assigned to the children of the VP-
node. The VP daughter is a complement with category��A ���:b.�
	�� . Since the forward trace is carried up to the par-
ent VP, the head daughterVBZ subcategorizes for ��A ���:b.�
	��
and hence receives category ����A �
	�� b.�
	�����
����A ���:b.�
	��� . The
forward trace is also appended to the category of the parent
VP:

VP (h) fw:
021 3�5�� ����� � 6;021�8:9;021

VBZ(h)
3�5�� ����� � 6;021�8:9;3�5�� ��� � 6�021�8

has

VP (c) fw:
021 5�� ��� � 6�021

offered..advertisers

Going down to the children of the VP daughter, the
NP trace is a forward argument. This yields the transitive
verb category ����A ���:b.�
	�����
	�� for the VBN node. However,
since the NP is a trace, this node will be cut out of the tree in
a postprocessing stage. The category of the VP parent node
is now also changed to take its forward trace into account.

VP (h) fw:
021 3�5�� ����� � 6�021�8:9;021

VP (h) fw:
021 3�5�� ����� � 6�021�8:9;021

offered advertisers

NP (c)
0�� �

-NONE-

*T*-1

After cutting out the trace and all unary projections
&

)
&

, the subtree of the relative clause is as follows:

021�6�021
3 021�6�021�8:9;3 5�� ����� � 9;021�8

which

5�� ����� � 9;021
579;3 576�021�8

021
021�9;0

the

0
magazine

3 5�� ����� � 6�021�8:9;021
3 5�� ����� � 6�021�8:9;3 5�� ��� � 6�021�8

has

3 5�� ��� � 6�021�8:9;021
3 3 5�� ��� � 6�021�8:9;021�8:9;021

offered

021
0

advertisers

A similar mechanism is used for right-node-raising null el-
ements (*RNR*). See Hockenmaier et al. (2002) for more
details on the treatment of other null elements by the trans-
lation algorithm.

Argument-cluster coordination The Treebank assumes
the following bracketing for argument-cluster coordination:

(S (NP-SBJ (PRP they))
(VP (VP (VBD spent)

(NP-2 $325,000)
(PP-TMP-3 in 1989))

(CC and)
(VP (NP=2 $340,000)

(PP-TMP=3 in 1990))))

The “=” notation (also called gap coindexing) expresses
that the arguments in the second conjunct have the same
roles as their counterparts in the first conjunct. The Tree-
bank tree does not correspond to the CCG analysis of such
constructions (using �%� to abbreviate ���
	�� ):

spent $325,000 in 1989 and $340,000 in 1990� 1�9�021 021 � 1�6 � 1 �)(�* + 021 � 1�6 � 1=7> =?>
� 1�6�3�� 1�9�021�8 � 1�6�3�� 1�9�021�8=
@ =
@

� 1�6�3�� 1�9�021�8 � 1�6�3�� 1�9�021�8 =
	
<

� 1�6�3�� 1�9�021�8 =
� 1

We obtain this tree by creating a new node ARGCL consist-
ing of a VP consisting of copies of the co-indexed elements
of the first conjunct, the conjunction and the second con-
junct (again using �%� to abbreviate ���
	�� ):

VP

VP

VP

VBD

spent

NP-2

$325,000

PP-TMP-3

in 1989

ARGCL

VP

NP=2

$325,000

PP-TMP=3

in 1989

VPconj

CC

and

VP

NP=2

$340,000

PP-TMP=3

in 1990

Category assignment now proceeds in two phases: first
we assign categories in the normal fashion, ignoring the
ARGCL tree:

� 1'� ��� �
� 1'� ��� �

� 1'� ��� �
� 1'� ��� � 9;021

spent

021
$325,000

� 1�6�� 1
in 1989

ARGCL

$325,000...in 1990

Then the constituents which are coindexed with the ele-
ments in the first tree are assigned the same categories as
their antecedents, and all nodes in the first conjunct apart
from the verb are cut out:

� 1'� ��� �
� 1'� ��� � 9;021

spent

ARGCL

VP021
$325,000

� 1�6�� 1
in 1989

VP

CC

and

VP021
$340,000

� 1�6�� 1
in 1990

Then category assignment proceeds underneath the co-
indexed nodes (not shown here), as well as above them.
Category assignment within an argument cluster is a
bottom-up, right-to-left process. The leftmost node (PP-
TMP=3) is an adjunct and does not need to be type-raised.
However, the object noun phrase is backward-typeraised
to �%�D�
�
�%�D�
	��� (instantiating the , in the type-raising



rule with the category of the parent of the argument clus-
ter). If there was another object to the left of this noun
phrase, with category ' , its type-raised category would be�
�%�D�
	�����
���
�%�D�
	�����('  , instantiating the , with the ar-
gument category of the previous complement.

