
How feasible is the reuse of grammars for Named Entity Recognition?

Katerina Pastra, Diana Maynard, Oana Hamza,
Hamish Cunningham and Yorick Wilks

University of Sheffield
211 Portobello Street, S1 4DP Sheffield, U.K.�

katerina, diana, oana, hamish, yorick � @dcs.shef.ac.uk

Abstract
In this paper, we investigate whether reusing existing grammars for NE recognition instead of creating them from scratch is a viable
solution to time constraints in developing grammars. We discuss three possible factors that hinder grammar reuse and we present our
corresponding empirical results, that encourage more widespread use of valuable existing resources.

1. Introduction
Promoting and supporting standardisation and reusabil-

ity in Natural Language Processing has been a core ac-
tivity of organisations worldwide. One would expect that
the more advanced a Natural Language Processing task be-
comes, the more reusable its automatic components would
get. However, this is generally not the case in Named
Entity Recognition (NE). Whereas Named Entity Recog-
nition Systems can achieve results that are very close to
human performance (Cunningham, 1999), the researchers
still build even the traditional, rule-based ones from scratch,
using solely some guidelines such as the ones provided in
the framework of the Message Understanding Conferences
(Chinchor et al., 1999). The lack of robustness and mod-
ularity of system architectures used, the incompatibility of
rule formalisms, the idiosyncrasy of the different applica-
tions for which the systems are built, and the differences in
the natural languages involved, discourage the integration
and reuse of independently developed grammars and other
resources. Clearly, the architecture used makes a big differ-
ence to the possibility of resource reuse (Grishman, 1997).
This is discussed briefly in Section 2., and at greater length
in (Maynard et al., 2002).

However, lack of a flexible architecture does not mean
that reusability of grammars and other resources is not fea-
sible, merely that it may be more difficult. There are addi-
tional factors which also hinder the reuse of named entity
recognition grammars. In this paper, we explore whether
these obstacles can be overcome, so that vital time can be
spent in adapting grammars to new domains and tasks or
extending their capabilities, rather than creating them from
scratch.

In the rest of the paper, we discuss three main obsta-
cles which can potentially hinder grammar reusability: the
rule formalism used for the grammar (Section 3.), the ap-
plication for which the system is being used (Section 4.),
and the (natural) language for which the application is de-
signed (Section 5.). For each of these, we give examples
of systems we have developed which have successfully sur-
mounted reusability problems.

2. Architecture
As has been discussed previously (Cunningham, 2000;

Maynard et al., 2002), system architecture is a potential

obstacle to the reuse of language resources. At the most
shallow level, if a language or processing resource cannot
easily be separated from the framework within which it was
developed, it is of little use to anyone not using that system.
Also, a rigid system architecture may constrain the way its
components can be used, so that even if they are separable,
they may require embedding in a similar framework in or-
der to be of use. An open architecture such as GATE (Cun-
ningham et al., 2002), which allows plug-in modularity of
language and processing components and does not commit
to any particular linguistic theory, contributes strongly to
the idea of reuse.

Software architecture can play an important role in the
task of achieving predictability and robustness in a lan-
guage engineering system (Maynard et al., 2002). Pre-
dictability of performance is clearly useful when adapting
a resource to a new application or domain, but predictabil-
ity of the effort and inputs to the construction process is
an equally important, though often neglected, issue. Infras-
tructural support can help improve predictability in system
development, via methods such as data visualisation for de-
bugging and measurement, deployment of components, and
automated performance measurement. For example, rele-
vance feedback software can aid greatly in the process of
grammar adaptation.

However, does this entail that flexible system architec-
tures such as GATE are a sine qua non for reusability, and in
particular for the reuse of Named Entity Recognition gram-
mars?

3. Rule Formalism
If NE grammars were all written in a universal, stan-

dardised formalism, their reuse would be trivial. Though
this might be desirable, such a standard does not exist; in-
stead, grammars for NE tasks are written in a variety of
different formalisms, according to the preferences of the
system developers. Among other concerns, unfamiliarity
with the various notations has discouraged researchers from
translating between formalisms, in order to use existing
grammars in different systems. However, could translating
be a more time effective task than writing rules from scratch
and if so, does it entail a trade off between time gained and
information lost?

