
A Robust and Flexible Platform for Dependency Extraction

Hagège Caroline

Roux Claude

Xerox Research Centre Europe

6, Chemin de Maupertuis
38240 Meylan

(caroline.hagege,claude.roux)@grenoble.xrce.xerox.com

Abstract
This paper describes a linguistic platform, Xerox Incremental Parser (XIP hereafter), to develop robust grammars. Most robust parsers
usually impose one specific strategy (constraint-based or incremental) in the grammar writing, whereas XIP allows mixing both types
of analysis. The first part introduces XIP and its main functionalities. The second part illustrates how a linguist can benefit from
merging different strategies in grammar writing. Finally, a first evaluation of different grammars is given.

1. Xerox Incremental Parser
XIP is the successor of IFSP, from which it borrows

most of its linguistic strategies. IFSP, based on the Finite-
State technology, had some drawbacks, which this new
platform tries to correct. For instance, XIP provides a rich
feature system and a formalism that aims at simplifying
the development and maintenance of a grammar, while
keeping the same parsing strategies. Furthermore, the XIP
engine has been implemented in C++ to offer a platform
that would be more linguistics-driven than transducers,
thus improving the performance of the whole system, in
terms of speed and memory footprint.

1.1. Three Level of Analysis
XIP processes a linguistic unit (phrase, sentence or

even paragraph) in an incremental way. Rules are applied
one after the other, whether a rule succeeds or fails. Since
the system never backtracks on any rules, XIP cannot
propel itself into a combinatorial explosion.

The parsing is done in three different stages:

1) The chunking and part-of-speech disambiguation.
2) The extraction of dependencies between words on

the basis of regular expressions over the chunk sequence.
3) The combination of those dependencies with

Boolean operators to generate new dependencies, or to
modify or delete existing dependencies.

XIP starts with a translation of the linguistic unit into a
sequence of part of speech. In a first pass, this sequence is
disambiguated and chunked. In a second pass, the
previous result is transmitted to regular expressions that
extract basic dependencies between words, according to
their configuration in the chunk tree. In a last pass,
deduction rules mesh together those dependencies in order
to trigger the creation of new dependencies. Those

deduction rules can also modify or delete existing
dependencies.

1.2. The Different Steps of Analysis
Here is an example of a sentence treated by XIP with

some of the dependencies that are extracted from different
part of chunk tree.

The chunking rules define and produce a chunk tree.

1.2.1. Stage 1
In a first stage, chunking rules are applied and the

following chunk tree is generated for a sentence.

 TOP
 +-------------------+------------------+
 | | |
 SC SC NP
 +-----------------+ +-------+ +------+-------+
 | | | | | | |
 NP FV CONJ FV DET NOUN NOUN
 +--------+--------+ + + + + + +
 | | | | | | | | |
 DET AP NOUN VERB and VERB a chunk tree
 + + + + +
 | | | | |
 The ADJ rules define produce
 +
 |
 chunking

1.2.2. Stage 2
The next step consists in extracting some basic

dependencies on that tree. Those dependencies are
extracted with some very basic rules that only connect
nodes that occur in a specific sub-tree configuration.

SUBJ(define,rule)
VCOORD(define,produce)

SUBJ is a subject relation and VCOORD is a

coordination between two verbs.
A typical rule to extract the subject 1 is:

| NP{?*, noun#1}, FV{verb#2}| SUBJ(#2,#1)

Where #1 and #2 are two variables that are associated

with the lexical sub-nodes of a noun phrase (NP) and a
finite verb (FV) that are next to each other. The "Sx{...}"
denotes an exploration of the sub-nodes under the node
Sx.

1.2.3. Stage 3
In the last stage, a simple Boolean expression is used

to generate those new dependencies on the basis of the
dependencies that have been extracted so far.

For instance, XIP generates the following dependency:

SUBJ(produce,rule)

With the following rule:

If (SUBJ(#2_VERB,#1_NOUN)
&VCOORD(#2_VERB,#3_VERB))
 SUBJ(#3,#1)

This rule reads as follow: if a subject has been

extracted for a verb (#2) and a noun (#1), and a verb
coordination has been found between this verb (#2) and
some other verb (#3), then #3 shares the same subject as
#2.

