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Abstract 
In this paper we present an approach to tuning of context features acquired from corpora. The approach is based on the idea of a 
genetic algorithm (GA). We analyse a whole population of contexts surrounding related linguistic entities in order to find a generic 
property characteristic of such contexts. Our goal is to tune the context properties so as not to lose any correct feature values, but also 
to minimise the presence of ambiguous values. The GA implements a crossover operator based on dominant and recessive genes, 
where a gene corresponds to a context feature. A dominant gene is the one that, when combined with another gene of the same type, is 
inevitably reflected in the offspring. Dominant genes denote the more suitable context features. In each iteration of the GA, the number 
of individuals in the population is halved, finally resulting in a single individual that contains context features tuned with respect to the 
information contained in the training corpus. We illustrate the general method by using a case study concerned with the identification 
of relationships between verbs and terms complementing them. More precisely, we tune the classes of terms that are typically selected 
as arguments for the considered verbs in order to acquire their semantic features. 
  

                                                      
* This research is a part of the BioPATH research project coordinated by LION BioScience (http://www.lionbioscience.com) and 
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1. Introduction  
The automatic discovery of new knowledge encoded 

in text documents relies heavily on the identification of 
concepts, linguistically represented by domain specific 
terms (Maynard et al., 2000). New terms representing 
newly identified or created concepts appear rapidly due to 
the rapid growth of new knowledge and textual data 
describing it. This makes the automatic term extraction 
tools essential assets for efficient knowledge discovery. 
However, automatic term extraction itself is not the 
ultimate goal since the large and ever growing number of 
terms calls for a systematic way to access and retrieve the 
information about the terms. Therefore, the extracted 
terms need to be placed in an appropriate framework by 
establishing relations to other content words, primarily to 
other terms and domain specific verbs. These relations, 
like terms themselves, need to be extracted from text.  

In corpus-based knowledge acquisition methods, the 
hypothesis about terms and relationships between them 
are formed by analysing the contexts of the terms. Not all 
word types found in the context are of equal importance in 
the process of reasoning about the terms: the most 
informative are verbs, noun phrases (especially terms) and 
adjectives. (Maynard et al., 1998) used a fixed-size 
context window containing the three word types in order 
to incorporate the context factor into an automatic term 
extraction procedure. The method is further improved by 
using the semantic knowledge about context terms 
(Maynard et al., 2000). (Hatzivassiloglou et al., 2002) 
used gene and protein names to classify domain specific 
verbs by counting the frequencies with which they co-
occur as well as the total frequency of the verbs. A 
number of authors have been using pattern-based methods 
to identify pre-defined types of the relationships between 
terms. (Hearst, 1992) focused on the extraction of 
hyponym relation existing between terms based on 
manually defined patterns describing the syntactic 

structure of the word sequence encoding the relation. 
Similarly, (Thomas et al., 2000) used manually identified 
lexico-syntactic patterns as filters for extraction of protein 
interactions. (Agichtein et al., 2000), on the other side, 
extracted the patterns automatically from a corpus by 
providing the system with pairs of terms known to be in a 
considered relation, locating the word sequences in which 
the two terms appear in close proximity, and analysing the 
context connecting them. (Pustejovsky et al., 2002) 
differentiate between entity extraction and relation 
extraction. They use predicates (expressed by verbs and 
their nominalisations) as anchors in identifying relations. 
Complementation patterns are extracted from clustered 
predicate contexts based on their regularity. 

In our previous work (Nenadic et al., 2001) we used a 
genetic algorithm (GA) based on a novel crossover 
operator to explore the context features of prepositions in 
Serbian by concentrating on case properties. The GA was 
able to automatically learn case constraints of noun 
phrases within specific preposition phrases by consulting 
non-disambiguated initially tagged corpus. In this paper 
we present a similar approach to identifying relationships 
between verbs and terms complementing them. We use a 
GA to perform reasoning about term classes allowed to be 
combined with specific verbs. The approach has been 
tested in the field of molecular biology. We aim at 
automatic tuning of the features of elements found in the 
context of such verbs (e.g. whether these elements are 
proteins or genes), by using an existing ontology as seed 
for learning. The results of the proposed methodology 
provide a platform for term clustering/classification, term 
sense disambiguation, verb subcategorisation, and verb 
class disambiguation. 

The paper is organised as follows. In Section 2 we 
provide a brief overview of genetic algorithms 
accompanied with the specificities of the method that we 
have introduced. Section 3 illustrates the method by 
means of a case study related to the problem of 
complementation patterns for specific verbs in the domain 



of molecular biology. Further, in Section 4 we explain 
how the method may be used as a platform for solving a 
variety of problems in terminology management. Finally, 
we conclude the paper in Section 5. 

