
Ellogon: A New Text Engineering Platform

Georgios Petasis, Vangelis Karkaletsis, Georgios Paliouras,
Ion Androutsopoulos and Constantine D. Spyropoulos

Software and Knowledge Engineering Laboratory,
Institute of Informatics and Telecommunications,

National Centre for Scientific Research (N.C.S.R.) “Demokritos”,
P.O. BOX 60228, Aghia Paraskevi,

GR-153 10, Athens, Greece.
e-mail: {petasis, vangelis, paliourg, ionandr, costass}@iit.demokritos.gr

Abstract
This paper presents Ellogon, a multi-lingual, cross-platform, general-purpose text engineering environment. Ellogon was designed in
order to aid both researchers in natural language processing, as well as companies that produce language engineering systems for the
end-user. Ellogon provides a powerful TIPSTER-based infrastructure for managing, storing and exchanging textual data, embedding
and managing text processing components as well as visualising textual data and their associated linguistic information. Among its key
features are full Unicode support, an extensive multi-lingual graphical user interface, its modular architecture and the reduced hard-
ware requirements.

1. Introduction
In this paper we describe Ellogon, a new text engineer-

ing platform developed by Software and Knowledge En-
gineering Laboratory of the Institute of Informatics and
Telecommunications, N.C.S.R. “Demokritos”, Greece.
Ellogon is a multi-lingual, cross-platform, general-purpose
text engineering environment, developed in order to aid
both researchers who are doing research in the natural
language field or computational linguistics, as well as
companies that produce and deliver language engineering
systems.

During the last decade, a large number of software in-
frastructures aiming at facilitating R&D in the field of
natural language processing have been presented. Accord-
ing to the model used to associate the textual data with the
corresponding linguistic information, these infrastructures
can be classified into the following three types (Cunning-
ham, 1997):
• Additive or Mark-up based: the linguistic informa-

tion is added to the text using a mark-up tagging
scheme. A known example of this category is the LT-
NSL toolkit from the University of Edinburgh
(Thompson and McKelvie, 1996) (McKelvie et. al.
1997).

• Referential or Annotation based: the linguistic in-
formation is stored separately from the textual data,
having references back to the original texts. GATE
(Cunningham, 1997), the TIPSTER project (Grish-
man, 1996) as well as our platform are examples of
this category.

• Abstraction based: the textual data is preserved only
as parts of an integrated data structure that represents
information about the text in a uniform theoretically
motivated model. A representative of this category is
the ALEP system (Simkins, 1994).

A fourth category may be added, in order to include
systems that provide only communication and control
infrastructure without imposing a uniform representation
scheme among components, such as the TalLab platform
(Wolinski et al. 1998) or the ICE architecture (Amtrup,
1995).

The rest of the paper is organised as follows: In section
2 some of the existing text engineering platforms are
briefly described. In section 3 Ellogon is presented. Fi-
nally, in section 4 some concluding remarks are presented.

2. Related Work
The LT-NSL and LT-XML tools are examples of the

additive approach. They are based on SGML and XML
respectively. These tools provide a specialised application
programming interface (API) with the help of which pro-
grams can request, add or modify linguistic information in
documents encoded in SGML/XML. The components that
actually perform the linguistic processing are SGML-
aware executables (using the provided SGML API) that
communicate with each other with the use of pipes. One
of the most important advantages of this approach is that
each linguistic component can load from the SGML
document only the information that requires or can recog-
nise, resulting in a system with small memory require-
ments. On the other hand, the need for re-parsing the
SGML document by each module may increase the proc-
essing time. In addition, there may be problems related to
SGML. For example, although tree-structured information
can be easily encoded, graph-structured information is
difficult to represent.

GATE is probably the most widely used text engineer-
ing platform. GATE follows the referential or annotation-
based approach, based on the TIPSTER data model. Un-
der GATE, linguistic information is stored independently
of the textual data, in a database (GDM – the GATE
Document Manager). GATE also offers a specialised ob-
ject oriented API for retrieving, adding or modifying the
associated linguistic information. Besides this core func-
tionality, GATE presents some additional features such as
the ability to integrate linguistic processing components at
run-time, a graphical user interface, a set of visualisation
tools and a set of some generic tools like comparison tools
or SGML import/output filters. On the other hand, GATE
presents large requirements of operating system resources

and lacks support for non-Latin languages1 (Cunningham,
2000).