Using pattern matching for NE recognition requires the
development of patterns over multi-faceted structures that

consider many different token properties (e.g orthography,
morphology, part of speech information etc.). Traditional
pattern-matching languages such as PERL get “hopelessly
long-winded and error prone” (Black et al., 1998), when
used for such complex tasks. Therefore, attribute-value no-
tations are normally used, that allow for conditions to refer
to token attributes arising from multiple analysis levels. For
the needs of the NE Recognition module of the SOCIS sys-
tem (Pastra et al., 2001), a core NE Recognition grammar
set has been translated from the NEA notation (Black et
al., 1998) to JAPE (Cunningham et al., 2002). Both NEA
and JAPE are declarative notations, that allow for context-
sensitive rules to be written and for non-deterministic pat-
tern matching to be performed. However, they have many
differences which could potentially suggest that one nota-
tion is more effective than another. Such a comparison is
beyond the scope of this paper; what is of interest for us is
the way the formalisms work, their differences and analo-
gies that make their translation more or less difficult to ac-
complish.

3.1. The NEA Rule notation

The Named Entity Analysis rule notation was first de-
veloped within the FACILE project (Black et al., 1998;
Ciravegna et al., 1999; Black and Rinaldi, 2000) and
was then adapted to the needs of the CONCERTO project
(Black et al., 1999; McNaught et al., 2000). The nota-
tion was used within the Basic Semantic Element Extrac-
tion Module of the CONCERTO system for rule based NE
recognition (Pastra, 2000). It is a high level language used
for defining patterns of interest in a context-sensitive way,
taking into account information placed in a chart by previ-
ously run modules. Non-deterministic chart parsing with
bottom-up rule invocation is applied.

There is one global grammar set (no subsets) in which a
’higher to lower’ priority ordering is followed. Each rule
may also be assigned a priority (certainty factor) which
ranges from -1 to +1, the default being 1; however, strict
rule ordering has been preferred in the NE recognition
grammar set of CONCERTO. For chosing among success-
ful rules that span the same token sequence, specific heuris-
tics are followed: the rule that achieves the longest match is
preferred; if the match has the same length no matter which
rule is applied, then the rule with the highest priority takes
precedence. If two rules have the same precedence the one
defined earlier in the grammar is fired. This type of control
mechanism is known as ’appelt’ style. The production rules
used are of the form:

A => B\C/D.

The LHS consists of a set of attributes (and associated val-
ues) of the annotation to be generated, whereas the RHS
consists of the conditions to be satisfied for the annota-
tion to be assigned to the ’C’ sequence of tokens. “B” and
“D” denote possible context preceding or following the se-
quence respectively. Attribute-value pairs, along with vari-
ous operators are used for describing the patterns to be an-
notated. The values may be atomic expressions, disjunc-
tions or negated atomic expressions or disjunctions. The

regular rules may be augmented with Prolog style unifica-
tion of variables within the scope of a rule (binding un-
known -yet- values in the RHS with attribute values in the
LHS). The formalism provides not only for standard iter-
ation operators (?,+,*) to be used at the RHS, but also for
numerical specification of the minimum and maximum it-
erations allowed for a specific pattern. Wildcards can be
used in the pattern descriptions as well as equation and
comparison operators. The “!=” is a negative operator that
becomes very useful in rule writing for denoting exception
cases which should cause a rule to fail. Last, the formalism
allows the use of “don’t care” sequences between specific
patterns, that is underspecified elements with finite iteration
limits and/or with some syntactic constrains.

3.2. JAPE
The Java Annotation Pattern Engine is a language for

writing regular expressions over annotations and for using
pattern matching this way as a basis for creating more an-
notations. It is a version of the Common Pattern Specifi-
cation Language (CPSL), developed in the TIPSTER Pro-
gram 1. The rules are devided into phases (subsets) which
run sequentially, in the order defined in the main grammar
file. Each phase consists of rules for the same entity types
(e.g ’enamex’ rules) or rules that have the same specific
requirements for their being run (e.g. rules that cover ’eli-
sion’ cases; this phase needs to run after normal-full entity
expressions have been recognised). As the rule phases run
sequentially, they constitute a cascade of Finite State Trans-
ducers over annotations.