� 1'� ��� �
� 1'� ��� � 9;021

spent

ARGCL

VP
� 1�6;3�� 1�9;021�8

021
$325,000

� 1�6�� 1
in 1989

VPconj

CC

and

VP
� 1�6;3�� 1�9;021�8

021
$340,000

� 1�6�� 1
in 1990

Then category assignment proceeds, bottom-up:

� 1'� ��� �
� 1'� ��� � 9;021

spent

� 1�6;3�� 1�9;021�8
� 1�6;3�� 1�9;021�8

� 1�6;3�� 1�9;021�8
021

$325,000

� 1�6�� 1
in 1989

� 1�6;3�� 1�9;021�8)� �)(�* +,�
�)(�* +

and

� 1�6;3�� 1�9;021�8
� 1�6;3�� 1�9;021�8

021
$340,000

� 1�6�� 1
in 1990

Here is the complete translation algorithm, including the
preprocessing step described in section 5.:

foreach tree � :
preprocessTree( � );
preprocessArgumentClusters( � );
determineConstituentType( � );
makeBinary( � );
decorateTree( � );
assignCategories( � );
treatArgumentClusters( � );
cutTracesAndUnaryRules( � );

Future work As it stands, the translation algorithm can-
not deal with sentences involving gapping, handled by a
decomposition rule in CCG. Furthermore, the coordina-
tion of constituents with unlike categories is not possible
at present. However, 98.3% of the sentences of sections
02-21 of the Treebank can be processed by this algorithm.

5. Preprocessing the Treebank
There are certain well-known problems with the Penn

Treebank markup – for instance, the noun phrase structure
is very flat; the complement-adjunct distinction is not al-
ways marked up in a very consistent manner, and there is
an estimated POS-tagging error rate of 3% (Ratnaparkhi,
1996). The translation algorithm is sensitive to these er-
rors: POS-tagging errors can lead to incorrect categories
or to incorrect features on verbal categories (eg. when a
past participle is wrongly tagged as past tense); the omis-
sion or addition of functional tags causes errors in the

complement-adjunct distinction; and certain types of coor-
dinate constructions are not recognized as such if the brack-
eting is not correct. Additionally, the algorithm presented
in section 4 requires the constituent structure of the phrase-
structure tree before binarization to conform to the desired
CCG analysis. For instance, if the flat tree of a coordinate
construction contains any adjuncts or arguments to the con-
juncts, a separate level has to be inserted before binariza-
tion can proceed. This is true for constituents which are co-
indexed with a right-node-raising trace (*RNR*), but there
are also other cases which are either not explicitly marked
as right-node-raising constructions, or where adjuncts to
one of the conjuncts appear as sisters rather than daughters
of the consituent they modify.

Cleaning up the Treebank We attempt to correct POS-
tag errors that are likely to lead to errors in the translation
process. For instance if a simple past tense form occurs in
a verb phrase which itself is the daughter of a verb phrase
whose head is an inflected verb, it is highly likely that it
should be a past participle instead. Using the verb form
itself and the surrounding context, we attempt to correct
such errors automatically.

Alterations to Treebank analyses In order to obtain the
desired categorial analyses, a few alterations to the original
Treebank analyses are made. The most important of these is
the insertion of a noun level into the otherwise flat NP struc-
ture in the Treebank. We also employ various heuristics to
impose a structure on flat quantifier phrases (QP) and pos-
sessives. As mentioned above, a separate level consisting
only of the conjuncts is introduced in coordinate construc-
tions, and modifiers of conjuncts are made into daughters of
these. Furthermore, we adopt a different analysis of small
clauses, which necessitates further changes to the Treebank
(see (Hockenmaier et al., 2002) for details).

Remaining problems with the Treebank A number of
obstacles for the translation to a linguistically richer for-
malism such as CCG remain. The flat noun phrase struc-
ture is one of them: although it is possible to introduce a
separate noun level, compound nouns still have a flat inter-
nal structure, which is semantically undesirable. The Tree-
bank markup also makes appositives difficult to distinguish
from noun phrase lists. Moreover, postnominal modifiers
are always attached at the NP-level which is also undesir-
able from a semantic point of view.

Within the verb phrase and sentential structure, there are
other, equally well known problems – therefore it is stan-
dard for Parseval scores reported for parsers trained on the
Penn Treebank to conflate the labels ADVP and PRT. The
distinction between complements and adjuncts is similarly
difficult to draw, especially for constituents annotated with
the CLR-tag, which is known to be used fairly inconsis-
tently across the corpus.