2. General method 
Genetic algorithms are meta-heuristics incorporating 

the principles of natural evolution and the idea of 
“survival of the fittest” (Reeves, 1996). A solution is 
encoded as a sequence of genes, referred to as an 
individual. In the initial phase of the GA a number of 
individuals is generated typically in a random manner. 
We, however, collect the individuals from a corpus in 
order to form the initial population. The following section 
describes the way in which this is done in more detail. 

Operators typical of GAs, namely selection, crossover, 
mutation, and replacement, are applied, in that order, in 
each iteration of the GA. Selection is usually defined 
probabilistically: the better the solution, the higher the 
probability for that solution to be selected as a parent. We 
depart from this approach as all the individuals from the 
current population are selected, thus giving each of them a 
possibility to pass their genetic material onto their 
offspring. 

Crossover is applied to a pair of parents resulting in 
their recombination, called children. We used a novel 
crossover operator based on the notion of 
dominant/recessive genes (Nenadic et al., 2001) in which 
recessive genes are passed to the offspring only in the 
absence of a dominant gene of the same type. Unlike in 
traditional GA algorithms, where two children are 
produced per one application of the crossover operator, 
our crossover operator results in one child, which 
necessarily inherits the dominant characteristics from its 
parents and inherits the recessive characteristics if they are 
not blocked by the dominant genes of the same type. 
Logically, we chose more desirable characteristics 
(depending on a specific application) to be denoted by 
dominant genes, as we wish them to “override” the less 
desirable ones when performing crossover between two 
individuals. The crossover operator based on 
dominant/recessive genes has to be defined individually 
for each specific problem and its representation. 

The mutation operator introduces diversity into a 
population by modifying a small portion of newly formed 
solutions in a random manner. We do not use this operator 
since it would affect the results in an unwanted manner. 
Namely, we want to extract useful information contained 
in the corpus and mutation would distort this information 
by randomly changing it. 

Generally in GAs, once all the new individuals have 
been evaluated, the fittest ones replace the appropriate 
number of the less fit old solutions, thus forming a new 
population. In our approach the evaluation of the fitness is 
redundant because the crossover based on 
dominant/recessive genes guarantees for the offspring to 
be fitter than both of its parents. It, therefore, replaces 
both of its parents in the next population. Each population 
formed in this way is referred to as a generation. This 
process is repeated from generation to generation. In each 
iteration, the number of individuals in the population is 
reduced by replacing a pair of parents with their child. By 

successively substituting recessive genes by dominant 
ones, we progressively refine a set of context features. 
Eventually, this results in a single individual that 
comprises all features determined by dominant genes 
present in the initial population. In other words, there is 
only one individual remaining, which is fitter than all of 
its antecessors, and which describes the context 
information that is tuned with respect to the information 
contained in the training corpus.  

3. Case study: tuning verb complements 
We will illustrate the proposed method by using a case 

study, which relates to the problem of complementation 
patterns for domain specific verbs. More precisely, we are 
interested in classes of terms that are typically selected as 
arguments for the considered verbs. We restricted the tests 
to the field of molecular biology. 

3.1. Problem description 
By looking at the context of an isolated verb 

occurrence it is difficult to predict all term classes that can 
be combined with the given verb. On the other hand, the 
whole “population” of terms complementing a specific 
verb is likely to provide a certain conclusion about that 
verb with respect to its complementation patterns. This 
was a primary motivation for using GA as it operates on a 
population of individuals (in our case, represented as 
sequences of terms) as opposed to a single individual. 
This fact also makes the approach robust since it does not 
rely solely on every specific instance of verb-term 
combination to be correctly recognised. A whole 
population of terms complementing a specific verb 
captures some properties of allowed term-verb 
combinations. Our goal was to tune these properties so as 
to preserve all the term classes that can complement a 
given verb, but to minimise overgeneralisation of the 
results at the same time. 

3.2. Initial population  
The initial population consists of terms collected from 

a corpus by using domain specific verbs as anchors. A 
number of most frequently used verbs are extracted from a 
corpus of 2008 abstracts retrieved from the MEDLINE 
database (MEDLINE, 2002). The number of verbs is than 
reduced by eliminating general verbs that are frequently 
used in scientific papers, but which, on the other hand, are 
not domain specific (e.g. observe, demonstrate, 
explain, etc.). We kept top 21 most frequent verbs, each 
of which is than analysed individually in order to deduce 
its domain specific frame (i.e. the type of terms that can be 
used as arguments of the verb in question). 

