A Flexible Distributed Architecture for Natural Language Analyzers

Xavier Carreras & Lluis Padro6

TALP Research Center
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Barcelona, Spain.
{carreras, padro}@si . upc. es

Abstract
Many modern NLP applications require basic language processors such as POS taggers, parsers, etc. All these tools are usually pre-
existing, and must be adapted to fit in the requirements of the application to be developed. This adaptation procedure is usually time
consuming and increases the application development cost. Our proposal to minimize this effort is to use standard engineering solutions
for software reusability. In that sense, we converted all our language processors to classes which may be instantiated and accessed from
any application via a CORBA broker. Reusability is not the only advantatge, since the distributed CORBA approach also makes it possible
to access the analyzers from any remote application, developed in any language, and running on any operating system.

1. Introduction

Modern NL Application such as Machine Translation,
Summarizing, Dialog systems, etc. are very likely to re-
quire basic language processors such as tokenizers, mor-
phological analyzers, lemmatizers, POS taggers, syntactic
parsers, etc. A significant share of the effort required to
develop NLP applications is devoted to the adaptation of
existing software resources to the platform, format or API
of the final system.

Some initiatives have been taken aiming to facilitate the
integration of existing resources, such as GATE (Cunning-
ham et al., 1996), based on the Tipster architecture (Grish-
man, 1996). Nevertheless, since they were more interested
in the development of research prototypes than final appli-
cations, those systems were far away from being efficient
in processing time and in storage space.

The approach of GATE is to develop a wrapper for each
linguistic tool to be used, and to define which are the depen-
dencies between tools. The resulting system is a powerful
prototyping environment in which one can test and select
the processing chain that best matches one’s needs.

Nevertheless, the system is based on a pipelined
schema, thus, any piece of text is run through all the se-
lected processors, and for each of them, is annotated and
stored before it is passed to the next step. The prototyp-
ing power of the system, which enables to create and test
any combination of existing processors, has the price of a
very large space and time cost, which makes it unsuitable
for industrial development purposes.

In this paper we present the architecture we are cur-
rently using, which enables the quick and easy integration
of basic language analyzers in any NLP application. It is
based on a distributed object representation of language an-
alyzers which makes possible a client-server architecture to
combine the different tools, enabling a quick integration of

Xavier Carreras holds a grant by the Catalan Research
Department. This research has been partially funded by EC
(NAMIC 1ST-1999-12392) and the Spanish Research Department
(T1C2000-0335-C03-02, TIC2000-1735-C02-02)

linguistic processors into an application, and the develop-
ment of efficient NLP applications.

2. Requirements

There are two crucial requirements to integrate lan-
guage analyzers in NLP applications: Reusability and ef-
ficiency, which are highly related.

Obviously, the ideal situation is to completely reuse pre-
existing language analyzers inside any new NLP applica-
tion. The usual technique consists of wrapping the pre-
existing analyzer with format converters that translate from
the application data exchange format to the format required
by the analyzer and viceversa.

This has the drawback that each piece of text to be an-
alyzed must be translated to the appropriate format, the an-
alyzer must be initialized (which may be costly), and the
results must be converted back and stored. This procedure
must be followed for each analyzer one wants to run.

This solution may be fast and cheap to develop, since
the pre-existing analyzers are used as black boxes and don’t
need to be re-engineered, but since those analyzers are usu-
ally designed as stand-alone programs receiving an input
and producing an output, this approach implies a large over-
head in the execution time and storage space of the resulting
system.

Since most nowadays NLP applications are critical in
time and/or storage space, either because they process huge
amounts of text (as in the case of IR indexing engines) or
because they are interactive (i.e. dialog systems, online
translation, ...), language analyzers must perform only the
minimum number of format conversions, disk I/O opera-
tions, and costly initialization procedures.

This may be achieved if pre-existing analyzers are
(re)designed as software objects (functions, methods,
servers, ...) which may be called or invoked from inside
other software, instead of as stand-alone black-box pro-
grams.

Summarizing, a trade-off between reusability and ef-
ficiency must be reached, and we think that a reasonable

1813

investment in re-engineering linguistic processors as em-
beedable software components enables a faster develop-
ment of efficient NLP applications based on those analyzers
and eases the maintenance of the analyzers.