6. Type-changing rules
The basic algorithm described in section 4 leads to a

proliferation of adjunct categories, as illustrated in figure 1.
For example, a past participle such as used receives differ-
ent categories depending on whether it occurs in a reduced
relative or a main verb phrase. As a consequence, modifiers



of used will also receive different categories depending on
what occurrence of used they modify. This is clearly un-
desirable, since we are only guaranteed to acquire a com-
plete lexicon if we have seen participles (and all their possi-
ble modifiers) in all their possible surface positions. Simi-
lar regularities have been recognised and given a categorial
analysis by Carpenter (1992), who advocates lexical rules
to account for the use of predicatives as adjuncts. Carpenter
also proposes lexical rules for passivization, as well as for
the predicative use of noun phrases, prepositional phrases
and adjectives (which he analyzes as ��A ���!���;b.�
	�� ) and the
use of auxiliaries in yes-no questions. All of these con-
structions are analyzed in our corpus with separate lexical
entries.

However, the use of predicatives as adjuncts leads to
a proliferation of categories, not only for the predicatives
themselves, but also for their modifiers. Carpenter captures
this by a lexical rule, but it seems more economical to put
such type-changing rules in the grammar. Such an approach
has been taken by Aone and Wittenburg (1990) (also in a
categorial framework) to encode morphological rules, but
also for reduced relatives and other syntactic constructions.
Aone and Wittenburg show that these type-changing rules
can be derived from zero morphemes in the grammar. Car-
penter (1991) and (1992) show that, in general, the inclu-
sion of lexical rules can lead to a shift in generative power
from context-free to recursively enumerable. However, this
does not hold true if these lexical rules cannot operate on
their own output and hence generate an infinite set of cate-
gory types. Like Aone and Wittenburg, we only consider a
finite number of instantiations of these type-changing rules,
namely those which arise when we extend the category as-
signment procedure in the following way: for any sentential
or verb phrase modifier (an adjunct with label S,SBARwith
null complementizer, or VP) to which the original algorithm
assigns category

&
�
&

, apply the following type-changing
rule in reverse:

(5) ���#)
&
�
&

where ��� is the category that this constituent obtains if it
is treated like a head node by the basic algorithm. ��� has
the appropriate verbal features, and can be ���
	�� or ���
	�� .
Some of the most common type-changing rules are:

(6) ��A ����� b.�
	��K) 	��D�
	��
“workers A exposed to it b ”

(7) ��A "���#�b.�
	��K) 	��D�
	��
“a forum A likely to bring attention to the problem b ”

(8) ��A ��+b.�
	��K) 	��D�
	��
“signboards A advertising imported cigarettes b ”

(9) ��A ��+b.�
	��K) �����
	�����
�����
	���
“become chairman, A succeeding Ian Butler b ”

(10) ��A �
	�� b.�
	��K) 	��D�
	��
“the millions of dollars A it generates b ”

The other main unary type-changing rule that we make
use of in the grammar is a rule which allows noun phrases
( 	�� ) to be derived from nouns ( 	 ). Carpenter proposes a
similar lexical rule.

6.1. Topicalization

Following (Steedman, 1987), we assume that English
has the following schema of a non order-preserving type-
raising rule to account for topicalization of noun phrases,
adjective phrases and prepositional phrases:

(11)

&
) ��A � $&��� 	Sb.�
����A �
	�� b.�

&


with

&
� � 	���� �G�G����A "���#�b.�
	��D�

The other half, we may have before long

	�� ��A �
	�� b.�
	����A ����	Sb.�
����A �
	�� b.�
	��� ���A ����	Sb
Similarly, we use the following unary type-changing

rule scheme for verb phrase topicalization (with A ��b �� A ��+b��(A ����� b.� ):

(12) �%�2A �QbD) ����A ����	Sb.�
	�����
�
�%�2A �
	�� b.� �%�2A �Qb�
Succeeding him will be Lorenzo� 1'� *���� � 1'� ����� � 9�� 1'� *���� 021

3�5�� � ����� 9;021�8:9;3�� 1'� ����� � 9�� 1'� *���� 8 <
5�� � ����� 9;021 <

5�� � �����

6.2. Binary type-changing rules

In written English, certain types of NP-extraposition re-
quire a comma before or after the extraposed noun phrase:

(13) Factories booked $236.74 billion in orders in
September, [ 	�
 nearly the same as the $236.79 bil-
lion in August]

We make use of this fact in the following binary type-
changing rules:

	�� � ) ���;�� 	�� ) ���;�� 	�� ) �����
	�����
�����
	���
7. The effect of preprocessing and

type-changing rules
How much does preprocessing change the treebank?