The Advanced Language Engineering Platform
(ALEP) provides infrastructure for accessing linguistic
processing and text handling tools, resources and applica-
tions. ALEP utilises a neutral feature-based, unification
enabled formalism for storing all needed linguistic infor-
mation. ALEP also offers the ability to integrate external
linguistic processing components and provides many tools
for converting the utilised formalism into PROLOG as
well as for debugging the embedded components. Finally,
a graphical user interface is offered, based on EMACS (a
Unix LISP-based text editor) and Motif (a Unix graphical
toolkit). On the other hand, ALEP imposes a specific for-
malism and is dependent on a specific operating system
(Unix). While ALEP provides an open framework where
new formalisms can be embedded, the provided formalism
can be only used for developing particular types of re-
sources (like grammars or lexicons) and for performing a
particular set of linguistic tasks (or performing them in a
particular way).

The TalLab platform does not impose a single standard
for representing linguistic information and as a result it
does not restrict the way a component is implemented. It
is based on a multi-agent approach, reusing the operating
system wherever possible. Each component is imple-
mented as an agent that can communicate with other
agents in an asynchronous mode. One of the most impor-
tant advantages of this approach is the fact that it can op-
erate in mission-critical environments. Possible failure of
an agent does not halt the entire system: the problem
cause can be eliminated (like rejecting a problematic
document) and the agent can be restarted. On the other
hand, the lack of a communication standard makes diffi-
cult the integration of new components, as each compo-
nent has to communicate directly with existing agents that
possibly utilise various communication protocols.

The main reason that led to the development of El-
logon was the inadequacy of existing platforms to support
some important properties in text engineering. These fea-
tures include the ability to support a wide range of lan-
guages through Unicode, to function under all major oper-
ating systems, to have as few hardware requirements as
possible, to be based on a modular architecture that en-
ables parts to be embedded in other systems and to pro-
vide an extensible, easy to use and powerful user inter-
face. Ellogon supports many of these requirements to a
large extent.

3. Ellogon
Ellogon belongs to the category of referential or anno-

tation based platforms. Based on the TIPSTER data
model, Ellogon provides infrastructure for:
• Managing, storing and exchanging textual data as

well as the associated linguistic information.
• Creating, embedding and managing linguistic proc-

essing components.
• Facilitating communication among different linguistic

components by defining a suitable API.
• Visualising textual data and associated linguistic in-

formation.

1 However, GATE version 2 will provide complete support for
non-Latin languages, as it will offer complete Unicode support.

The architecture of Ellogon, the utilised data model
and the linguistic processing components as well as some
key features of Ellogon are presented in the following
subsections.

3.1. Ellogon Architecture
Ellogon consists of mainly three subsystems (Figure

1):
• A highly efficient core – the Collection and Docu-

ment Manager (CDM), developed in C++, which im-
plements all the basic functionality. Its design is
based on the TIPSTER architecture2 and its main re-
sponsibility is to manage the storage of the textual
data and the associated linguistic information and to
provide a well-defined programming interface that
can be used in order to retrieve/modify the stored in-
formation. This core can be easily embedded in other
applications.

• A powerful and easy to use graphical user interface
(GUI). This interface can be easily tailored to the
needs of the end user.

• A modular plugable component system. All linguistic
processing within the platform is performed with the
help of external, loaded at run-time, components.

Figure 1: Ellogon Architecture.

3.2. Ellogon Data Model
Ellogon shares the same data model as the TIPSTER

architecture. The central element for storing data in El-
logon is the Collection. A collection is a finite set of
Documents. An Ellogon document consists of textual data
as well as linguistic information about the textual data.
This linguistic information is stored in the form of attrib-
utes and annotations.

