
Leo: an Architecture for Sharing Resources for Unification-Based Grammars

Jason Baldridge
�
, John Dowding

�
, Susana Early

�

�
Division of Informatics, University of Edinburgh

2 Buccleuch Place, Edinburgh, United Kingdom, EH8 9LW
jmb@cogsci.ed.ac.uk

�
Research Institute for Advanced Computer Science

Mail Stop T27A-2, NASA Ames Research Center, Moffett Field, CA 94035-1000�
jdowding,searly � @mail.arc.nasa.gov

Abstract
Many mature systems for parsing unification-based grammars have been developed over the last two decades. They incorporate a variety
of design decisions both in implementation and in the representations they use for grammatical information. The Leo project aims to
provide an architecture for automating the sharing of grammatical resources among various systems so that one system can take advantage
of specialized algorithms and tools that are implemented for the representations used by another. The project furthermore seeks to learn
about best practice in the design of these representations and encode their principles in a new XML-based format. This paper describes
initial work toward creating the Leo architecture and tools that convert between different representations.

1. Introduction

Over the years, many parsing systems involving broad
coverage grammars and lexicons have been built by teams
of highly skilled linguists and computer scientists. Requir-
ing many years of development, such resources come at
substantial cost. Unfortunately, these systems have used
different and non-compatible grammatical representations;
barring a few exceptions, these grammars and lexicons
were not sharable, and the algorithms developed in one sys-
tem could not be used with grammars developed in others.

Within the last two decades, there has been increas-
ing interest in grammars developed in declarative repre-
sentations and in formalisms which make significant use
of complex feature structures and unification. These sys-
tems include Definite Clause Grammars (DCGs) (Pereira
and Warren, 1980), PATR (Shieber, 1984), Alvey Natural
Language Tools (AVNLT) (Boguraev et al., 1988), the Core
Language Engine (CLE) (Alshawi, 1992), Gemini (Dowd-
ing et al., 1993), the Linguistic Knowledge Builder (LKB)
(Copestake, 2001), XTAG (Doran et al., 2002), and Grok
(Baldridge and Bierner, 2002). While the representations
used by these systems have much in common, they also
each have significant individual differences.

The Leo project aims to facilitate the sharing of gram-
matical and lexical resources developed under one system
with the algorithmic components (parsers, generators, etc.)
developed under another. One example where this would
be quite desirable is the production of a language model
for speech recognition based on a given grammar, such
as that done for Gemini grammars and the Nuance speech
recognizer (Rayner et al., 2000b). Excellent tools exist to
provide a context-free approximation of Gemini grammars
to improve speech recognition performance and ensure the
speech recognizer only produces strings that the full syntac-
tic grammar can handle. If grammars of non-Gemini sys-
tems can be converted into Gemini grammars, their users
can utilize this complex algorithm.

Sharing of grammatical resources is also motivated by

a desire to evaluate and compare systems on compara-
ble data. For example, John Carrol’s (1994) experiments
comparing AVNLT parsers with the CLE parser on the
same grammar required converting the AVNLT grammar
to a common DCG-like representation. Similarly, sharing
grammars across systems can allow duplication of scien-
tific results. When Kiefer and Krieger (p.c.) wanted to du-
plicate the results in (Dowding et al., 2001) and compare
them with (Kiefer and Krieger, 2000), they had to port the
grammar used in that paper by hand from the Gemini no-
tation into the Type Description Language (TDL) notation
(Krieger and Shäfer, 1994).

We have implemented procedures to automatically con-
vert grammars represented in the Gemini’s Typed Unifica-
tion Grammar (TUG) representation into an XML-based
grammatical representation (and back), and from this XML
format into the TDL notation used in the LKB. Thus, we
can demonstrate grammars originally written in Gemini be-
ing used for parsing and interpretation by the LKB.

In addition to these practical goals, Leo is also moti-
vated by the greater research issue of how to best repre-
sent grammars. We expect that by examining these systems
and formalisms in the level of detail required to convert be-
tween formalisms, much will be learned about what are the
best generalizations across systems, what is core to each
approach, and what is peripheral.

The structure of the paper is as follows. � 2 outlines
the overall architecture of the Leo system. � 3 describes the
components of Leo, which are now publically available un-
der an open source license. � 4 highlights some of the details
of Gemini’s TUG representation and LKB’s TDL represen-
tation and shows how the conversion is performed between
them. � 5 outlines the considerable future work remaining
to be done, and � 6 concludes. An appendix is also included
that provides an index to the many terms and abbreviations
used throughout the paper.