We adopted a heuristic approach to extracting verb 
arguments, i.e. the terms that make up the initial 
population. First, we noted that transitive verbs dominated 
the list of the most frequent domain specific verbs (see 
Table 1). Only 2 out of 21 verbs were intransitive, though 
largely linking two entities based on the following pattern: 

 
<term> <verb> with <term>
(e.g. aryl_hydrocarbon_receptor interacts
with estrogen_receptor_alpha)



denoting the existence of a certain relationship between 
two terms. Further, purely transitive verbs mainly follow 
two patterns depending on whether they are used in an 
active or passive form. The pattern for the verb used in 
active is the following: 
 

<term> <verb> <term> 
(e.g. C_terminal_tail inhibits the
Pitx2_protein) 

 
The following pattern describes the passive usage of a 
verb: 
 

<term> <verb> by <term> 
(e.g. chain_promoters were inhibited by
C/EBPbeta_isoforms) 

 
Finally, the verbs that have both transitive and 

intransitive sense are predominantly used in the former 
sense in the corpus, in which case the same patterns 
mentioned for transitive verbs are applicable.  
 

# of verbs VI or VT example 
2 VI compete, interact 
8 VT activate, induce, repress 

11 both bind, mediate, stimulate 
 

Table 1: The distribution of domain specific verbs 
 

We expected for each of the analysed verbs to be 
complemented by a term in both left and right context. 
However, it is not obligatory for a term to be a direct 
neighbour of a given verb, e.g.: 

a protein that activates transcription
of a large number of viral_genes 

We, therefore, did not limit ourselves only to 
extraction of terms immediately preceding/following a 
verb or identifying its subject/object, but have instead 
used a knowledge-poor approach in which we extracted 
the terms closest to the verb in its left and right contexts 
respectively without crossing the sentence boundaries. 
This is done by defining the appropriate local grammars in 
a text mining software developed within the BioPATH 
project. Here is an example of a local grammar according 
to which the terms are to be extracted, where we covered 
all morphological forms of the verb inhibit including its 
nominalisation: 

<right-context> → <verb> <non-term>* <term>
<verb> → inhibit( ε | s | ed | ing | ion )
 

Once the word sequences that match the defined 
pattern are identified in the corpus, the terms used in 
conjunction with the given verb are extracted and the 
duplicates are eliminated. These terms constitute the 
initial population of the GA.  

3.3. Dominance relation  
The output of the GA should be a sequence of terms 

corresponding to the concepts that include all other 
concepts denoted by terms in the initial population either 
as its (in)direct subclasses or instances. This output is 
obtained by iteratively applying a crossover operator 
based on a partial order relation induced by a domain 
specific ontology (Figure 1) developed within the 
BioPATH project.  

Figure 1: An excerption from a domain specific ontology



A few definitions are needed to describe the way in 
which the crossover is applied. Let us first define 
precisely the genotype representation that will be used 
henceforth. If t1,..., tn are terms, then the disjunction t1 + ... 
+ tn is a genotype, where the disjuncts t1,..., tn are genes. 
We use a GA in order to generate a hypothesis about the 
term classes used in conjunction with a specific verb, 
based on the information contained in the corpus and the 
ontology. More precisely, we are interested in a minimal 
genotype representation, where this optimality condition is 
two-dimensional. Namely, we want to minimise both the 
length of a genotype (i.e. to minimise n in t1 + ... + tn) and 
the depth of each individual gene in the ontology. In order 
to achieve this goal we use a selective breeding strategy 
based on the crossover operator that we now introduce. 

In general, let terms t1 and t2 be the genes belonging to 
two different parents. We say that t1 dominates t2 (i.e. t2 is 
recessive with respect to t1) iff t1 is an antecessor of t2 in 
the ontology. A term in one parent is also recessive when 
it has no ancestor among terms in the other parent.  

3.4. Crossover operator 
Let us first intorduce the crossover operator through 

examples. If we apply the crossover operator to two 
parents:  
 

glucocorticoid_receptor  
 

human_glucocorticoid_receptor 
 
we would like their child to have a genotype 
glucocorticoid_receptor since it is more general, 
i.e. placed higher in the ontology in the path connecting 
the two terms (see Figure 1). Therefore, we will say that 
the first gene dominates the second. Further, consider 
what we would like to be a child’s genotype if the parents 
have the following genotypes: 

glucocorticoid_receptor +  
thyroid_hormone_receptor_alpha
 

human_glucocorticoid_receptor +  
thyroid_hormone_receptor 

 
The preferred result should be: 
 