3. A Client-Server vision

In this section, the solution we have adopted after sev-
eral years of experience developing and using language an-
alyzers is presented. We think that it reduces the cost re-
quired to adapt or integrate the analyzers in new NLP appli-
cations, keeping a good efficiency level.

Our current system is an evolved version of the analyz-
ers presented in (Carmona et al., 1998). We use a client-
server architecture, in which NLP applications are seen as
having two layers: A basic linguistic service layer which
provides analysis services (morphological, tagging, pars-
ing, ...), and an application layer which, acting as a client,
requests services from the analyzers.

In this scenario, integrating the basic analyzers in a new
NLP application is reduced to three simple steps:

o Convert the data from application internal representa-
tion to the data structures required by the service in-
terface.

e Call the service and obtain the results.

e Convert the results to the application internal repre-
sentation.

The advantages of this architecture are:

e It enables to use the analyzer as a function call from
any NLP application, not as a separate software pack-
age.

e The clients requesting analysis services may be
not only NLP applications, but also other service-
providing modules (e.g. a parsing module might re-
quest a POS tagging service). This enables the con-
struction of increasingly more complex language anal-
ySis servers.

¢ It becomes unnecessary to define data interchange for-
mats between analyzers. Each application can choose
its own representation, provided it knows how to map
it to the necessary data structures or parameters when
requesting a service.

e Conversions are performed between application data
structures and servers data structures, dramatically re-
ducing the overhead caused by the reading, writing,
parsing, and transmitting of text-based representations
such as XML, SGML, etc. (note that this doesn’t mean
than the NLP application can not use XML, only that it
doesn’t need to internally work with it)

e The linguistic processors do not need to be initialized
for each piece of text to be analyzed.

e The application may decide how and when to invoke
each analyzer, and on which text segment (i.e. there is
no need of a whole-text pipelined processing).

This Client-Server approach could be implemented in
any Object-Oriented language, but if pre-existing pro-
cessors are developed in different languages, the re-
engineering cost would soon become to high. Fortunately,

current software engineering technology provides us with
means to integrate software objects developed in different
languages, and even, running in different computers. This
is further discussed in the next section.

4. Distributed architecture

The next step after the client-server vision of NLP pre-
sented above consists of having our clients and servers
interact through some standard distributed object middle-
ware, which will allow a client object to access a server
object developed in any other language and running on any
other computer or operating system.

There are several such engineering tools, such as SOAP
or CORBA, and although the most suitable may depend on
the kind of analysis services to be offered, the kind of appli-
cations to be developed, and the exploitation environment
of these applications, any of them should serve the purpose
of having a comfortable and efficient development and ex-
ploitation environment.

In our case, we relied on corBA (Common Object Re-
quest Broker Architecture) standard (OMG, 1991) to man-
age that interaction. The architecture is briefly described in
the next section.

4.1. CORBA

As detailed in the OMG web page?, the Common Ob-
ject Request Broker Architecture, is the Object Manage-
ment Group’s answer to the need for interoperability among
the rapidly proliferating number of hardware and software
products available today. CORBA allows applications to
communicate with one another no matter where they are
located or who has designed them.

The Object Request Broker (ORB) is the middleware
that establishes the client-server relationships between ob-
jects. Using an ORB, a client can transparently invoke a
method on a server object, which can be on the same ma-
chine or across a network. As seen in Figure 1, the ORB in-
tercepts the call and is responsible for finding an object that
can implement the request, pass it the parameters, invoke
its method, and return the results. The client does not have
to be aware of where the object is located, its programming
language, its operating system, or any other system aspects
that are not part of an object’s interface. In so doing, the
ORB provides interoperability between applications on dif-
ferent machines in heterogeneous distributed environments
and seamlessly interconnects multiple object systems.

In fielding typical client/server applications, developers
use their own design or a recognized standard to define the
protocol to be used between the devices. Protocol definition
depends on the implementation language, network trans-
port and a dozen other factors. ORBs simplify this pro-
cess since the protocol is defined through the application in-
terfaces via a single implementation language-independent
specification, the Interface Definition Language (IDL).

ORBs allow the integration of existing components.
Developers simply model the legacy component using the
same IDL they use for creating new objects, then write code
that translates between the standardized and the legacy in-
terfaces.