2. The Leo Architecture
Any architecture attempting to extract the commonal-

ities of various systems and abstract away from their id-
iosyncratic differences must provide some means of stan-
dardization of the data structures involved and the relation-
ships predicated between them. Many data structures are
quite common in most systems and are easily translated
from one to the other. For example, consider how features,
which in their simplest form are comprised of an attribute
and an atomic value, are represented in Gemini, the LKB,
and Grok:

(1) vform=finite (Gemini)

(2) VFORM finite (LKB)

(3) � f a="vform" v="finite"/ � (Grok)

Such structures are trivial to translate. However, the sit-
uation gets more complicated very quickly: both Gemini
and the LKB permit the values of features to be recursive,
whereas Grok does not. Gemini relies on recursive feature
structures to handle gap-threading, which Grok eschews in
favor of a pure categorial grammar analysis that does not
employ gaps. In the LKB, recursive (typed) feature struc-
tures are the representation for virtually all grammatical in-
formation, whereas Gemini uses syntactic categories that
have recursive feature structures (of less global impact) at-
tached to them. Feature values in Gemini and Grok can
contain boolean values, whereas the LKB supports them
only as a special case. These differences all lead to serious
divergences in the way that similar data structures are used
to define different kinds of grammars.

When we consider the relationships predicated between
different data structures in a grammar, the situation be-
comes yet more complex. LKB grammars are defined as
a type hierarchy in which inheritance plays a major role.
Grok permits the declaration of one category type (e.g., the
category for transitive verbs) to inherit the specifications of
other types (e.g., the intransitive category), but grammars
nonetheless can be defined entirely without such inheri-
tance and there is no use of inheritance outside this context.
Gemini does not utilize inheritance of any kind. Both the
LKB and Grok are lexicalized, whereas Gemini is not.

Finally, there are declarations which are of a system
specific nature. Some systems reference programming lan-
guage specific data structures, such as Gemini’s references
to Prolog list types “[]” and “[|]”. Systems also sup-
port meta-declarations which provide instructions to the al-
gorithms in order to improve performance or indicate where
certain types of information will be found in a given gram-
mar. For example, an LKB grammar is generally accompa-
nied by a series of Lisp statements that tell the LKB how to
tie orthography to lexical entries, how to display the output
of a parse, etc.

Ideally, the goals of Leo would be met by the creation
of a universal core representation into which all unification-
based grammars could be mapped. We thus envision a
star shaped architecture such as that depicted in Figure 1
in which conversion tools are written to translate grammar
resources to and from each of the various systems and the
core representation.

Core
Representation

Grok

Gemini LKB

Figure 1: Star architecture with core representation.

For a number of reasons, XML is a natural choice as the
representation language for such a standard. First, it is an
emerging standard for data representation that allows struc-
tured representations of typed objects. XML allows a clean
separation between the underlying structure, the DTD or
schema that provides the semantics for that structure, and
the data itself. Secondly, XML is not intrinsically tied to
any particular natural language or programming language.
Third, using standard tools available for a wide range of
programming languages, the validity of an XML document
can be verified with respect to a DTD or a schema, thus re-
ducing the programming burden for utilities which manip-
ulate and use the data held in the document. Finally, stan-
dardization of data representations through XML facilitates
the creation of system independent visualization tools.

Despite the obvious appeal of such a core representa-
tion, it may not be attainable, nor is it presently practica-
ble as there is still much to learn about the landscape of
different systems and their representations. Nonetheless, a
given representation will share more traits with some rep-
resentations than it will with others. This leads naturally
to a strategy by which we move toward the creation of the
core representation incrementally by building a network of
XML grammar representations (XGRs). This groups simi-
lar systems and thus shortens the conversion “distance” be-
tween many of the systems. The XGRs thus act as local ver-
sions of the ideal core representation. Even though a uni-
versal core representation is lacking in this architecture, it
nonetheless provides an XML core layer that places system
specific representations on the periphery and facilitates the
creation of translation highways between different XGRs in
that layer. This architecture is intended to grow rather or-
ganically, taking advantage of commonality wherever pos-
sible, without mandating design decisions upon others or
leaving them out due to incompatibility.

For example, Combinatory Categorial Grammar (Steed-
man, 2000) (CCG) and Tree-Adjoining Grammar (Joshi,
1988) (TAG) are both mildly context-sensitive formalisms
(often lexicalized in implementations). While they do have
quite different properties, they perhaps share more in com-
mon than they do with many other frameworks. For exam-
ple, both are lexicalized, both use a small set of essentially
invariant (and similar) rules, both have an extended domain
of locality via categories or elementary trees, and both as-
sociate non-recursive feature structures with syntactic cat-
egories. If this commonality can be captured by, for ex-
ample, a Mildly Context-sensitive Grammar XGR (MCSG-
XGR), then implementations of CCG and TAG such as
Grok and XTAG need only provide translations to that,

from which point translators to and from the MCSG-XGR
can be used to create TUG or TDL grammars, as depicted
in Figure 2.