At the beginning of each subset, one needs to specify
the input annotations (results from modules applied earlier
e.g tokeniser, or from preceding rule phases) on which the
current rule phase relies on, whether debugging informa-
tion will be needed and the preferred control mechanism
(method of rule matching). In JAPE, there are three avail-
able control styles: the Brill, the ’first’ and the Appelt style.
In Brill style, a pattern may be allocated more than one an-
notation type, when more than one rule can be applied to
the same pattern. On the contrary, as we have already men-
tioned, the Appelt style allows for only one annotation to be
created in such cases. The ’first’ mechanism fires a rule as
soon as a match is found without attempting to get a longer
match. Assigning a priority declaration in JAPE is optional
and it has some effect only when an appelt control mech-
anism has been activated. All the rules have a -1 default
score; the integer to be assigned by the rule writer must be
positive. The rules are of the form:

(Optional-Context-Pre)
(A):label
(Optional-Context-Post) -->
:label.EntityType={annotation attributes}

The LHS of the rule contains the pattern to be matched in
the text. “A” is the token sequence to be annotated; this
sequence is assigned a label for reference purposes. The
context surrounding “A” may also be given. In JAPE, pat-
terns may be specified in two ways, using:

1A good description of CPSL can be found in D. Appelt’s Tex-
Pro manual

� annotations previously assigned by other modules or
rules, with optional feature value pairs

� macros (patterns frequently repeated and nested
within larger patterns - they are called within the rules
when necessary)

Regular expression iteration operators may also be used at
the LHS. The RHS of the rule contains information about
the annotation to be generated. The name of the entity
type to be identified is given, and then the desired attributes
(with their associated values) of the annotation are defined.
On the RHS of the rule, arbitrary JAVA code may also be
used for feature percolation and manipulation, such as in
cases when one needs to copy features from previous an-
notations whose value is unknown. In contrast to NEA,
JAPE does not allow for numerical iteration specifications
and negative operators. Specific iteration length may be
expressed through the repetition of the structured to be iter-
ated, as many times as it is allowed to be matched. As far as
negation is concerned, instead of using a negative operator
within a rule, one may write a separate negative rule with
higher priority than the matching positive rule. In this case,
the LHS of the rule will consist of the pattern to be matched
and the RHS will be empty: this will result in the pattern
not being annotated by any rule in that phase.

3.3. From NEA to JAPE

While working on SOCIS (Scene of Crime Information
System) (Pastra et al., 2001) (cf. also 4.3.), a system for
which NE recognition is not the main task, the need arose
to develop a grammar set that would be effective, but would
require as little development time as possible. We had
in our possession a grammar set developed for the CON-
CERTO System in the NEA rule notation (Pastra, 2000);
however, we could not use this grammar because among
other things, its notation was not compatible with the AN-
NIE system developed within GATE, in which SOCIS is
being developed. Being aware of the fact that writing the
CONCERTO NE recognition grammar had taken two per-
son months (including the time needed to learn the NEA
formalism), we attempted to “translate” that original gram-
mar set into the JAPE notation used within ANNIE, hoping
that this would cut down the time and effort needed for cre-
ating something from scratch.

From the previous sections, it is obvious that though
the two formalisms are not diametrically different, they do
have many differences. Starting from simple things such as
the fact that the one’s LHS is the other’s RHS of the rule,
which can become very confusing to someone unfamiliar
with a new formalism, the greatest difficulty is to compen-
sate for things that the source formalism provides for, but
the other doesn’t (e.g the negative operator). Furthermore,
the target formalism may have features that the source for-
malism doesn’t have (e.g control options, input annotations
definitions etc) and that could be taken advantage of, for
creating effective rules. During the translation process, we
had to split complex rules into more straightforward ones
and create macros for information that was frequently re-
peated in the original rules. Differences in the way other
system modules (e.g tokeniser, look up phase etc) worked

within CONCERTO and ANNIE did affect the rules, re-
quiring more or less specification on the token sequence to
be identified. Here is a simple rule in NEA and its corre-
sponding translation in JAPE, that will illustrate some of
the issues involved in formalism translation:

Rule for the mark up of person names
when the first name is not present
or known from the
gazetteers: e.g ’Mr J. Cass’,

[SYN=PROP,SEM=PER,FIRST=_F,INITIALS=_I,
MIDDLE=_M,LAST=_S]

=>
[SEM=TITLE_MIL|TITLE_FEMALE|TITLE_MALE]
\[SYN=NAME, ORTH=I|O, TOKEN=_I]?,
[ORTH=C|A, SYN=PROP, TOKEN=_F]?,
[SYN=NAME, ORTH=I|O, TOKEN=_I]?,
[SYN=NAME, TOKEN=_M]?,
[ORTH=C|A|O,SYN=PROP,TOKEN=_S,
SOURCE!=RULE]/;

Starting our explanation bottom-up, the rule looks for a to-
ken with upper initial or all capitalised or mixed capital and
lowercase letters (e.g McDonald) which has been recog-
nised as such by the tagger, and which has not been tagged
semantically by another rule. The token may be preceded
by a token that the tagger knows is a name, or by an ini-
tial or a first name, or another initial. Any combination of
these will form part of the sequence to be annotated. What
is obligatory for the rule to work is that a ’title’ word has to
precede the whole sequence. Note the variable unification,
that binds the value to be assigned to the TOKEN attributes
of the sequence that will be identified to specific attributes
in the resulting annotation (e.g TOKEN= S will denote the
LAST name of the person); this information will be avail-
able for use in more advanced stages e.g template filling.

Rule: PersonTitle
// in this case we rely on the title:
// Mr. Jones, Mr Fred Jones, Jr. etc
// the first name is not necessarily
// present or known.

(TITLE{SpaceToken})+
(
(FIRSTNAME
({SpaceToken}|{Token.string=="-"}))*
((MIDDLE|LASTNAME){SpaceToken}|
{Token.string=="-"}))*
(LASTNAME)
(({SpaceToken}|
{Token.string==","}{SpaceToken})
PERSONENDING)?
)
:personName -->
:personName.Person={rule="PersonTitle"}

This translation of the NEA rule into JAPE uses macros for
structures that we have used in other similar rules too (e.g
TITLE is defined earlier in the file as the semantic cate-
gory associated with specific gazetteer lists). One or more

titles may be present followed (optionally) by one or more
first names separated by space or hyphen, middle or last
name, and always a construction that denotes a last name
(the attributes of this token also defined earlier in the gram-
mar in a macro - they have the same attributes as the NEA
rule). Last, a person ending may follow (e.g Jr.), but this
is optional. The annotation that will be created is named
’Person’ and its attributes (e.g the rule name) are defined
as such for testing and debugging purposes. As one may
see from the above example, while translating the rules, we
also had the chance to enrich them (by adding the possi-
bility of recognising a ”person ending” token in the whole
pattern). The only loss of information that we experienced
was related to information from the variable unification that
was used in some rules. This information was mainly used
in NEA for co-reference purposes; however ANNIE has a
different co-reference mechanism that compensates for this
loss.

The whole translation, including time needed for be-
coming familiar with the new formalism, was one person
week. Given that the original grammar set had been devel-
oped in two months for CONCERTO, this means that we
needed 1/8 of the time we would otherwise have needed to
create a grammar set from scratch. Indisputably, there are
many parameters that affect both the time needed for devel-
oping a grammar set from scratch and the time needed for
translating from one formalism to another, such as the rule
writer’s familiarity with specific system architectures, rep-
resentations and abstractions, the knowledge of the source
and target formalisms etc. Still, even if translating between
formalisms requires half of the time that would otherwise
be devoted to writing a grammar from scratch, we consider
that it is worth reusing existing grammar sets for NE recog-
nition.

4. Application
The application for which the NE task is designed

clearly has an impact on the development of Named Entity
Recognition grammars. It can involve considerable effort
simply to adapt a grammar to a new domain or task, par-
ticulary if different entity types are needed, or if the same
entities have different structures and syntactic behaviour
in their new context. However, adding rules for new en-
tity types and changing some other rules for the needs of a
new domain or text type/genre, is less effort and time con-
summing than building everything from scratch. This has
been the focus of the MUSE system (Maynard et al., 2001;
Maynard et al., 2002), and the default IE system (ANNIE)
developed within GATE, which use general-purpose gram-
mars as a basis for developing application-specific ones.