1See http://www.omg.org

1814

Client Object
Implementation
IDL IDL
Stub Skeleton
—»| Request
Object Request Broker

Figure 1: Client-server interaction via CORBA

4.2. Advantagesof a standard

The advantages of using a standard architecture for the
middleware of NLP applications are:

e Applications may be distributed over a network, in-
creasing their efficiency, since several tasks may be
performed in parallel.

o Several instances of the same service may be activated
if necessary.

e Clients and servers may be written in different pro-
gramming languages and run on different machines,
which may run under different operating systems,

e CORBA specifications are open standards, and many
free implementations can be found. We used ORBa-
cus? and COPES.

The described advantages have a price that must be paid
for. The main drawback is that the API of each analy-
sis server are predefined, that is, the clients must adapt to
the server, and the provided service may not cover exactly
the client’s needs. Nevertheless, this is a drawback that is
also present in the wrapper approach, where the application
must use the analyzer as a black box. In addition, the object
oriented architecture makes it possible to build new servers
via inheritance of existing ones, easing the development of
modules which provide the exact kind of service required
by the application.

5. The TALP-CLIC Language Processors

In this section we describe the particular framework
we have adopted for the development of natural lan-
guage analyzers and applications. Our system is devel-
oped by reseachers from TALP research center (Universitat
Politécnica de Catalunya) and from Centre de Llenguatge i
Computacié (Universitat de Barcelona).

The engineering methodology followed is that of the
Object Oriented design. Following some basic principles of
Object Oriented methodology the analyzers become flexi-
ble, reusable and easy to distribute.

2http://www.orbacus.com
Shttp://ww2.lunatech.com/research/corba/cope/

5.1. TheAnalyzer Abstraction

An analyzer can be seen as a software component -or
object- that performs a language processing task at some
level. Our architecture is based on the design of data classes
which define the objects that hold and structure the infor-
mation involved in the language processing. Up to now,
our architecture includes two processing levels, defined by
the processed data object:

Word. Basic object representing a word in a text. It holds
the word from, its morphological information (type
of word, tokens, etc.) and morhposyntactic informa-
tion, namely the list of possible morphological anal-
ysis ([lemma, POS tag] pairs) and the disambiguated
candidate.

Sentence. Object representing a sequence of words which
form a sentence. Holds the sequence of words and a
syntactic tree.

As usual, a class hierarchy defines the classes in the ar-
chitecture (e.g.. words, sentences, syntactic trees) and the
relations which structure the objects (e.g. a syntactic tree is
linked to a sentence). Each data class provides an interface
for accessing and modifying the data held by the objects of
the class.

Under this framework, an analyzer is seen as an object
that provides a task on a processing level. For example, a
PoS tagger disambiguates the morphological analysis of a
word, or a parser generates the syntactic tree of a sentence.
Therefore, in this setting, an analyzer is an object which
provides methods to analyze data objects through the inter-
face of an analyzer class.

Since data classes provide the linguistic structure to be
held, and the analyzer objects use this structure to get and
set the data, it is crucial that the design of data classes is
general and rich enough to suit the needs of the analyzers
in the architecture. A proper design of the data classes, with
abstract access to the data, is required to ensure the incor-
poration of further language structure without affecting the
design of the analyzers depending on such data classes.

While most of the language tasks may be specified with
a simple interface, few of them require a simple computa-
tion on the data. Usually, the output of an analyzer is the
result of a complex process of computation and reasoning
which requires internal functionalities, the use knowledge
and heuristics, and non-trivial parameter settings.

On the one hand, the functionalities that an analyzer re-
quires can often be useful not only to the main task provided
by the analyzer but also to other components in the archi-
tecture (e.g. a specific wrapper may require the use of the
temporal expressions patterns of a morphological analyzer,
or the mechanism of a chart parser may be used with ar-
bitrary grammars, rather than specific syntactic grammars).
On the other hand, the processing of an analyzer usually
can be abstracted from the knowledge, and processign pa-
rameters may be set up under a general criterion (e.g. an an-
alyzer abstracted from the language-dependent knowledge
may be used for processing several languages or restricted
subsets of a language considering specific terminology, or
statistical-based analyzers can usually be tuned to meet an
optimal criterion in the precision/coverage trade-off).