MCSG
XGRGrok XTAG

TUG
XGRGemini TDL

XGR LKB

Figure 2: Networked architecture.

The networked architecture outlined above demon-
strates how systems like the LKB and Grok can take ad-
vantage of the algorithm for converting Gemini grammars
to language models for speech recognition. For the LKB,
a translator would have to be provided between TDL spec-
ifications and TUG-XGR. The already existing utility for
turning TUG-XGR into the Prolog terms of Gemini’s XGR
would then handle the next conversion, after which Gemini
could operate on the resulting converted grammar. In the
case of Grok, given that the network can translate between
MCSG-XGR and TUG-XGR specifications, the Grok de-
velopers only need to provide the means to produce MCSG-
XGR from CCG-XGR. The rest of the work is then carried
out within the network. Although these converted gram-
mars may suffer some deterioration at each step depending
on the quality of the translations, the procedure would at
least allow the Gemini algorithms to be used where they
could not be otherwise. (In fact, the limited expressive
power of these language models inherently forces many as-
pects of the grammar to deteriorate no matter how robust
the conversion is). The resulting language model is then
used at the speech recognition stage, after which the origi-
nal grammar would still be used for actual parsing.

This example highlights the redundancy available in the
architecture. It might be far easier to develop a translator
from Grok’s representation to MCSG-XGR than from Grok
to TUG-XGR, so Grok grammars could go through three
levels of conversion to reach Gemini. However, if the dete-
rioration of the grammar was too high through this path, a
translator could be written, perhaps at greater development
expense, to convert directly to TUG-XGR. The decision is
then one of the cost/benefit variety: a quick solution might
get much of the way toward the desired result and be bet-
ter than nothing at all, but the more elaborate and accurate
solution would nonetheless be an option.

It may be that a satisfactory core representation can
never be defined, but we believe it is important to keep
that ultimate goal in mind. As the networked architecture
is developed, the points of commonality will be extracted
as far as possible in order to create archetypical represen-
tations which do not necessarily stem from any particular
system. The XGR for a given system’s data representa-
tions will thus be defined by importing common structures
in conjunction with system specific declarations, thereby
reducing the complexity of tools for converting resources

from that system to a form processable by others. Once
these archetypical representations have matured and stabi-
lized, they can be utilized to create an approximation of the
core representation.

Once some approximation of the core representation
has stabilized, algorithms such as the one which creates lan-
guage models from Gemini grammars can be implemented
based off that XGR, completely bypassing issues such as
dependence on Prolog and Prolog data structures and cre-
ating a more direct line from other systems to the represen-
tation used by the algorithm. This is precisely one of the
main purposes for developing this architecture and is what
we mean by the sharing of linguistic resources. It is not in-
tended to be just the sharing of data, but also the algorithms
for manipulating that data.

Given that the architecture is meant to grow through
the involvement of different groups targeting either Leo’s
or each other’s representations, it is crucial that the core fa-
cilities provided by the architecture be freely accessible and
modifiable by these groups to improve the speed of Leo’s
uptake and its convergence on better representations. We
thus felt that it was imperative for Leo to be an open source
project which encourages code reuse and modification.

3. Resources
The implementation of the architecture described in the

previous section is in its initial phases of development and
several resources are already available. A project space
has been set up on the Sourceforge site for open source
development (http://sf.net), providing Leo with a
wide range of project utilities, including web space, de-
veloper and anonymous CVS, release management, and
discussion forums. Leo is associated with the OpenNLP
project (http://opennlp.sf.net), which endeavors
to improve the interaction of different open source projects
for natural language processing at both the level of code
and and the level of communication and collaboration.

A number of facilities have been written to commence
the networked architecture and provide examples of its use.
These include the following:

� an XML schema acting as a TUG-XGR

� a converter for transforming TUG grammar instance
into HTML for improved visualization

� Java classes for working with Prolog terms and a
parser which builds Java Prolog objects from Prolog
statements

� Java classes for representing TUG grammars

� Java classes for working with TDL and a parser which
builds Java TDL objects from TDL statements

� a converter between Gemini grammars and the TUG-
XGR

� easy validation of a TUG grammar instance against the
TUG-XGR

� a converter from the TUG-XGR to TDL

� a robust and flexible build system and scripts for easily
invoking the various algorithms

Together, these facilities lay the foundations and act as ex-
amples for building Leo’s network of XGRs and converting
between them. Some are still incomplete as they have thus
far been used to test the feasibility of the overall approach
and the efficacy of the technologies chosen for implemen-
tation.

Most of the algorithmic components have been thus far
implemented in Java for platform independence and be-
cause of the availability of excellent tools, such as Xerces
and JDOM, for working with XML in Java. However,
there is no particular barrier to eventually including algo-
rithms written in different languages. Also, the visualiza-
tion utility for tranforming TUG grammars into HTML is
implemented as a XML style sheet which is invoked by an
XSLT processor, thereby avoiding any programming lan-
guage whatsoever.