An attribute associates a specific type of information
with a typed value. For example, the part-of-speech of a
word can be represented with the following attribute:

pos = (STRING) “noun”

2 Although Ellogon is based on the TIPSTER architecture, it is
not strictly TIPSTER compliant. For example, currently the API
does not provide the object-oriented framework defined by the
TIPSTER architecture.

Operating System

CDM API

Collection & Document
Manager

Linguistic Processing
Components

As can be seen from this example, attribute values are
typed. Currently supported values are strings, sets of
strings and annotations.

An annotation associates arbitrary information (in the
form of attributes) with portions of textual data. Each such
portion, named span, consists of two byte offsets denoting
the start and the end characters of the portion, as measured
from the first character of some textual data. Annotations
typically consist of four elements (see Figure 2):
• A numeric identifier. This identifier is unique for

every annotation within a document and can be used
to unambiguously identify the annotation.

• A type. Annotation types are textual values that are
used to classify annotations into categories.

• A set of spans that denote the range of the annotated
textual data.

• A set of attributes. These attributes usually contain
the necessary linguistic information.

This is a simple sentence.

0....5....10...15...20...25

Annotations
Span Set

Span 1 Span 2 …ID Type S
tart

E
nd

S
tart

E
nd

Attributes

0 token 0 4 type=EFW, pos=PN

1 token 5 7 type=ELW, pos=VB

2 token 8 9 type=ELW, pos=IDT

3 token 10 16 type=ELW, pos=ADJ

4 token 17 25 type=ELW, pos=NN

5 token 25 26 type=PUNC, pos=.

6 sentence 0 26 constituents=[0 1 2 3 4 5]

7 link 0 4 17 25 constituents=[0 4]

Figure 2: Example of a sentence and its relevant annota-
tions.

3.3. Ellogon Components
For most users of Ellogon, the central point of interest

is the linguistic processing that can be carried out within
it. Ellogon provides a generic framework where external
components can be embedded. These components are or-
ganised into Systems for performing some specific task.
The tasks can range from basic linguistic tasks, such as
part-of-speech tagging or parsing, to application level
tasks, such as information extraction or machine transla-
tion.

A component consists mainly of two parts. The first
part is responsible for performing the desired linguistic
processing while the main responsibility of the second
component part is to interface the linguistic processing
sub-component with Ellogon, through the provided API.
Components can appear either as wrappers or as native
components. Wrappers usually provide the needed code in
order to interface an existing independent implementation

of a linguistic processing tool to the Ellogon platform.
Native components on the other hand are processing tools
specifically designed for use within the Ellogon platform.
Usually, in such components the two component parts
cannot be easily identified or separated.

Each component is associated with a set of pre-
conditions and a set of post-conditions. Pre-conditions
declare the linguistic information that must be present in a
document before this specific component can be applied
to it. Post-conditions describe the linguistic information
that will be added in the document as a side effect of
processing the document with this specific component.
Ellogon uses these two sets in order to establish relations
among the various components.

Figure 3: Component Structure.

Each component can also specify a set of parameters,
as well as a set of viewers. Parameters represent various
run-time dependent options (such as the location of a file
containing the grammar of a syntactic parser). They can
be edited by the end user through the graphical interface
and are given to the component every time it is executed.
A component can also specify a set of predefined viewers,
in order to present in a graphical way the linguistic infor-
mation produced during the component execution. Exam-
ples of available viewers are shown in figures 6 – 9.

Creating components can be easily done through the
Ellogon GUI. Currently, Ellogon components can be de-
veloped in two languages, C++ and Tcl. The Ellogon GUI
offers a specialised dialog where the user can specify
various parameters of the component he/she intends to
create, including its pre/post-conditions. Then Ellogon
creates the skeleton of the new component that will handle
all the interaction with the Ellogon platform. If the lan-
guage of the component is C++, a Makefile for compiling
the component under Unix will also be created. Besides
creating a skeleton, Ellogon tries to facilitate the devel-
opment of the component by allowing the developer to
edit the source code and re-load the specific component
into Ellogon from its GUI.

3.4. Ellogon key features
In the following paragraphs, we briefly present some

of the most important aspects of the Ellogon text engineer-
ing platform.