1815

For the sake of flexibility and reusability, it is crucial
that the interface of an analyzer class provides access to the
internals of the analysis process. We distinct three types of
methods an analyzer should provide:

e Analysis. Provide the task of the analyzer as a black-
box, in a simple way.

e Setting. Allow to change the default behaviour of the
analyzer.

e Functionalities. Provide access to the specific inter-
nal functionalities that are present in the task of the
analyzer. Their use may be complex and may require
knowledge on the internal data structures of the object.

Our general approach consists in putting special effort
in the design of the class hierarchy which defines both the
analyzer classes and the data classes which hold the data
across the language processing. Analyzer objects must rely
only on the language data objects, and the processing func-
tionalities must be independent of any external processing
and accessible from the outside through a rich interface.
Standard software engineering must be used to achieve this
goal.

5.2. Particular Analyzers

In this section we briefly describe the analyzers in our
architecture. We distinguish two types of analyzers, accord-
ing to their nature: primitive and shell analyzers.

Primitive Analyzers. Low-level analyzers, which per-
form the basic language tasks.

Tokenizer. Receives raw text and returns a sequence of
words.

Morphological analyzer (MACO). Given a sequence of
words, adds to each one a list of morphological anal-
ysis. It also recognizes and joins multi-word forms
in a single word. It is composed by specific analyz-
ers -such as a form dictionary search, recognizers for
dates, numbers, monetary and percent quantities, suf-
fixed forms, multiword compounds, etc. Details can
be found in (Carmona et al., 1998)

PoS Taggers (Relax, TreeTagger). Receive word se-
quences and disambiguate its POS, based on the con-
text of the word. See (Padrd, 1998; Marquez, 1999)
for details.

Named Entity recognition (NAME). Given a sequence of
words, recognizes and classifies name entities.

Sentence Splitter. Receives a sequence of words and re-
turns a sequence of sentences.

Full parsing (TACAT). Chart parser for full syntactic pars-
ing. Details in (Atserias and Rodriguez, 1998).

Partial Parser. Identifies partial parsing structures,
namely chunks and clauses of a sentence.

Shell Analyzers. A shell analyzer offers high level func-
tionalities, and, rather than performing the tasks, composes
the functionalities of low-level analyzers of the architec-
ture.

The main purpose of shell analyzers is the encapsula-
tion of the standard processing involving several primitive

analyzers into class methods. In this way, standard pro-
cessing becomes easy and both applications or higher level
analyzers can make use of it as a black-box.

In our system, we have designed only a shell analyzer
which carries all the standard high-level processing, namely
the MorphoSyntax analyzer. It provides analysis methods
for tokenizing raw text and processing language both at
word and sentence levels. The analyzer is parametrizable
for choosing language, skipping processing levels, or se-
lecting the method for a particular task, when several ana-
lyzers are available.

5.3. Applications

Final applications which require language processing
are built on the top of analyzers, requesting their services
and making particular use of the processed material.

Since analyzers are defined in classes, an application
can follow two main trends for their explotation, depending
on the needs:

e Direct instantiation, as with arbitrary software li-
braries. The application may instance primitive ana-
lyzers (Figure 2) or a shell analyzer (Figure 3) depend-
ing on its needs.

e Client-Server scheme, building a separate CORBA
server which provides the analyzers functionalities, as
ilustrated in Figure 4

In all cases, standard software methodologies are followed.

(3
—»{ MACO
Sentence
()
Relax
—~(poStasae)
= TreeTagger|
= NAME
Tacat
—~{rat s
(o

Figure 2: Direct use of the primitive analyzers from an applica-
tion

The easiness of adaptation of analyzers into an applica-
tion depends again on the particular needs of the applica-
tion. Standard processing is direct through shell analyzers.
Non-conventional processing will require direct access to
low-level analyzers and finer control of the process.

As an example, our basic application is the Standard
Language Processor. It is a distributed client-server appli-
cation providing standard language processing facilities at
different contexts. The server is just a CORBA interface to
the MorphoSyntax analyzer. Up to now, four clients use this
server:

e Basic ms-analyze, a command-line tool which pro-
cesses plain text and produces a simple verticalized
output.

