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Abstract
One of the challenges in automatic speech recognition is how to handle pronunciation variation. The main causes for pronunciation
variation are the speaker (voice characteristics, accent, non-nativeness etc.) and the speaking style (reading, spontaneous responses,
conversation etc.). An ASR system has basically two options for modelling the variation on the word and sub-word level: lexical
modelling of the pronunciation variation or adaptation, i.e. re-training of the acoustic models. The answer to the question of which
technique to choose, or how to combine them, may depend on the speaking style. We have therefore investigated the effects of using
pronunciation variants for recognition of read speech, spontaneous dictation, and non-native speech. The variants in the standard purpose
lexicon tested gave modest improvements and best results for read speech, which is the speaking style of the acoustic model training set.

1. Introduction

An important issue in pronunciation modelling is to
know what variation is better modelled at the lexical level
and what can be handled by the acoustic models, (Strik,
2001). Segmental variation, such as allophonic variation,
can be handled by the acoustic models using adaptation or
training on the target speech. Other types of variation may
be better handled at the lexical level, e.g. insertions, dele-
tions, and variation that is present for a group of speak-
ers (e.g. dialects), or is typical for a speaking style. Lexi-
cal modelling accommodates longer contexts than acoustic
modelling, permitting modelling of syllables and even en-
tire words or phrases (Jurafsky et al., 2001). Yet, allowing
many pronunciation variants in the lexicon may increase
the confusability and thereby the error rate.

Adequate handling of varying speaking styles is one
of the main challenges for Automatic Speech Recogni-
tion (ASR). Expanding from the domain of read speech,
ASR systems will encounter more variability in the speech,
e.g. more pronunciation variants. To handle more speaking
styles the variability in pronunciation must be treated prop-
erly, but how we should model the pronunciation variation
may depend on the speaking style. In this paper we there-
fore investigate the effects of using pronunciation variants
for recognition of read speech, spontaneous dictation, and
non-native speech.

A handcrafted lexicon will generally outperform stan-
dard purpose lexica on the task for which it is optimized.
However, the production of a manually optimized lexicon
is costly and in many cases not feasible. It is therefore inter-
esting to evaluate pronunciation variation issues using only
publicly available resources. This is particularly interesting
regarding portability issues and for languages where avail-
able handcrafted resources are limited.

We have used language resources available through the
Linguistic Data Consortium (LDC) or in the public domain
both for the pronunciation variants and for building the rec-
ognizer, as well as the speech data used. We have investi-
gated the use of pronunciation variants both in the training

of the acoustic models and in testing for the different speak-
ing styles. In this way we can compare acoustic modelling
and lexical modelling of the variation.

Acoustic model training: We have trained two sets of
acoustic models:

1. “Canonical”: trained using transcriptions based on a
canonical lexicon

2. “Variant”: trained using transcriptions based on a lex-
icon with variants

The “Canonical” set will model all the variation by the
acoustic models. The “Variant” set will have less variation
in the acoustic models, leaving more to lexical modelling.
Both monophone (context-independent)and cross-word tri-
phone (context-dependent) models were trained.

Acoustic model adaptation: Acoustic model adapta-
tion is one way to handle variation; this technique may also
depend on speaking style, since the seed models we use for
adaptation will fit the speaking styles differently. This is es-
pecially true for unsupervised adaptation where we rely on
the transcription given by the original acoustic models. The
performance of acoustic model adaptation is also dependent
on the amount of available data. We have looked at adapta-
tion using both 1 and 20 sentences from each speaker.

Lexical task adaptation: Including pronunciation
probabilities is shown to give increased performance in
many experiments, e.g. (Wester et al., 2000). One way
to derive the probabilities of pronunciation variants is to
perform a forced alignment on a development set and use
frequency counts to estimate the probability. For the non-
native speakers we have an adaptation set available and we
have therefore used this speaking style to consider the pro-
nunciation probability effect.

The paper is organized as follows: The language re-
sources used are described in sections 2 and 3. The exper-
imental setup is described in section 4, and the evaluation
results are given in section 5. Finally, discussion and con-
clusions are given in sections 6 and 7.