Though the general-purpose grammars in these sys-
tems have been developed with reusability in mind, they
have originated from specific NE recognition applications.
There is always some subset of a purpose-built NE recogni-
tion grammar set, that is application independent; this part
can be used as a basis for creating a new grammar set for
a new application, no matter how different one application
is from another. This set of “core” rules corresponds to
the named entities (person, organisation, location names)
and fixed data structures (date, time and monetary expres-

sions), traditionally identified by any NE recognition sys-
tem, which are largely domain independent. Reusing a
grammar set in a totally different domain from the one it
was originally created for was attempted for the needs of
the SOCIS project (Pastra et al., 2001).

4.1. MUSE

The MUSE (MUlti Source Entity Finder) system is
based on ANNIE, and comprises a version of ANNIE’s
main processing resources: tokeniser, sentence splitter,
part-of-speech tagger, gazetteer lookup, semantic tagger
and orthographic coreference. The main objective of the
MUSE system is to perform named entity recognition from
diverse text types, genres and domains. These might in-
clude emails, spoken transcriptions, emails, shopping lists,
etc. and may not be pre-categorised.

MUSE is designed to be adapted to different situations
by means of resource switches which operate according to
different linguistic (or other) features of the text. For ex-
ample, information about the domain of the text (e.g. for
a newswire, this might be found in one of the headers or
in the title), may require the use of an additional gazetteer
list, or an alternative pattern phase to be used. A particu-
lar text format such as email might require a different use
of tokenisation information (such as new lines) in order to
preserve the format of addresses. This is made possible
by the separation of generic and specific information in the
NE processing modules. The user can set parameters re-
lating to each processing resource, either at load time or at
run time. For example, to process a text with no capitali-
sation, the gazetteer lists can be set to be case insensitive
so that they will match names entirely in lower case. Sim-
ilarly, for these texts, the POS tagger can be initialised to
use a different lexicon (which has been trained on a corpus
with no capitalisation). Many of the resources (such as the
sentence splitter, tokeniser, orthomatcher, etc.) do not need
to be altered for the different text types, because the infor-
mation they use as input and/or produce as output is of a
more generic nature.

The semantic tagger also separates specific and generic
information as much as possible. The tagger is composed
of a series of phases (finite state transducers based on regu-
lar expression pattern/action rules) which operate in series
over the text. Some phases are designed to be generic, while
others may need to be modified according to the text type.
Different phases can be switched on or off by means of a
single initialisation file. So, for example, we can add an
extra transduction phase that deals with scientific names, or
modify a phase that deals with addresses, or remove one
which is not required, without affecting the rest of the sys-
tem, or even the other phases.

Initial results for the MUSE system are dependent on
the text type, but are averaging 85-95% Precision and Re-
call.

4.2. HaSIE

We have also adapted ANNIE to form an IE system
(HaSIE), which aims at extracting relevant information
from annual company reports about the companies’ perfor-
mance on Health and Safety issues. The extracted informa-

tion allows the automated production of statistical metrics
describing the level of compliance with Health and Safety
recommendations and any relevant legislation that may be
implemented.

Although this application required substantial changes
to the entity types recognised by the default ANNIE sys-
tem, it was actually very simple to adapt the grammar to
this new domain and application. The gazetteer lists were
modified to include key words about health and safety, and
grammar rules were written to annotate not only named en-
tities (such as the company name), but also to extract sen-
tences and paragraphs containing relevant material about
health and safety issues, the number of company employ-
ees, whether the company produces a separate health and
safety report, etc. Initial results of the system (compared
with manually annotated texts) are around 80% precision
and 83% recall, and this figure is likely to improve over the
coming weeks.