1816

(o)
—»{ MACO

MorphoSyntaxj———— Ss%rhttetne?e
Relax

(oS tadae)

| TreeTagger|
= NAME
Tacat

(i

(e)

Figure 3: Use of the shell analyzer from an application

e xms-analyze deals with XML encoded text, using our
particular DTD for basic language structure

e NAMIC SpLP deals with XML encoded text, using the
specific bTD for NAMIC project (Basili et al., 2001).

e A caGl program provides a demo of our analyzers
through the web*.

In each case, the client is just a simple program which
extracts the data from its corresponding source of data into
the language data objects, requests an analysis service to
the server and returns the result back to the corresponding
output. The architecture is presented in Figure 4.

(o)

(00)
MS Sentence

(%) —omers)— =Gl
Relax

(oSt

T

CORBA
—»| NAME
Tacat
ot

@
Applic
= (ovner)

Figure 4: Use of the shell analyzer from an application via corba

But the availability of the analyzers as reusable soft-
ware components enables the development of higher-level
applications, as for instance an authoring program for writ-
ing news in a web-based environment, which may require
language services for automatically detecting and linking
named entities. Moreover, another sophisticated service
may be the automatic detection of relations between enti-
ties, which would require partial syntactic parsing as a pre-
process to the inference of entity relations. The applica-
tion could build a sever offering the requested services, just

“http://www.lsi.upc.es/nlp

by selecting those analyzers involved in the tasks, and pro-
viding analysis services as compositions of the analyzers
methods. Moreover, a data object in the authoring could
link language data objects and formatting information of
the text in an inherited class.

6. Conclusions

We have presented a client-server architecture to de-
velop NLP systems which require basic language analysis
services.

An Object Oriented paradigm is used to design and
implement the language analyzers, obtaining great felix-
ibility to reuse the NLP processors from any application.
When managed through some standard middleware such as
CORBA, this approach enables to distribute NLP applica-
tions on a network.

A further step may include having permanently run-
ning language analysis servers that may be called by any
client application. This is client-server interaction may be
moved up to the Internet, providing linguistic analisys ser-
vices to any NLP application running in the net and consti-
tuting a useful mechanism to share resources between re-
seach groups, or even becoming a commercial service.

7. References

J. Atserias and H. Rodriguez. 1998. TACAT: TAgged Cor-
pus Analizer Tool. Technical Report LSI-98-2-T, Depar-
tament de LSI. Universitat Politécnica de Catalunya.

R. Basili, R. Catizone, L. Padr6, M.T. Pazienza, G. Rigau,
A. Setzer, N. Webb N., Y. Wilks, and F. Zanzotto. 2001.
Multilingual Authoring: the NAMIC Approach. In Pro-
ceedings of the ACL Workshop *’Human Language Tech-
nology and Knowledge Management””.

J. Carmona, S. Cervell, L. Marquez, M.A. Marti, L. Padro,
R. Placer, H. Rodriguez, M. Taulé, and J. Turmo. 1998.
An Environment for Morphosyntactic Processing of Un-
restricted Spanish Text. In Proceedings of the 1st Inter-
national Conference on Language Resources and Evalu-
ation, LREC, pages 915-922, Granada, Spain, May.

H. Cunningham, Y. Wilks, and R. Gaizauskas. 1996.
GATE - a General Architecture for Text Engineer-
ing. In Proceedings of 16th International Conference
on Computational Linguistics, COLING, Copenhagen,
Denmark.

R. Grishman. 1996. The TIPSTER Text Phase Il Architec-
ture Design, Version 2.2. Technical Report, New York
University.

L. Marquez. 1999. Part—of-Speech Tagging: A Machine-
Learning Approach based on Decision Trees. Phd. The-
sis, Dep. Llenguatges i Sistemes Informatics. Universitat
Politécnica de Catalunya.

OMG. 1991. Common Object Request Broker Architec-
ture. Technical Document, Object Management Group.
http://www.omg.org, http://www.corba.org.

L. Padrd. 1998. A Hybrid Environment for Syntax—
Semantic Tagging. Phd. Thesis, Dep. Llenguatges i Sis-
temes Informatics. Universitat Politécnica de Catalunya,
February. http://www.lsi.upc.es/"padro.

1817

	1813: 1813
	1814: 1814
	1815: 1815
	1816: 1816
	1817: 1817