Grammar and
Speaking style Code Vocabulary

Read, native h1 20k, open (nvp)
Spontaneous dictation, native s9 20k, open (vp)
Read, non-native s3 5k, closed
Read, native h2 5k, closed

Table 1: Speaking styles tested

Number of Number of
pronunciations words

6 13
5 4
4 107
3 228
2 2822
1 16826

Table 2: Number of pronunciations per word in the CMU
lexicon for the 20k WSJ vocabulary

2. Speaking styles
The task chosen is the Wall Street Journal (WSJ)

database available from LDC (The Linguistic Data Con-
sortium, 1993). WSJ consists of several test sets with dif-
ferent speaking styles represented. The two “hub” tests h1
and h2 consists of read speech. In addition we have the
“spokes”, here we have used the spoke 3 with non-native
speech and spoke 9 with spontaneous dictation, see table
1. The h1 and s9 tests both have a 20k open vocabulary.
The s9 test has verbal punctuation, which is not the case
for h1. This is denoted by (vp) and (nvp) respectively in
table 1. For each test we have used the corresponding test
specific bigram supplied with the WSJ distribution.

3. Lexica
The CMU lexicon is a popular pronunciation lexicon

for US English and available for free (Weide, 1998). Alter-
nate pronunciations are marked so the lexicon can be used
both as a “surface” lexicon with pronunciation variants and
as a canonical lexicon by removing the alternatives. The
basis of the lexicon is 20k words extensively proofed and
used by the Carnegie Mellon University (CMU). Addi-
tional words and pronunciations are added from several un-
proofed sources, but only words or pronunciations that are
found in two or more sources have been used. In the subset
used for the 20k vocabulary, 3174 of the words have pro-
nunciation variants. The maximum number of variants for
one word is 6; see table 2. In the subset of the lexicon used
for the 5k vocabulary, 1060 words have multiple pronunci-
ation variants. On average there are 1.2 variants per word.

We also did some comparative tests using Pronlex avail-
able from LDC (The Linguistic Data Consortium, 1995).
This lexicon is also widely used but is not free. On the other
hand, it is claimed to be more consistent. We trained only
one version using Pronlex with context-dependent models
and pronunciation variants. The Pronlex is based on more

phones than the CMU lexicon; 42 versus 39. The average
number of pronunciation variants per word in Pronlex is
1.1.

4. The Recognizer

We have trained a baseline recognizer using the HTK
toolkit (Young et al., 2000), using fairly standard methods
(Woodland et al., 1994). The training set consists of read
speech from 284 speakers (SI-284), a total of 37500 utter-
ances. We used MFCC feature vectors with 13 elements,
including normalized energy, and added the first and sec-
ond derivatives giving a total of 39 elements. Each feature
vector was derived from a speech frame with a Hamming
window of length 25 ms and a 10 ms frame rate.

The RM-models supplied with HTK were used as seed
models. The canonical and variant models were then
trained separately using Baum-Welch reestimation. For the
context-dependent models, different decision trees for clus-
tering triphone states were built for the variant and canoni-
cally trained HMMs.

4.1. Training of canonical and variant models

When training acoustic models using pronunciation
variants, the variants are used to retranscribe the training
data with forced alignment. In this way the acoustic mod-
els are used to choose the pronunciation variant to use for
training. The most common scheme is to retranscribe the
training data once using monophone models and then use
this transcription for the rest of the training. We did some
preliminary experiments with this type of variant trained
models using 4 iterations at each mixture increase.

To make sure that the pronunciation variants affect the
models we also tried a scheme where we retranscribed the
data for every increase of the number of Gaussians in the
observation probability mixture. For every level of mix-
ture components we used Baum-Welch reestimation for 4
iterations using the transcription from the previous level.
Then the reiterated models were used to retranscribe the
data by choosing pronunciation variants. This transcription
was then used to iterate 4 more times. The two different re-
transcription schemes were performed both for the mono-
phone and triphone models.

For the canonically trained HMMs we used 4 iterations
for every level of mixture components both for monophone
and triphone models.

Retranscribing for every mixture update gave higher log
likelihood of the training data after each iteration compared
to retranscribing once. The difference was, however, mi-
nor and could be a result of the larger number of iterations
used in the training. The recognition results showed a small
increase in performance for most conditions when retran-
scribing for every mixture update. The differences between
the two retranscription schemes were however not statisti-
cally significant. All the results presented in the next sec-
tion are derived using models with retranscription for every
mixture update.