4.3. NER-SOCIS

A Named Entity Recognition module has been devel-
oped as part of SOCIS, a Scene of Crime Information Sys-
tem (Pastra et al., 2001). The module processes crime
scene reports and extracts named entities and other enti-
ties of interest for the crime investigation domain. Origi-
nally, the input to the module was a default tokeniser pro-
vided within GATE, gazetteers that we had developed for
the needs of the project and a NE recognition grammar
set developed for another application involving “biotech-
nology news reports” (Pastra, 2000). We used all of the
rules in the original set except those that identified ’arti-
facts’ and were specific to biotechnology-related products
and trademarks e.g “TH-PV, therapeutic vaccine...” and
“...acquisition of Radimel(TM) system”. Clearly, the gram-
mar contained rules that were redundant for our new appli-
cation, such as rules for identifying company names based
on their stock-exchange abbreviation that is usually pro-
vided in news reports after the company’s full name: e.g.
“Biovail (NYSE:BVF)(TSE:BVF)”. However, these rules
did not hinder the NE task in any way, and even if they had
done, they could easily have been extracted from the rule
file.

Considering that our gazetteers had been enriched with
domain specific information (e.g person titles also included
police ranks: “Pc”, “DS”, “Detective Superintendent” etc)
the rule set worked extremely well, reaching over 90% pre-
cision and recall. In fact, the only thing we had to change
because of domain specific requirements, was a rule that
identified structures such as “18:10:00” as TIME entities;
in the crime scene official reports, these constructions de-
note DATEs. The grammar set was of course enriched with
rules for identifying other domain specific named entities
(e.g. conveyance make, drug, evidence identifier, offence)
and other entities of interest e.g. ages: “the 13 year old vic-
tim” 2. However, adapting and enriching the grammar set
involved minimal effort and time.

2One could talk about “basic semantic element” rather than
just “named entity” recognition (Pastra, 2000).

5. Language
When the application requires Information Extraction

in a different language, the reuse of grammars can be-
come more difficult, due to the differences in the formation
and syntactic behaviour of Named Entities in various lan-
guages. Reusability of grammars between strongly related
languages is clearly more feasible; however, the relation
between the languages in question can only determine the
extent of reusability. Work on Romanian NE recognition
indicates that it is possible to modify rules developed for
English according to the linguistic features of the Roma-
nian Named Entities, quite easily and effectively. Could it
be that given a core rule set for NE recognition in one lan-
guage and knowledge of the individual nature of the Named
Entities in the other, can speed up the process of creating
new NE grammars considerably?

5.1. The Romanian NE recognition task

The identification of proper names and other entities is
an important first step in many language processing appli-
cations. For the Romanian language, few NLP tools cur-
rently exist, and their development is hindered by this bot-
tleneck. The more tools available, the better the starting
point for future development. With this in mind, we have
developed a Named Entity extraction system from Roma-
nian text, using ANNIE, the core NE system for English
built within the GATE architecture, as a basis from which
to start (Hamza et al., 2002).

The Romanian system uses the tokeniser, gazetteer and
grammar modules from ANNIE. The tokeniser did not need
to be modified at all for use with Romanian. The gazetteer
contains some of the lists from the ANNIE system, some
modifications to existing lists, and some new lists. For ex-
ample, the list of English person names is replaced by a
new list of Romanian person names. For lists such as typ-
ical company designators (e.g. “plc”, “co.”), new elements
had to be added (e.g. “S.R.L”, “S.A.”, “ACC”), which are
specific to Romanian. One completely new list was cre-
ated for Romanian months, because Romanian tends to use
Roman numerals for the month (e.g. 3.XI.1999). Along
with their corresponding Romanian lists, some English
gazetteers have been kept for cases when foreign named
entities are mentioned in Romanian texts.

For the creation of a grammar set for NE recognition,
the original grammar rules from ANNIE were used; these
rules, written for English NE recognition, were modified to
serve the needs of the Romanian NE recognition task. For
example, changes were made to the location rules, since lo-
cation names and postcodes are placed either before or after
the street name and number. Most of these changes were
fairly minor, and easily implemented by a Romanian na-
tive speaker who did not require any other specialist skills
beyond a basic grasp of the JAPE language and the GATE
architecture.