3.4.1. Support of multiple languages
The fact that Ellogon offers full Unicode support (in

both its core unit CDM as well as in its GUI) provides the
ability to properly support a wide range of languages. El-
logon includes a large number of input/output filters for

Ellogon

 Linguistic Processing
Component

LLiinngguuiissttiicc TTooooll

WWrraappppeerr
((CCDDMM AAPPII))

Linguistic Tool
This component part is

responsible for the linguistic
processing.

Wrapper
This component part is

responsible for interfacing
the linguistic processing with

Ellogon.

various encodings, such as the ISO-8859-* encodings or
the encodings used under Microsoft Windows or Apple
Macintosh. Additionally, components can be classified
according to the language they support and can utilise the
utilities provided by the API in order to convert textual
data among various encodings. Finally, Ellogon provides
an internationalised GUI3 that has been designed to facili-
tate the integration of additional languages, even by the
end user.

3.4.2. Portability
Supporting all the major operating systems has always

been a shortcoming of many of the existing text engineer-
ing platforms. Ellogon on the other hand, offers native
ports to many operating systems and has been extensively
used and tested under Unix (Solaris 2.6 & 7, Red Hat
Linux 6 & 7) and Microsoft Windows (95, 98, Me, NT
4.0, NT 2000 & XP). Additionally, Ellogon aims to pro-
vide a unified view of various operating system specific
tasks under all supported operating systems. For example,
pipelines and file redirections are emulated under Micro-
soft Windows or filenames can be specified using the
Unix notation under all supported operating systems. Fi-
nally, the provided graphical interface provides exactly
the same functionality under the various supported operat-
ing systems.

3.4.3. Advanced GUI
Ellogon offers an extensive and powerful multi-lingual

user interface. This GUI provides users with the ability to
manage Collections/Documents/Systems, to visualise lin-
guistic information with an extensible set of visualisation
tools, to develop and integrate linguistic components, to
browse documentation and of course, to do linguistic
processing of textual data using various modes. Finally,
the user interface can be adapted to meet specific needs,
such as systems dedicated to specific linguistic processing
tasks.

3.4.4. Modular Architecture
Ellogon is based on a modular architecture that allows

the reuse of Ellogon sub-systems in order to ease the crea-
tion of applications targeting specific linguistic needs.

Ellogon’s core component – CDM – is implemented as
a separate library that can be dynamically loaded if the
underlying operating system offers such ability. This li-
brary can be independently embedded inside any applica-
tion that can call functions from libraries, following the
C++ naming conventions. Examples of embedding CDM
under various applications include Microsoft Word4, Tcl
and Java.

Actually, the whole Ellogon platform is based on the
idea of extending the Tcl scripting language by embed-
ding CDM into it. The graphical interface of Ellogon, is
based on the cross-platform graphical toolkit Tk, included
in Tcl. Developed in a scripting language it can be easily
extended (even components can utilise/extend it) or modi-
fied to create specialised applications.

3 Currently, the provided GUI languages include only English
and Greek.
4 In order to embed CDM under Microsoft Word we utilise the
Active-X technology, with CDM exported as an Active-X com-
ponent.

The choice of incorporating Tcl into Ellogon has
played an important role in its development. Ellogon takes
advantage of many features from Tcl, like Unicode sup-
port, data structures and its cross-platform abstraction
layer. Other cross-platform technologies (Java included)
were not found adequate for all the requirements a plat-
form like Ellogon must have. Initial work in embedding
CDM into Java5 has been done, but results were not en-
couraging. Memory usage increased significantly, while
processing time was not greatly improved compared to
Tcl. In addition, utilising Java graphical capabilities was
found slower and far more complex than utilising the cor-
responding capabilities offered by Tcl. Additional prob-
lems were also discovered, like the incompatibilities
among various Java implementations from different ven-
dors and the difficulty to design code that cooperates well
with all of them6. Currently, Tcl appears to offer the best
cross-platform support, although we expect that Java may
also be improved in future versions.