glucocorticoid_receptor +  
thyroid_hormone_receptor 

 
as glucocorticoid_receptor dominates human_
glucocorticoid_receptor and thyroid_hormone_
receptor dominates thyroid_hormone_receptor_
alpha (see Figure 1). Finally, if the crossover operator 
should be applied to the following pair: 
 

glucocorticoid_receptor + CREB 
human_glucocorticoid_receptor +  
thyroid_hormone_receptor 

 
the result should be glucocorticoid_receptor + 
CREB + thyroid_hormone_receptor, as human_
glucocorticoid_receptor is the only recessive gene 
blocked by a compatible dominant gene in this case. 
Generally, a child is determined by replacing all recessive 
genes by their dominant counterparts (i.e. their antecessors 

in the ontology), and then forming the union of all genes 
found in its parents. Note that it is not necessary for every 
recessive gene to have a dominant counterpart when to 
parents are combined. If that is the case, then such a 
recessive gene will be inherited by the child.1 

The crossover operator can be formally introduced as 
follows. Let p1 and p2 denote two individuals t1

1
 + ... + tn

1 
and t1

2
 + ... + tm

2 respectively. A child resulting from a 
crossover operator applied on the two individuals is 
obtained as a result of the following pseudo-code: 
 

for all genes ti
1 in t1

for all genes tj
2 in p2

if ti
1 is an antecessor of gj

2

then flag gj
2;

else if tj
2 is an antecessor of ti

1

then flag ti
1;

collect all non-flagged genes;
the child of p1 and p2 is a disjunction
of the collected genes;
 

Figure 2: The crossover operator 
 

Since the dominance between genes is defined through 
the partial order relation induced by the ontology, which is 
transitive, the order in which individuals are bred is of no 
importance, i.e. the crossover operator has the associative 
property. This fact gives rise to parallel processing of 
corpora: it can be used to accelerate the processing of an 
individual corpus, but it also gives way to the possibility 
of merging the results obtained from several corpora. 

 
Verb Initial population sample Result 

creb
estrogen_receptor
glucocorticoid_receptor
hmg
human_glucocorticoid_receptor
protein
retinoic_acid_receptor
thyroid_hormone_receptor

bind 

v_erba

protein 

glucocorticoid_receptor
mineralocorticoid_receptor
pml
protein
rar_rxr_heterodimer

inhibit 

thyroid_hormone_receptor_alpha

protein 

androgen_receptor
creb
estrogen_receptor
glucocorticoid_receptor
human_glucocorticoid_receptor
mineralocorticoid_receptor
protein
rar_rxr_heterodimer

mediate 

retinoic_acid_receptor_alpha

protein 

Table 2: The results for verbs bind, inhibit,  
and mediate 

                                                      
1 In future work we plan to experiment with a controled mutation 
operator that would replace the remaining recessive terms with 
their nearest common antecessor in case the distance between the 
antecessor and the given terms is less than a given threshold. 



 
Figure 3: An example of crossover between the context terms for the verb bind

 
As an example, Figure 3 illustrates a sequence of 

generations of the GA, whose individuals represent terms 
that can complement the verb bind. The initial population 
is extracted from the corpus in the way described earlier in 
this section. The crossover operator is applied to the pairs 
of individuals,2 as illustrated in Figure 3. Since the 
crossover operator is associative, the order in which we 
apply the crossover operator will not affect the result. We 
have run the proposed GA for the selected verbs (21 in 
total). In Table 2 we show the results for three of the 
verbs. 

4. Applications 
We have foreseen at least four potential applications of 

the described GA: term clustering and classification, term 
sense disambiguation, verb subcategorisation, and verb 
class disambiguation. Let us now discuss these 
applications in more detail.  

4.1. Term clustering/classification  
Automatically recognised terms should be related to 

existing knowledge and/or to each other. This entails the 
fact that terms should be classified or clustered so that 
semantically similar terms are grouped together. 
Classification and/or clustering of terms are indispensable 
for improving information extraction, knowledge 

                                                      
2 When there is an odd number of individuals in the population, 
one of them is simply passed to the next generation without 
being combined with another individual. 

acquisition, and document categorisation. Classification 
can also be used for efficient term management and 
populating and updating existing ontologies in a consistent 
manner.  