We also compared the log likelihood after each itera-
tion of training for the variant and canonical models, see
figure 1. There was hardly any difference between using
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Figure 1: Average log probability per frame after each iter-
ation during training.

transcriptions based on a canonical lexicon or transcrip-
tions with variants. The triphones outperformed the mono-
phones, as expected. For the tests we used 10 Gaussians in
the mixture for triphone models. 32 Gaussian monophones
did not give substantial improvement over 16 Gaussians for
the monophones, so we decided to use 16. We used two
silence models with twice as many Gaussians as the phone
models.

5. Results
We have used the McNemar test to decide the signif-

icance of the differences in word error rate, (Gillick and
Cox, 1989). This test takes into account the errors that dif-
fer between the systems we compare. The McNemar test
requires that errors are independent, which is not the case
in our setups since we have applied a bigram. Still, the
tests give more information than only word error rate com-
parisons. We have therefore chosen to use the term “sig-
nificant” when the McNemar test gives a p-value less than
0.01.

For all the tables in this section the “Training” column
shows the lexicon used in training of the acoustic models
and the “Test” column shows the lexicon used in test. The
last line shows a “mismatch” test where we used variants in
acoustic model training but not in the test lexicon.

For the monophone models we observed small improve-
ments by including lexical variants in the test, see table 3.
The relative improvements are shown in figure 2. Using the
McNemar test the improvements using variants in test only
were significant for h1 and h2. The further improvement
using variants both in training and test was not significant.
For s9 we had to use variants in both training and test to
get significant improvement. For s3 the improvement was
small, there were no significant differences other than the
deterioration of the mismatch test. The mismatch test (us-
ing variants in training, but not in test) gave significant de-
terioration compared to using variants in both training and
test for all speaking styles.

The improvement seen using variants for the mono-
phone situation was, however, not as uniform for triphones,
see table 4 and figure 3. We actually see a deterioration for
the two speaking styles s9 and s3. For h2 we see a dete-
rioration when using variants only in test, but a significant

Training Test h1 s9 s3 h2

Canonical Canonical 34.7 40.4 27.6 22.2
Canonical Variant 32.9 39.3 27.2 21.1
Variant Variant 32.0 38.2 26.7 20.1
Variant Canonical 35.8 40.8 28.2 22.2

Table 3: WER in [%] for monophone acoustic models
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Figure 2: Relative WER improvement from canonical pro-
nunciations in both training and test using monophones

improvement when using the variants in both training and
test. There was a significant difference between the mis-
match test (using variants in training, but not in test) for all
speech types and compared to all other conditions.

In figure 4 the triphone mismatch test is compared to us-
ing canonical pronunciations in both training and test and
variants in both training and test. The deterioration for
variants in acoustic model training and not in the test lex-
icon was worst for the most controlled situation h2 (read
speech and 5k vocabulary). Both h1 and h2 feature the
same speaking style as the acoustic model training mate-
rial. The spontaneous dictation s9 seems to behave more
similarly to h1 (both 20k vocabulary) than the non-native
speech s3 to h2 (both 5k vocabulary).

The improvement from context-independent to context-
dependent modelling gave the largest difference for h2, see
figure 5. s9 behaved again more similar to h1 than s3 to
h2. For s3 there was no significant change for the canoni-
cal setup, and for the variant setup there was actually a sig-
nificant deterioration! One reason for this is that the vari-
ant triphones performed worse than the canonical triphones.
The increased modelling capability of the triphones does
not help for non-natives on average. As seen in figure 6 the
performance for the non-native speakers was very variable.