We can compare the modified treebank (before binarization
and translation to CCG) with the original treebank, using
standard Parseval scores. On section 00, the modified tree-
bank has labelled precision of 99.1% and labelled recall of
74.65% (or 97.02% if noun labels, which are also intro-
duced in the preprocessing step are ignored in the evalua-
tion). The POS-tag accuracy is 99.5%. However, a com-
plete match between the modified and original Treebank
is only obtained for 0.47% of the sentences, or 60.12% if
noun labels are ignored. Therefore, the effect on the ob-
tained CCG corpus is much bigger than the precision and
recall figures suggest.

Table 1 shows how the size of the grammar and lexicon
extracted from CCGbank (sections 02-21) changes if pre-
processing and type-changing rules (TCR) are introduced.
Preprocessing reduces the size of the lexicon and grammar
by 4.6% (cf. rows 1 and 2), whereas the main effect of the



021
021

A form of asbestos

021�6;021
3:021�6;021�8:9;3:021�6;021�8

once

021�6;021
3:021�6;021�8:9;3�5�� � (�� 6;021�8

used

5�� � (�� 6;021
to make cigarette filters

021
021

A form of asbestos

021�6;021
5�� ����� � 6;021

3�576;021�8:9;3�576;021�8
once

5�� ����� � 6;021
3�5�� ����� � 6;021�8:9;3�5�� � (�� 6;021�8

used

5�� � (�� 6;021
to make cigarette filters

Figure 1: The effect of type-changing rules on lexical categories of adjuncts

type-changing rules (row 3) is to reduce the number of cat-
egory types. In total, the average number of categories per
words decreases by 9%. This grammar is also much smaller
(and less overgenerating) than a phrase structure grammar
extracted from the original Penn Treebank, which has more
than 12,000 rules.

This reduction is important, because one of the biggest
problems for expressive grammar formalisms is lexical
coverage on unseen text. Table 1 also shows the coverage of
a lexicon extracted from sections 02-21 on section 00. Pre-
processing and type-changing rules reduce the problem of
encountering unseen pairings of seen words and seen cat-
egories (unseen

�
sw,sc � ) by more than 26% from 3.0% to

2.2%, simply by reducing the category inventory.
When a corpus is used to train statistical models such

as parsers or taggers, it is common to replace rare words
in the training data with a token UNKNOWN, and to replace
unseen words in the test data with this token. A similar ap-
proach can be used for CCG and other lexicalized grammar
formalisms, but because of the large number of categories,
it is better to adopt a more fine-grained analysis of rare and
unknown words. Using the POS-tags in the treebank, we
can distinguish rare and unknown words with different parts
of speech – instead of having one token UNKNOWN which
stands for all unknown words, we acquire lexical entries
for UNKNOWN-NNS, UNKNOWN-VBZ etc. When using this
lexicon during parsing, it has to be assumed that the input is
POS-tagged. Table 2 shows how lexical coverage increases
if words with a frequency of 2 or less in the training data
and unknown words in the test data are replaced with their
POS-tag, and if all digits are replaced with a token “X”.

Row 1 shows the impact this treatment of unknown
words has on the lexicon without preprocessing or type-
changing rules. This compares with the figures in row 2,
which show that preprocessing and type-changing still have
an important effect. The problem of unseen word-category
pairings for seen words and category types is reduced by
over 35% in comparison to row 1, and by 50% in compar-
ison to the baseline figures reported in table 1. Thus, the
combination of preprocessing, type-changing rules and an
adequate treatment of unknown words results in a lexicon
with a coverage of 98.5% of the tokens in unseen data, as
compared with a baseline of 93.2%.

8. Conclusion
We have presented an algorithm which translates the

Penn Treebank into a corpus of CCG normal-form deriva-
tions, and have outlined the kinds of changes that need to be

performed on the trees before this algorithm can applied in
order to obtain correct CCG analyses. As a byproduct we
have also produced a cleaner version of the original tree-
bank, which we hope to make available to the NLP com-
munity in a generally useable form in due course. Further-
more, we have shown that the introduction of a small num-
ber of type-changing rules in the grammar leads to a reduc-
tion in the size of the acquired lexicon. Together with the
required preprocessing this alleviates the lexical coverage
problem engendered by CCG’s rich category set.

We plan to extend this algorithm to also deal with gap-
ping and unlike-coordinate phrases (UCP), in order to ob-
tain complete coverage of the original Treebank. We also
plan to investigate how an off-line application of rules of in-
flectional and derivational morphology to the acquired lex-
icon will affect its size and coverage.

Since every CCG derivation corresponds to the con-
struction of a semantic interpretation, the work presented
in this paper is a first step towards the creation of a tree-
bank annotated with semantic interpretations.
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