All the results presented in the previous section have 
been obtained by running the GA on a set of terms 
complementing a specific verb, but which are also already 
classified within the ontology used to establish a 
dominance relation between terms. However, it is also 
possible to run the GA on a wider set of terms, in which 
case the newly recognised terms (i.e. the ones not found in 
the ontology) will be always passed to the offspring as 
non-classified terms cannot be dominated by other terms. 
This finally results in such terms being present as genes in 
the final population. All the genes defining an individual 
in the final population can be than divided into two groups 
based on the criterion of their (non)existence in the 
ontology. The terms that are present in the ontology are 
candidate classes for the newly recognised terms. For 
more fine-grained results the terms placed close to the root 
of the ontology should be removed from the initial 
population, thus being unable to override the terms found 
lower in the hierarchy. The depth up to which the terms 
are to be removed from the initial population may be user-
specified, and it indirectly corresponds to the notion of 
distance in the classical clustering algorithms (Fasulo, 
1999). In order to link the newly recognised terms to 
specific candidate classes, we can use a hybrid similarity 
measure (Nenadic et al., 2002). The candidate classes for 
each new term can be ranked based on the similarity value 



calculated for the new term and a term describing a 
candidate class (and/or its subordinate terms). This way 
the automatic ontology update can be supported 
straightforwardly (Bisson et al., 2000). 

4.2. Term sense disambiguation 
Dealing with term sense disambiguation is crucial for 

classifying terms and ontology populating. The 
appropriate term sense is usually discovered by examining 
the similarity between the given term and its context. The 
described GA can be used for term sense disambiguation 
as well, which is essential for resolving terminological 
confusion occurring in the field of molecular biology. 

Term sense ambiguities occur due to one-to-many 
correspondence existing between terms and the concepts 
they describe (e.g. GR is an acronym for both 
glucocorticoid_receptor and glutathione_re-
ductase). Verbs are useful in resolving this type of 
ambiguity once it is determined which classes of terms 
can be used as its arguments, which is exactly what is 
determined by our GA algorithm. For example, the two 
senses of the term mentioned above may be distinguished 
by analysing its context. Once the verb with which the 
term is used as an argument is identified, we can use the 
information attached to this verb to adopt the appropriate 
meaning of the term: 
 

. . .  GR catalyses electron transfer . . .  
 

The knowledge of glucocorticoid_receptor 
being a nuclear_receptor and glutathione_
reductase being an enzyme is represented in the 
ontology. In combination with the knowledge about 
complementation patterns for the verb catalyse (it is 
combined with the terms belonging to the class of 
enzymes) acquired from the corpus, we can eliminate 
glucocorticoid_receptor as an interpretation of GR 
in the given example. 

4.3. Verb subcategorisation 
Verb subcategorisation frames tend to vary in different 

sublanguages. The results of the GA can be used for 
domain-specific verb subcategorisation based on the 
similarity between the term classes complementing the 
verbs. More precisely, the disjunctions of term classes 
attached to the verbs by the GA can be compared to 
estimate the degree of their overlapping (common 
disjuncts and the existence of IsA relationship between the 
disjuncts in two respective terms). For instance, the three 
verbs shown in Table 2 can belong to the same class since 
all of them describe relations between the entities of the 
same type, proteins in this case.  

4.4. Verb class disambiguation 
Finally, verb class disambiguation can be performed in 

a way similar to term sense disambiguation described 
earlier. A term used in conjunction with an ambiguous 
verb is matched against the disjunctions of term classes 
attached to the verbs by the GA in order to point to the 
correct interpretation of the verb. In the following 
example: 

the doctor interacts with a patient
 
the knowledge on the terms doctor and patient can be 
used to eliminate a potential interpretation of the verb 
interact referring to a biochemical reaction between 
proteins. 

5. Conclusions 
We described a general GA that can be easily adapted 

to operate on contexts of specific linguistic entities at 
various levels. At lexical level, specific words are in the 
centre of the context (Nenadic et al., 2001). At syntactic 
level, context of specific syntactic classes (e.g. nouns, 
transitive verbs, etc.) or structures (e.g. noun phrases, 
prepositional phrases, etc.) are considered. At semantic 
level, we deal with concepts denoted by semantic classes 
in domain specific corpora. 

In this paper, we employed the algorithm at semantic 
level in order to learn complementation patterns for 
specific verbs in the domain of molecular biology. We 
explained how these patterns could be subsequently used 
as a platform for solving a variety of other problems in 
terminology management, e.g. term clustering/classifica-
tion, term sense disambiguation, verb subcategorisation, 
and verb class disambiguation. 

This case study together with the case study from 
previous work (Nenadic et al., 2001) shows that the 
concept of using dominant and recessive genes as a basis 
for a crossover operator in GAs is a simple idea that can 
be easily adapted for a variety of problems in NLP. This is 
done by choosing an appropriate problem representation 
and then defining dominant and recessive genes in terms 
of the preferred solution to the problem. 

Our further work will be concerned with building 
applications, described in Section 4, on top of the 
described GA. 
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