5.2. Named Entities: English and Romanian

Typically, Named Entities “do not allow quanti-
fiers, demonstratives, possessives, specifiers or modifiers”
(Allerton, 1987); however, sometimes they are themselves
used as modifiers or even behave as common nouns in

cases of metaphors and metonymies. Also, common nouns,
prepositions, articles, conjunctions and other particles usu-
ally form part of multiword Named Entities. These charac-
teristics of Named Entities give an indication of the unpre-
dictability of their syntactic behaviour and structure, even
within one language. Their characteristics across languages
would vary widely if Named Entities did not form a rela-
tively finite set of linguistic units in each language.

There are a number of differences between English and
Romanian which have an impact on the rules for NE recog-
nition. First of all, Romanian has much more flexible word
order than English. For example, the Romanian language
accepts typical company designators either before or after
the name of the company, rather than just after the com-
pany name as in English. It is sometimes possible for the
company designator to be both before and after the name
of the company, e.g. SC Ganicom SRL (where “SC” is
equivalent to “Commercial Society” in English, and “SRL”
is equivalent to “plc”). The order of the words may also
be different from English. For example, modifiers usu-
ally follow the noun to which they attach, e.g. ”Aeropor-
tul Otopeni” (”Otopeni Airport”), ”Banca Comerciala Ro-
mana”(”Romanian Commercial Bank”), although they may
also appear before the noun, as in English.

Furthermore, Romanian makes use of inflection. Gen-
itive and dative of both common and proper nouns is
expressed through inflection: ”cartea Alinei” (”Alina’s
book”), ”casa Ioanei” (”Ioana’s house”); however, some
proper nouns, especially male names, form their genitive
and dative with the use of a preposition (“lui”) e.g ”cartea
lui Alex” (Alex’s book). Another linguistic feature of Ro-
manian is that the definite article is not a separate word
from the noun, but is attached to the end of the word:
“universitate” (university) - “universitatea” (the university),
“munte” (mountain) - “muntele” (the mountain).

5.3. From English to Romanian NE recognition

Developing the Romanian NE recognition system by
modifying ANNIE took three person weeks. This was the
time needed for the whole adaptation, including the cre-
ation of a NE recognition grammar set for Romanian. In
order to evaluate whether it is worth starting from a NE
rule set, originally created for another language, in order to
develop a grammar for the language of our interest, we ran
an experiment. We started by creating a small corpus of
online articles from the 2001 archive of a Romanian news-
paper called “Amprenta”. The corpus totals 1MB of text 3

and has been manually marked up for Named Entities, by
a native Romanian speaker. First, we ran over the corpus
a NE recognition application consisting of: the customized
Romanian tokenizer, the Romanian gazetteers and the En-
glish NE recognition grammar set. By evaluating the results
obtained automatically against the human annotations 4, we
were able to get an idea of the performance of the system
without modifying the grammar at all (see Table 1).

3The texts are in the Romanian encoding that retains the dia-
critics, and not in its simplified version usually found online.

4We used “Annotation Diff” an evaluation tool provided within
GATE (Cunningham et al., 2002)

Entity Type Precision Recall
Address 0.81 0.81
Date 0.67 0.77
Location 0.88 0.96
Money 0.82 0.47
Organisation 0.75 0.39
Percent 1 0.82
Person 0.68 0.78
Identifier 0.94 0.38
Overall 0.82 0.67

Table 1: Average P + R per entity type, obtained with En-
glish NER grammar set

Then, we run the full Romanian NE recognition system,
consisting of the Romanian tokeniser and gazetteers and the
Romanian grammar set (see Table 2).

Entity Type Precision Recall
Address 0.96 0.93
Date 0.95 0.94
Location 0.92 0.97
Money 0.98 0.92
Organisation 0.95 0.89
Percent 1 0.99
Person 0.88 0.92
Identifier 0.99 0.96
Overall 0.95 0.94

Table 2: Average P + R per entity type, obtained with Ro-
manian NER grammar set

The overall precision and recall scores obtained, when
we ran the English grammar over the Romanian text, were
quite good, when considered as a first, effortless attempt for
performing NE recognition. We have to note that the recall
scores obtained were quite low, even in cases of entity types
that were identified with great precision (e.g organisation
names); this is due to the fact that many language-specific
patterns for identifying the Romanian named entities are
not included in the set. Also, patterns that relied on context
used the English tokens instead of the Romanian ones, and
therefore, the rule conditions were not met. However, these
are slight modifications that need to be done; the second
table presents the results obtained with a quick adaptation
of the grammars to Romanian and gives evidence of the
very high precision and recall scores that can be obtained
rapidly.