Training Test h1 s9 s3 h2

Canonical Canonical 15.9 23.7 27.7 8.0
Canonical Variant 15.2 23.5 28.4 8.4
Variant Variant 15.4 24.4 28.9 7.4
Variant Canonical 20.5 29.4 31.0 11.6

Table 4: WER in [%] for triphone acoustic models
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Figure 3: Relative WER improvement from canonical pro-
nunciations in both training and test using triphones
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Figure 4: Relative WER deterioration from the two
matched conditions to the mismatch condition using tri-
phones

5.1. Comparison between CMU lexicon and Pronlex

Using the Pronlex lexicon gave hardly any difference,
see table 5. This indicates that the CMU lexicon is a state-
of-the-art non-adapted lexicon. The largest difference was
for h2 with a relative decrease of 6.8%.
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Figure 5: Relative improvement in WER from monophones
to triphones
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Figure 6: Relative improvement in WER from monophones
to triphones per speaker for s3

Lexicon h1 s9 s3 h2

CMU 15.4 24.4 28.9 7.4
Pronlex 15.8 24.0 28.5 7.9

Table 5: WER in [%] for variant trained triphone recognizer
comparing CMU lexicon and Pronlex

5.2. Adaptation

For acoustic model adaptation we used unsupervised
adaptation and the Maximum Likelihood Linear Regres-
sion (MLLR) adaptation method, (Leggetter and Wood-
land, 1995), which is included in the HTK distribution.
The adaptation tests were performed using triphone models
only, but both for the canonical and variant trained versions.
We tried two adaptation schemes:

1. One sentence adaptation where each sentence was
used to find one global MLLR transform. The sen-
tence was then re-recognized using this transforma-
tion. This will be a reasonable adaptation scheme for
telecommunication services where each speaker is ac-
tive for a short amount of time and we have no infor-
mation of speaker identity.

2. Incremental adaptation on 20 sentences from each
speaker. In this way each sentence from a speaker will
update the transform that is used to recognize the next
sentence. For this adaptation scheme we used regres-
sion classes.

The results in table 6 show that the 20 sentence adapta-
tion as expected gave significant performance gain. Adap-
tation using variant models gave no or small improvement
compared to the canonical models, see figure 7. The largest
adaptation gain was for the non-native speakers, whereas
the spontaneous dictation gave the smallest gain. The in-
creased performance for the non-native speakers was more
uniformly distributed over the speakers compared to us-
ing pronunciation variants in the lexicon where the perfor-
mance varied between speakers, see figure 8. For the h1
task we see the same increased performance by using vari-
ant models over canonical models with adaptation as we
saw without adaptation.



HMMs h1 s9 s3 h2

1 sent. canon adap 16.2 23.3 27.3 8.0
20 sent. canon adap 13.4 21.0 20.8 6.6
20 sent. variant adap 13.0 21.3 20.9 6.6

Table 6: WER in [%] for triphone setup and adaptation
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Figure 7: Relative improvement in WER using 20 sentence
adaptation on triphone models

As shown in table 6, adaptation using one sentence gave
no improvement. Using a regression tree instead of one
global transform did not help. One sentence adaptation
calls for more sophisticated adaptation methods.

5.3. Error analysis

Even if we got similar recognition rates using canoni-
cally and variant trained HMMs, this does not mean that the
recognition results are identical. There are both errors cor-
rected and errors introduced, see table 7. For h1 25.3% of
the errors for the variant system were different from those
in the canonical system. This was similar for all speaking
styles; 23.9% for s9, 29.0% for s3, and 27.4% for h2.
The differences between the canonical system and the sys-
tem with canonically trained HMMs, but variant lexicon
used in test, were not that large: 6.5% for h1, 9.8% for s9,
12.9% for s3 and 9.3% for h2.
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Figure 8: Relative improvement in WER per speaker for
s3 using adaptation on triphone canonical models

Even if the variants in these experiments do not help
recognition performance, they make a difference. Our
results are similar to the ones shown in (Wester et al.,
2000) and shows that improving the recognition perfor-
mance should be possible by careful selection of which pro-
nunciation variants to include.

5.4. Pronunciation probabilities

Using an adaptation set it is possible to derive speak-
ing style dependent pronunciation probabilities from forced
alignment and use these to select which variants to include
in an adapted lexicon. This is a simple way of incorporating
speaking style dependent lexical adaptation.