Leo is presently bifurcated into two sub-projects. The
first is a simple Java package for handling Prolog terms,
and the second is Regulus, which holds the XML declara-
tions for algorithms for working with specific formalisms
and converting between them. It is envisioned that other
sub-projects will be added for further functionality, such
as parsers and user interfaces which act upon Leo’s data
structures natively and otherwise enhance the utility of the
XGRs defined in Leo. The following sections provide fur-
ther detail on the existing components.

3.1. The TUG XML Grammar Representation

The XML Grammar Representation for TUG gram-
mars is provided in Leo as the XML schema tug.xsd.
At present, this schema is mainly a transparent transla-
tion of the declarations used in Gemini grammars. How-
ever, as more schemas are defined for other formalisms, the
commonalities can be extracted out and the schemas for
different grammars will instead import the XML element
declarations which they share with others. Nonetheless,
the present schema provides an example and demonstrates
many of the advantages of using XML and using schemas
instead of DTDs to define validity. In addition to permitting
all of the validation capabilities of DTDs, schemas allow a
much stronger declaration of typing than is possible with
DTDs. They permit a limited amount of polymorphism of
XML elements, which might be particularly useful if the
schema for a given formalism is actually built through the
importation of common structures which are then slightly
customized for that formalism. They furthermore provide
the means to use regular expressions to enforce certain for-
mats for textual elements, a simple example of which is that
for Prolog variables:

<xsd:simpleType name="varString">
<xsd:restriction base="xsd:string">

<xsd:pattern value="[A-Z_][\w_]*"/>
</xsd:restriction>

</xsd:simpleType>

Another capability of schemas is that uniqueness of at-
tributes can be declared with local scope, whereas DTDs

only permit uniqueness globally. While not used at present,
this could be well suited for ensuring that variables are
properly scoped in grammar elements, e.g. syntactic rules.

The advantage of these capabilities is that it simpli-
fies the work needed when producing utilities to work
with grammars in XML format. They can be automat-
ically validated against the appropriate schema using the
validateTug script provided with Leo, thereby permit-
ting early detection of a large class of potential errors. This
will be particularly useful when writing converters from
grammars of one XGR to another — many problems in
the conversion will be detectable through validation before
even attempting to run them on a system that actually uses
the target grammar.

A further advantage of schemas over DTDs is that doc-
ument fragments can be more easily validated since there
is no assumption of a document type element as there is
with DTDs. Thus, an entire TUG grammar might be con-
tained within one XML document and be checked against
tug.xsd, but also a sub-part of the grammar, such as the
lexicon, can be checked against the same schema in isola-
tion. This will certainly be important since most systems
split their grammars over multiple files (lexicon, rules, etc.)
for the purpose of modularity, and this capability will facil-
itate validation of grammars stored in such a manner.

3.2. Visualization

Another advantage of specifying grammars in XML is
the availability of related XML technologies. In an effort
to further improve the readability of the XML instance, it
may be transformed into a number of formats with XSLT.
Currently, Leo has an XSLT style sheet which transforms
a valid XML grammar based on the TUG-XGR and cre-
ates HTML pages via an XSLT processor. In this format,
the representation is still system independent and the data is
condensed, navigable via hypertext links, and more human-
readable. Since an XSLT style sheet operates on identify-
ing patterns in an XML instance, the present style sheet is
quite specific to the TUG-XGR. However, as more schemas
are defined for different systems and formalisms, this style
sheet may be easily extended or modified to accommodate
different patterns in various XML instances. Multiple style
sheets would allow the user to customize the organization
of the data in a familiar format or to output to different for-
mats for printing or viewing via a web browser.

3.3. Java package for working with Prolog

The opennlp.leo.prolog package defines Java
representations of Prolog terms and provides the means to
parse Prolog statements and turn them into Java objects.
Presently, these objects hold data and facilitate output in
both Prolog and XML form. In the future, these will be
extended to permit operations such as unification. Cur-
rently, this package does not cover all of Prolog, but was
built to cover at least the constructs which appear in Gem-
ini grammars. Though it is not yet complete, having a
general Prolog-to-Java parsing utility has greatly facilitated
the gradual extension of the coverage of Gemini constructs
in the TUG-XGR and testing the conversion of Gemini to
TUG-XGR on multiple grammars. This package has the

interesting side potential of becoming a useful Java tool for
working with Prolog.

3.4. Java TUG classes

The opennlp.leo.regulus.tug package defines
Java representations of elements defined in the TUG-XGR.
These classes can be used to build TUG grammars and out-
put them in either Prolog or XML form. A Java representa-
tion of a TUG grammar can be created from either a Gemini
grammar or an XML document conforming to the TUG-
XGR, though we eventually expect these two specifications
to diverge.