6. Conclusion
In this paper we have discussed the feasibility of reusing

grammars for Named Entity Recognition. Our empirical re-
sults suggest that integrating these grammars into different
system architectures and adapting them to new formalisms,
applications and languages is a much more viable alterna-
tive to creating new resources from scratch, even when no
flexible frameworks are available. This means that effort

can then be placed in fine-tuning the results, rather than
spending time developing core resources.

7. References
D.J. Allerton. 1987. The linguistic and sociolinguistic sta-

tus of proper names. Journal of Linguistics, 11(3).
W. Black and F. Rinaldi. 2000. Facile pre-processor v3.0 -

a user guide. Technical report, Department of Language
Engineering, UMIST.

W. Black, F. Rinaldi, and D. Mowatt. 1998. Facile: De-
scription of the named entity system used for muc-7. In
Proceedings of the 7th MUC.

B. Black, J. McNaught, F. Rinaldi, M. Ferraro, L. Gilar-
doni, S. Mazza, G.P. Zarri, A. Brasher, and A. Persidis.
1999. Detailed specification of the text extraction and
concept recognition components of the concerto archi-
tecture. Deliverable 6, version 1.2, CONCERTO Con-
sortium.

N. Chinchor, E. Brown, L. Ferro, and P. Robinson. 1999.
Named entity recognition task definition. Technical Re-
port Version 1.4, The MITRE Corporation and SAIC.

F. Ciravegna, A. Lavelli, N. Mana, J. Matiasek, L. Gilar-
doni, S. Mazza, M. Ferraro, W. Black, F. Rinaldi, and
D. Mowatt. 1999. Facile: Classifying texts integrat-
ing pattern matching and information extraction. In Pro-
ceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI99).

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan,
and C. Ursu. 2002. The GATE User Guide.
http://gate.ac.uk/.

H. Cunningham. 1999. A definition and short history of
language engineering. Journal of Natural Language En-
gineering, 5(1):1–16.

H. Cunningham. 2000. Software Architecture for
Language Engineering. Ph.D. thesis, University of
Sheffield. http://gate.ac.uk/sale/thesis/.

R. Grishman. 1997. Information extraction: Techniques
and challenges. In T. Pazienza, editor, Information Ex-
traction: a Multidisciplinary Approach to an Emerg-
ing Information Technology, chapter 2, pages 10 – 27.
Springer Verlag.

O. Hamza, V. Tablan, D. Maynard, C. Ursu, H. Cunning-
ham, and Y. Wilks. 2002. Name entity recognition in ro-
manian. Technical report, Department of Computer Sci-
ence, University of Sheffield. Forthcoming.

D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and
Y. Wilks. 2001. Named entity recognition from diverse
text types. In Recent Advances in Natural Language Pro-
cessing 2001 Conference, Tzigov Chark, Bulgaria.

D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Sag-
gion, K. Bontcheva, and Y. Wilks. 2002. Architectural
elements of language engineering robustness. Journal of
Natural Language Engineering – Special Issue on Ro-
bust Methods in Analysis of Natural Language Data.
forthcoming.

J. McNaught, W. Black, F. Rinaldi, E. Bertino, A. Brasher,
D. Deavin, B. Catania, D. Silvestri, B. Armani, A. Per-
sidis, G. Semerano, F. Esposito, V. Candela, G.P. Zarri,
and L. Gilardoni. 2000. Integrated document and knowl-
edge management for the knowledge-based enterprise.

In Proceedings of the 3rd International Conference on
the practical application of Knowledge Management.
The paractical application company.

K. Pastra, H. Saggion, and Y. Wilks. 2001. Socis: Scene
of crime information system. Technical Report CS-
19-01, Department of Computer Science, University of
Sheffield.

K. Pastra. 2000. Basic semantic element extraction: The
rule-writing experience. Master’s thesis, Department of
Language Engineering, UMIST.

	1412: 1412
	1413: 1413
	1414: 1414
	1415: 1415
	1416: 1416
	1417: 1417
	1418: 1418