1.3. Extraction Rules
In stage 2, rules describe sub-configuration of nodes in

the chunk tree, while in stage 3, rules describe some very
abstract combination of dependencies. In reality, those
rules comply with a unique formalism, where an
extraction rule is a combination of a node configuration
together with a test on previous dependencies.

For instance, here is how a subject rule could be

written, that would verify whether a subject relation has
already been extracted for a given verb:

| NP{?*, noun#1}, FV{verb#2}|
if (~SUBJ(#2,?))
SUBJ(#2,#1)

If no subject has been extracted for verb#2 then a

subject relation is computed.
Since, the tree regular expression or the test can be

omitted, a rule may be written as a stage 2 rule or as a
stage 3 rule.

1.3.1. Modification of a Dependency
 The last important point about XIP, is the possibility

to modify the existing set of dependencies.
When an extraction rule has over-generated a certain

sort of dependencies, whether the constraints are too
feeble or the context is too scarce, it might be important to
modify or even to delete some of those dependencies. The
"^" operator is used to mark which dependency should be
tacked by the rule.

N.B. A rule is a deletion rule, if the result of that rule
is "~".

For instance, the rule below deletes a subject
dependency that is post-positioned, if a regular subject has
also been extracted.

if (^SUBJ[post](#1,#2) & SUBJ[pre](#1,#3)) ~.

We could also decide to modify that dependency into

an object dependency:

if (^SUBJ[post](#1,#2) & SUBJ[pre](#1,#3))
OBJECT(#1,#2).

In the above rule, the post-positioned dependency is

renamed as an object dependency.

2. Strategies
In robust dependency-based parsing, grammars or

heuristics generally follow one of the following strategies:

- Incrementality (see Ait-Mokhtar and Chanod 1997) -

Constraints (see Tapanainen and Jarvinen 1999)

In incrementality, the main idea is to sequentially

apply rules to enrich step by step the linguistic structure
that is under construction. The order in which rules are
applied is very important. At each stage the structure is
enriched with new information.

In constraint-based approaches, all possible relations

are computed a priori. Then the constraints are used to
destroy relations that do not satisfy them. In this kind of
approach, the order of constraints is not relevant any
more.

Both of these approaches have drawbacks and

advantages.
The first one favors precision in the resulting analysis,

while the second gives priority to recall. Furthermore, an
incremental strategy may prove more adequate to describe
certain linguistic phenomena, while constraint-based
strategy provide a better approach to other phenomena.

For example, in English, it seems reasonable to

describe a SUBJECT relation between a nominal head and
a verb in an incremental way (e.g. the relation has to be
established between a verb and the head of a NP that starts
the sentence. If no NP is available on the left and if the
sentence is an interrogative, the subject is the noun that is
on the right of the DO-auxilary, etc.).

For PP attachment however, a constraint-based
approach can be more appropriate. In a first step, all
possible PPs’ attachments are considered. In later steps,
rules filter those PPs, utilizing subcategorization
information, preposition form, distance or whatever
information the linguist may think relevant.

Practically, with respect to the three levels of analysis
presented above, the establishment of all hypothetical
dependencies is done with rules from the second stage
(extraction rules) on the basis of the syntactic natures of
constituents, while constraints are implemented with rules
from the third stage.

For instance, the following second stage rule:

Rule 1
| NP{?*,#1[last]};PP{?*,#1[last]},
 ?*[verb:~],
 PP{?*,NP{?*,#2[last]}}
|
MODIF(#1,#2)

attaches the NP head within a PP to all NP heads on

left of the PP when there is no verbal form (?*[verb:~]) in
between. This attachment is expressed with a MODIF
dependency between those two head nodes.

While the second stage rule:

Rule 2
| ?[verb]{?*,#1[last]},
?*[verb:~],
 PP{?*, NP{?*,#2[last]}}
|
MODIF(#1,#2)

attaches, in a similar way, a PP to the first verb on its

left.