3.5. Java TDL classes

In a fashion similar to the previous two packages, the
opennlp.leo.regulus.tdl package defines Java
representations of TDL elements and provides the means
to parse TDL declarations and turn them into Java objects.
In addition to holding the data and facilitating output in
TDL format, several ease-of-use functions have been built
into this package to permit grammars to be created via Java
declarations. In this respect, the package is similar to the
JDOM package, which facilitates manipulation of XML
documents within the Java programming environment. One
of the most important features is that it enables one to hide
much – though not all – of the tedium involved in gener-
ating a TDL grammar within a Java program. The need
for this functionality arose during the creation of the TUG-
XGR � TDL converter, but it will be useful for any other
such conversion tasks which target TDL.

3.6. Accessing Leo

The homepage for Leo can be accessed at:

http://leonlp.sf.net.

Leo is licensed under the Lesser GNU Public License
(LGPL), which permits anyone to obtain the source code
to the system and in turn requires that any modifications
which are made to the system itself be made available in
return. In this respect, it is the same as the basic GNU Pub-
lic License (GPL); however, it is different in that it permits
usage of Leo software within a piece of proprietary soft-
ware. This licensing scheme will be attractive to entities
who work with linguistic software with restrictive licens-
ing conditions, but wish to take part in the Leo architecture.
While not requiring that users of Leo open up their own
code (as the GPL does), the LGPL still ensures that any im-
provements to Leo itself will be returned to the community.

Leo utilizes a number of other open source tools, in-
cluding JDOM, Xerces, Saxon, Jakarta Ant, the ANTLR
parser generator, and the OpenNLP core package. Details
for these tools are available in the documentation held in
the main source code tree for Leo.

4. Converting between Grammar
Representations

In this section, we describe in some detail the conver-
sion from Gemini format into the TUG-XGR, and in turn
into TDL format for use in LKB. We begin with a descrip-
tion of the format of Gemini and TDL grammars.

4.1. Gemini’s Typed Unification Grammars

Gemini uses a notation that is based on Prolog term
syntax, and similar to that used in the Core Language En-
gine (Alshawi, 1992). The terminology that is used is that
grammar rules contain one or more categories, which are
defined as an atomic major category symbol (e.g., nouns,
verbs, etc.), and an unordered list of feature assignments
(e.g., agreement, verb forms, etc.). Each feature is de-
fined to contain values from a specific value set which de-
fine the underlying types. Some features can be defined
to take category-values, so fully recursive complex feature-
structures are supported. These definitions are illustrated
by the following examples:

syn(s_np_vp, basic,
[s:[],
np:[num=Num],
vp:[num=Num]]).

def_category s with_features [].
def_category np with_features [num]

enable_lexicon.
def_category vp with_features [num].

syn def_feature num with_value_set
num_types.

num_types def_value_set [sing,plur].
vforms def_value_set
[[base,imperative,finite,ing,en,to]];

enable_boolean_ops.

In this grammar fragment, there is one syntactic gram-
mar rule whose name is s np vp and is in the basic
rule group1. This rule contains 3 categories, s:[],
np:[num=Num], and vp:[num=Num], whose major
category symbols are s, np, and vp, respectively. The
def category expressions define s, np, and vp as cate-
gories, and enumerate their possible features. The category
np is further defined to be a possible lexical category with
the enable lexicon flag. The def feature expres-
sion defines num to be a syntactic feature whose possible
values are given in the set defined by num types, which
is further defined in the first def value set expression
to contain the two values sing and plur. A second value
set vforms is defined in the next line specifying that the
value set can contain boolean combinations of values com-
bined with disjunction and negation using the techniques of
(Mellish, 1988).

4.2. The LKB and the Type Description Language

Rather than using categories with (optional) attached
feature structures as the primary data structure, the LKB
uses typed feature structures in a type hierarchy to represent

1Gemini allows syntactic and semantic grammar rules to be
partitioned into independent rule groups, to allow independent
sets of rules to manipulated in a modular way. However, this parti-
tioning has never been put to use in an application and is redundant
with other techniques available in Gemini to facilitate partioning
the grammar.

all grammatical information. The hierarchy has a unique
root element, usually called *top*. A sub-hierarchy for
syntactic categories can be declared as follows:

cat := *top*
s := cat
vp := cat
np := cat

This only declares atomic subtyping, but attributes and val-
ues can be specified as well:

synsem-struc := *top* & [SYN cat]

The above declaration makes synsem-struc a subtype
of *top* and specifies it to have a feature named SYN
whose value must be of the cat type. To define a rule
similar to the s np vp given above for Gemini, we can
create a subtype of synsem-struc as follows:

s_np_vp_rule := synsem-struc &
[SYN s,

ARGS [FIRST [SYN np,
NUM #Num],

SECOND [SYN vp,
NUM #Num]]].