As the non-native speakers potentially would gain more
from pronunciation modelling we chose this task for some
preliminary experiments. In WSJ there is an adaptation
set with the same speakers as in the test set available. All
speakers read the same 10 sentences, so the vocabulary size
of this set is only 349. 256 of these words are present in the
5k test vocabulary. Only 92 of these words had pronunci-
ation variants in the CMU lexicon. This is a small number
of words compared to the total number of words in the vo-
cabulary (5000), but we may assume that these are frequent
words that are most important to model. The error distri-
bution of function words like “a”, “an”, “and”, “are”, “as”
etc. that are present in this 92-word list showed that they
are involved in many errors. The pronunciations never se-
lected were left out, and 71 words were left with variants.
We did experiments both with pronunciation probabilities
added and without, in both cases removing the pronuncia-
tions not seen in the adaptation set.

The experiments did not show any improvement, even
with different values of the pronunciation scaling factor. In
fact, we saw a small deterioration. The reason may be ei-
ther that this approach calls for larger amounts of adapta-
tion data than we have available, or that the variants present
in the CMU lexicon were not representative for the non-
native speakers. Collecting sufficient speaking style de-
pendent pronunciations “by hand” is infeasible. There is a
need for other methods of deriving and assessing pronunci-
ation variants that are more automatic and more consistent
with WER. Data-driven pronunciation variation modelling
is one answer, but requires sufficient amounts of represen-
tative language resources.

6. Discussion

For the standard purpose lexicon investigated, the CMU
lexicon, we could only observe an increase in performance
by including pronunciation variants for all speaking styles
when using context-independent models. The increased
modelling capacity of context-dependent models could ap-
parently handle the observed variation just as well as the
variants in the CMU lexicon. We observed, however, that
the errors differed: About 20% of the errors were differ-
ent when using variants compared to using only canonical
pronunciations.

Preliminary experiments using forced alignment on an
adaptation set to filter out non-useful variants or include
pronunciation probabilities did not help. Other language



Canonical Training + Test
Correct Incorrect

Variant Correct 2888 153 (27.9%)
Training + Test Incorrect 134 (25.3%) 396

Table 7: Error analysis on word level for h1

model issues except these preliminary pronunciation prob-
ability experiments were not investigated. It would be in-
teresting to examine how the language model influences the
performance for the different speaking styles.

The use of context-dependent models gave a large gain
for all speaking styles except non-native speech. This is
the same observation as cited in (Van Compernolle, 2001).
Triphones trained on native speech are apparently not very
good for modelling non-native speech, and more sophisti-
cated methods for this difficult task are necessary. Acous-
tic model adaptation gave the largest gain for non-native
speakers, while the spontaneous dictation gave least im-
provement.

For pronunciation variation depending on speaking
style, the question of lexicon versus acoustic model adap-
tation has no clear-cut answer. The results presented in this
paper show a discouraging performance when lexical vari-
ants were included, only small gains. We observe that it
seems more important to not include variants in the train-
ing when we are uncertain which variants will be used in
the test. Models trained without variants were able to use a
lexicon with variants with equal or better performance. The
models trained on variants showed a significant decrease in
performance when using a canonical lexicon in test. This
is probably because these models are less diffuse and there-
fore more tailored to the lexicon they are trained on.

On the other hand, the poor gain when using variants
may be interpreted as a demand for more care in genera-
tion of pronunciation variant candidates and the selection
of them. We believe that pronunciation variation modelling
is an important factor for improvement of ASR systems.
Data-driven variant generation and lexicon optimization us-
ing an objective criterion (Holter and Svendsen, 1999), is
one such technique.

7. Conclusions and further work
The variants in the standard purpose lexicon tested gave

modest improvements. The largest improvements were
seen for context-independent models where all speaking
styles except non-natives observed a significant improve-
ment. For the context-dependent models the variants did
only help for read speech which is the speaking style of
the acoustic model training set. For non-native speech we
saw no improvement from context-independent to context-
dependent modelling.

Even if the error rates were similar for the variant setup
compared to the canonical setup, the errors differed. This
suggests that there is a potential in selecting variants. To
learn more about the contribution of the variants in the lex-
icon a more thorough error analysis is needed.

Two issues are important in pronunciation modelling:
1) candidate pronunciations, and 2) a way to assess these

pronunciation variants. To assess pronunciation variants we
need representative data. Methods based on pronunciation
rules instead of directly on variants can generalize to pro-
nunciations not present in the training data and will make it
possible to assess these unseen pronunciation variants.
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