Consequently, for the sentence:
 He will deal in the future with other countries

We will have the following dependencies1:

Rule 1: MODIF(future,countries)
Rule 2: MODIF(deal,future)
Rule 2: MODIF(deal,countries)

In a later stage, the following rule of type 3 can be

seen as a constraint, which expresses that:
- if a PP depends both on a verb and on nouns,
- and if this dependent PP corresponds to a

subcategorized argument of the verb and does not
correspond to any subcategorized argument of the
nouns,

- then the dependencies between this PP and the
nouns are deleted.

This rule can be formalized in the following way:

if (
MODIF(#1[verb],#2) &
^MODIF(#3[verb:~],#2) &
PREPD(#2,#4) &
#4[souscat]:#1[souscat] &
#4[souscat]~:#3[souscat]
)
 ~

The "~" is the deletion operator, which removes from

the set of dependencies, the ones that match the rule
element that is preceded by a "^". In our rule this element
is: ^MODIF(#3[verb:~],#2).

1 The first and the second dependencies are generated by
the second rule when the third is generated by the first
rule.

The two last lines deal with the comparison of the
subcategorization features between two nodes. The first
test in our rule checks that the subcategorization features
between the verb governor and the PP are compliant,
while the second test ensures that those features for the PP
and the noun governor are different.

3. Evaluation

A French grammar and an English grammar have been

developed so far with XIP. For the moment, only the
French grammar has undergone some evaluations for the
subject dependency (including coordinated subjects,
infinitive control and relative subjects) and direct
complements of verbs. For subjects, precision and recall
were respectively 93.45% and 89.36%, while the figures
for verb complements were 90.62% and 86.56%.

A first evaluation for the under-development English
grammar has also be made.

For subject dependency (including coordinated
subjects, infinitive controls, sentencial subjects and
relative subjects), precision is 78.2% and recall is 85.7%.

For object dependencies (including sentential objects),
precision is 80.1% and recall 74%.

Finally, in order to check the quality of attachment, we
create a general dependency (MODIF) for other types of
complements (sentential or not) for each kind of
categories (verbs, nouns, adjectives). We obtain a
precision of 72.7% and a recall of 78.7%.

4. Conclusion
The XIP formalism does not impose any pre-defined

strategy, in grammar development. Hence, the possibility
to choose the most suitable strategy according to some
specific task.

Since the current version cannot easily tackle some
peculiar syntactico-semantic problems (such as word
sense disambiguation), we are currently working on new
features to enlarge the coverage of XIP rules.

5. References

Abney Steve, (1991). Parsing by chunks. In Principled-

Based Parsing, R. Berwick, S. Abney, and C. Tenny,
editors. Kluwer Academic Publishers, Dordrecht, 1991.

 Aït-Mokhtar Salah, Chanod Jean-Pierre, (1997).

Incremental finite-state parsing. In Proceedings of
Applied Natural Language Processing 1997,
Washington, DC. April 97.

Aït-Mokhtar Salah, Chanod Jean-Pierre, (1997). Subject

and Object Dependency Extraction Using Finite-State
Transducers. In ACL workshop on Automatic
Information Extraction and Building of Lexical
Semantic Resources for NLP Applications. 1997,
Madrid.

Aït-Mokhtar Salah, Chanod Jean-Pierre, Roux Claude
(2001). A Multi-Input Dual-Entry Point Dependency
Parser. In IWPT 2001, Beijing.

Chanod, J.P., Tapanainen, P., (1995). Tagging French -

comparing a statistical and a constraint based method.
In Proceedings of the 7th Conference of the European
Chapter of the Association for Computational
Linguistics. Dublin.

Roux C., (1999). Phrase-Driven Parser. In VEXTAL 99.

Venice.

Tapanainen P., Järvinen T.(1999) A non-projective

dependency parser. In Proceedings of the 5th
Conference on Applied Natural Language Processing,
(pp.64-71) Washington, D.C.

	520: 520
	521: 521
	522: 522
	523: 523