It is with this example that we see the recursivity of typed
feature structures. It also shows how variables are declared
in TDL, e.g. #Num. Notice that the value s for the attribute
SYN is indeed a subtype of cat as required by the defini-
tions of synsem-struc.

This manner of declaring grammatical information is
very clean in that grammar writers only ever have to work
with one kind of structure. It is also quite general and can
be as readily used for parsing categorial grammars (Villav-
icencio, 2000) as it can for Head-Driven Phrase Structure
Grammar (Pollard and Sag, 1994) (HPSG). Most grammars
include extra Lisp code and special type definitions to in-
form the LKB as to where to find important elements such
as orthography, rules, node names for parse trees, and se-
mantic representations. The LKB is thus an agnostic sys-
tem which liberates its users from theoretical constraints,
but this freedom does come at a certain cost since so much
choice is left up to the grammar writer. Fortunately, there is
extensive documentation for the system; for more details,
see (Copestake, 2001).

4.3. Conversion of Gemini grammars to the LKB

The process of converting a Gemini grammar into one
useable by the LKB involves two stages. First, the script
gemini2tug is invoked, which invokes Java algorithms
that parse the Gemini grammar, turn its declarations into
Java representations of Prolog terms, and then interprets
their contents to create a Java object representing a TUG
grammar. This object is then marshalled into XML for-
mat and saved as an XML document conforming to the
schema tug.xsd. Using the validateTug script, this
XML view of the TUG grammar can be validated against
the schema to check for errors in the conversion.

Next, the tug2tdl script is run on the TUG grammar
to invoke the procedure for converting it into TDL format

for use with the LKB. The basic strategy is to create a type
hierarchy that is modeled after many conventional hierar-
chies utilized in LKB grammars, but which is augmented
by extensions needed to convert TUG specific types and
values. Apart from the obvious concern surrounding the
production of expressions in correct TDL format, a number
of other issues, both trivial and non-trivial, arose during the
conversion.

The LKB requires some supporting Lisp declarations in
order to make a type hierarchy intelligible to it for parsing.
Script and settings files that give the LKB this information
are thus automatically included in the output of the conver-
sion. Also, the type definitions for supplying parse node
information to the LKB are created automatically during
the conversion so that categories in a parse tree are prop-
erly displayed.

Another trivial matter to resolve was the fact that some
TUG elements of different kinds have the same name. For
example, n as in the bare noun category and n as in yes/no.
The solution was to filter all different kinds such that the
TDL types they produce are unique. Thus, TUG cate-
gories like vp and np are given types of the form c*vp
and c*np, and valuesets such as number types are
v*number types.

The type hierarchy provided a natural solution to the
manner in which TUG grammars may associate a single
syntax rule with multiple semantic rules. A tier was created
in the hierarchy that contained only the syntactic informa-
tion for a rule, and the types of this tier are then extended
by multiple subtypes containing different semantic infor-
mation.

Another fairly simple issue was that string literals can
be used in a TUG rule. For example, consider a Gemini
rule which can be used for sentences such as who has the
most field goals:

syn(query_superlative_most, basic,
[query:[],
who, have_verb:[],
the, most, cumulative_stat:[]]).

In the TDL translation, it was necessary to treat these uses
of strings as categories by creating the *word* subtype
of cat, adding subtypes of *word* such as w*the and
w*most, and finally adding lexical entries which anchor
those categories, such as the entry for the given below:

l*the := lexeme &
[ORTH <! "the" !>,
SYN w*the].

Feature specifications are included as subtypes of cat
which specify the relevant feature’s attribute and the type of
its value. Categories which use those features then become
subtypes, via multiple inheritance, of each of the feature
types which the TUG grammar declares for them:

f*agr := cat & [AGR v*agr_vals].
f*vform := cat & [VFORM v*vforms].
c*vp := f*agr & f*vform

A more difficult problem is that boolean values are sup-
ported in Gemini, but not in the LKB. To solve this, a spe-
cial utility was written to build a sub-hierarchy for disjunc-
tive and conjunctive values. To avoid expanding all possi-
ble combinations, the grammar is probed for the boolean
combinations which are actually used and the hierarchy is
constructed with only those values.

Another more challenging issue is that TUG values
can be simple atoms and complex Prolog terms. A sub-
hierarchy defining Prolog terms was developed and com-
plex values use sub-types of the prolog-value sub-
type of value, which declares a feature PVAL of type
prolog-term. This sub-hierarchy is particularly crucial
for permitting the Prolog-based semantics of a TUG gram-
mar to be expressed.

TUG values can also be syntactic elements, such as
those used for gap threading. The use of such elements
creates sub-types of the category-value sub-type of
value, which declares a feature CAT of type cat. How-
ever, though these types can be represented, the converter
does not yet handle gap-threading. The gap problem is in-
teresting because TUG is not lexicalized and therefore can
simply include an empty rule which introduces the gap. The
LKB, however, is lexicalized and cannot utilize such rules.
The most apparent solution would be to apply the gap rules
to the rest of the rules to produce a further set of rules with
the gaps already instantiated. It should be straightforward
to do this once unification has been implemented for the
opennlp.leo.prolog package so that the appropriate
rules can be selected for such expansion.

Due to development time limitations, another issue
which has not been handled is morphological information.
Both Gemini and the LKB handle morphology in particular
ways which requires some care in the translation, but there
is no barrier in principle to handling morphology.

The utility can presently convert at least a medium-
sized TUG grammar such as NASA’s grammar for the Per-
sonal Satellite Assistant (PSA) demonstration (Rayner et
al., 2000a). Preliminary testing indicates that the number
of parses found by the converted grammar are the same as
those found by the Gemini parser for most sentences. LKB
parse times for sentences such as measure the temperature
and pressure in the crew hatch and lower deck and go to
the storage lockers are comparable to Gemini parse times
– under a quarter of a second. A full logical form is pro-
duced by the parse which is represented by a TDL term that
corresponds transparently to the Prolog terms built by the
Gemini parser.

The Gemini-to-LKB pathway thus stands as the first ex-
ample of the application of a series of grammar conver-
sion utilities according to the Leo architecture. Currently,
the utility converts directly to TDL since the TDL-XGR
is not fully developed. Thus, all error checking has so
far been done by loading the converted grammar into the
LKB. However, once the TDL-XGR is completed, it will
be a simple matter to output to XML and validate the gram-
mar against the schema before even attempting to load the
grammar in the LKB.

Because of the generality of TDL, it is expected that it
will be considerably more difficult to develop a generic tool

to convert TDL grammars to the TUG-XGR. It might be
necessary to provide converters between some standardized
usage of TDL to TUG-XGR, and then provide converters to
that standard within the scope of TDL.

5. Future Work
The obvious next step for Leo is to work on conver-

sion utilities to support other formalisms and systems and
thereby refining the architecture and creating an approxi-
mation of the gold standard XGR. Though Leo stems from
mostly practical goals, it is also motivated by the greater
research issue of how to best represent grammars. We ex-
pect that by examining these systems and formalisms in the
level of detail required to build translators, much will be
learned about what are the best generalizations across sys-
tems, what is core to each approach, and what is peripheral.
We furthermore expect that insight gained from working
with various representations will lead to improved modu-
larity in grammar declarations. For example, various rep-
resentations could be developed for different ways of en-
coding semantic information. Then, semantic information
could be paired with syntax in a modular way that allows a
given system to more easily support different encodings.

At some stage, Leo may also include a common set
of tools and test beds for evaluating grammars which hail
from diverse backgrounds. Because different formalisms
and implementations use different data structures and oper-
ations for combining them (and hence will exhibit a range
of computational power), the translation between any two
representations might lead to deterioration. An important
subtask of the Leo project will thus be to provide some
measure of the deterioration, if any, caused by translation
to and from different XGRs. This in turn would provide an
excellent formal basis for the comparison of various frame-
works with respect to their coverage given comparable (via
translation) grammatical resources.

The architecture described here thus provides a way of
empirically evaluating different frameworks and studying
to what extent a given grammar in a given formalism uti-
lizes the formal power it provides. Thus, by translating an
HPSG grammar to a context-free grammar, we may be able
to measure how much, if any, grammatical coverage is lost
in the process. The validity of the translation utilities them-
selves can be checked by translating grammars through
loops which return to the original format and checking for
errors and loss of coverage.

Finally, we aim to provide parsing, generation, and lan-
guage modeling components which directly utilize Leo’s
own XGR after it has stabilized. Leo will then act as a
highly functional open source NLP system which sits at the
center of a number of utilities for converting grammar re-
sources to its core representation and which itself operates
on a representation created to accommodate many perspec-
tives on the encoding of grammatical information.

6. Conclusion
We have described an architecture which aims to tackle

the diversity of grammar representations and enable sys-
tems to share resources more easily. Though we do not yet
propose an explicit standard representation, the architecture

initiates a strategy for bringing systems and representations
together in stages so that we can eventually converge on
that goal.

Initial components for implementing this architecture
have been created to demonstrate the utility of the tech-
nologies we have chosen and the feasibility of the approach.
The value of providing XGRs has been shown via the tools
for validation of grammar instances with XML schemas
and their transformation into HTML for improved visual-
ization. Most importantly, the conversion path for turning a
Gemini grammar into one useable with the LKB produces
a robust type hierarchy that appears to have similar perfor-
mance to the original grammar under Gemini.

7. Acknowledgements

The majority of the research reported in this paper was
performed at RIACS under NASA Cooperative Agreement
Number NCC 2-1006.

8. References
H. Alshawi, editor. 1992. The Core Language Engine.

MIT Press, Cambridge, Massachusetts.
J. Baldridge and G. Bierner. 2002. The Grok homepage.

http://grok.sourceforge.net.
B. Boguraev, J. Carroll, E. Briscoe, and C. Grover. 1988.

Software support for practical grammar development. In
Proceedings of the 12th Conference on Computational
Linguistics (COLING), pages 54–58, Budapest, Hun-
gary.

J. Carroll. 1994. Relating complexity to practical perfor-
mance in parsing with wide-coverage unification gram-
mars. In Proceedings of the 32nd Annual Meeting of the
Association for Computational Linguistics, pages 287–
294, Las Cruces, New Mexico.

A. Copestake, 2001. The LKB System. http://www-
csli.stanford.edu/˜aac/lkb.html.

C. Doran, B. A. Hockey, A. Sarkar, B. Srinivas, and F. Xei.
2002. Evolution of the xtag system. In A. Abeille and
O. Rambow, editors, Tree Adjoining Grammars, pages
371–404, Stanford, CA. CSLI Publications.

J. Dowding, J.M. Gawron, D. Appelt, L. Cherny, R. Moore,
and D. Moran. 1993. Gemini: A natural language sys-
tem for spoken language understanding. In Proceedings
of the Thirty-First Annual meeting of the Association of
Computational Linguistics, Columbus, OH.

J. Dowding, B. A. Hockey, C. Culy, and J. M. Gawron.
2001. Practical issues in compiling typed unification
grammars for speech recognition. In Proceedings of the
Thirty-Ninth Annual Meeting of the Association for Com-
putational Linguistics.

Aravind Joshi. 1988. Tree Adjoining Grammars. In David
Dowty, Lauri Karttunen, and Arnold Zwicky, editors,
Natural Language Parsing, pages 206–250. Cambridge
University Press, Cambridge.

B. Kiefer and H. Krieger. 2000. A context-free approxima-
tion of Head-Driven Phrase Structure Grammar. In Pro-
ceedings of the 6th International Workshop on Parsing
Technologies, pages 135–146.

H. Krieger and U. Shäfer. 1994. TDL: A type description
language for constraint-based grammars. In Proceedings
of the 15th International Conference on Computational
Linguistics, pages 893–899.

C. Mellish. 1988. Implementing Systemic Classification
by Unification. Computational Linguistics, 14(1):40–51.

F. Pereira and D. Warren. 1980. Definite clause grammars
for language analysis – a survey of the formalism and a
comparison with augmented transition networks. Artifi-
cial Intelligence, 13:231–278.

C. Pollard and I. Sag. 1994. Head-Driven Phrase Structure
Grammar. University of Chicago Press.

M. Rayner, B.A. Hockey, and F. James. 2000a. A compact
architecture for dialogue management based on scripts
and meta-outputs. In Proceedings of Applied Natural
Language Processing.

M. Rayner, B.A. Hockey, F. James, E. Bratt, S. Goldwater,
and J.M. Gawron. 2000b. Compiling language models
from a linguistically motivated unification grammar. In
Proceedings of COLING 2000.

S. Shieber. 1984. The design of a computer language for
linguistic information. In Proceedings of Coling84, 10th
International Conference on Computational Linguistics,
Stanford University, Stanford, California.

Mark Steedman. 2000. The Syntactic Process. The MIT
Press, Cambridge Mass.

A. Villavicencio. 2000. The use of default unification in a
system of lexical types. In Detmar Meurers, Shuly Wint-
ner, and Erhard Hinrichs, editors, Linguistic Theory and
Grammar Implementation, pages 81–96. ESSLLI.

A Index of Terms and Abbreviations
Due to the large number of abbreviations and terms con-

tained in this paper, we summarize them here.

CCG Combinatory Categorial Grammar

CVS Concurrent Version System

DTD Document Type Definition, a format for specifying
the semantics of XML documents.

GPL GNU Public License

HPSG Head-driven Phrase Structure Grammar

LGPL Lesser GNU Public License

LKB Linguistic Knowledge Builder

MCSG Mildly Context-Sensitive Grammar, includes TAG
and CCG.

TDL Type Description Language

TAG Tree Adjoining Grammar

TUG Typed Unification Grammar

XGR XML Grammar Representation

XML eXtensible Markup Language

XSL eXtensible Style Sheet Language

XSLT XSL Transformation, an extension of XSL.

	1108: 1108
	1109: 1109
	1110: 1110
	1111: 1111
	1112: 1112
	1113: 1113
	1114: 1114
	1115: 1115