3.4.5. Interoperability with other platforms
Ellogon facilitates the reuse of linguistic processing

tools. Under this framework, Ellogon allows the reuse of
existing linguistic components, even if they currently op-
erate under other platforms. Of course, this is not an easy
task, as it usually requires re-implementing the platform
that is emulated. Currently, Ellogon offers only one com-
patibility layer, enabling the incorporation and embedding
of GATE (version 1.x) components (CREOLE objects)
written in the Tcl language.

Its development was mainly driven by the fact that we
have been users of the GATE platform for many years and
almost all of our components were working under GATE.
This compatibility layer gave us the ability to cooperate
with other groups that use GATE, facilitating the devel-
opment of components that operate under both platforms
and the ability of exchanging textual data and the associ-
ated information. This compatibility layer offers the abil-
ity to execute GATE Tcl components, to im-
port/manage/export GATE collections and to im-
port/manage/export GATE systems. Currently, no support
exists for GATE modules developed in C++.

3.4.6. Memory compression
The use of memory by a text-engineering platform is a

very important aspect, as it usually determines the size of
textual data that can be processed under this platform.
Under Ellogon, this requirement is far more important, as
the use of Unicode can increase memory requirements by
simply changing from a language that requires fewer bytes
per character (like English) into a language needing more
bytes per character (like Greek). Ellogon tries to decrease
its memory requirements by incorporating a memory
compression scheme. Initial measurements have shown
that Ellogon uses less memory for performing the same
tasks than other (TIPSTER-based) platforms.

3.4.7. Execution server
Executing other programs from an application is not

always an easy task, as it is usually associated with a large

5 Sun JDK 1.3.0 and IBM JDK have been used. CDM was
embedded using the Java Native Interface (JNI).
6 Currently, only Microsoft Windows, Sun Solaris and Linux are
supported.

number of problems. Except of utilising platform specific
features (like pipelines or file redirections), usually a large
amount of memory is needed (especially under Unix) in
order for a program to execute another program. For all
these reasons, Ellogon incorporates an execution server:
when Ellogon initialises, it also initialises a separate proc-
ess that specialises in executing external programs. When
the need to execute an external program arises, the operat-
ing system needs to replicate the execution server instead
of the main Ellogon process that may request hundreds of
megabytes of memory.

3.4.8. HTTP Server
Finally, an interesting feature of Ellogon is the ability

to act as a Web server, offering the ability to expose the
linguistic functionality implemented by its components
through the HTTP protocol. Thus, other instances of the
Ellogon platform, possibly running on remote computers,
or even single users through a web browser, can upload
textual data to an Ellogon server, use its components to
process the data and download the results back to the re-
mote computer as a Web page.

3.5. Systems that use Ellogon
Ellogon has been constantly used by SKEL laboratory

in research projects (four of which are presented below).
Ellogon will be used soon by other research organisations
(project partners of SKEL), in order to be better evaluated.
We hope to collect valuable information about its use that
will enable us to further improve Ellogon along many
directions.

3.5.1. GIE
Greek Information Extraction (GIE) was a bilateral

project between our laboratory and the University of Shef-
field (Karkaletsis et. al. 1998) aiming at the creation of a
Greek information extraction system based on the English
VIE system distributed with GATE. The resulting system
was also embedded in the GATE platform. This system
gave us the ability to test and evaluate the GATE com-
patibility mode of Ellogon, since the GIE system also runs
unmodified under Ellogon.

3.5.2. MITOS
MITOS is an R&D project7 that combines techniques

from information filtering to classify incoming news arti-
cles, as well as techniques from information extraction to
extract factual information from financial news articles,
which is then stored into a database (e.g. buyer, company
bought). Ellogon was used as the development platform
for the linguistic processing and information extraction
components. It was also used to develop user-friendly
applications for information extraction and for annotating
training data. These applications are currently used suc-
cessfully by users with no linguistic or NLP background.

3.5.3. SCHEMATOPOIESIS
In the context of the Greek R&D project SCHEMA-

TOPOIESIS, Ellogon was used to develop the first proto-
type controlled language checker for Greek in order to
assist Greek technical writers as well as to facilitate trans-

7 See also at: http://www.iit.demokritos.gr/skel/mitos/.

lation from Greek to other languages8. The project cov-
ered technical documents from the domain of computer
equipment. Ellogon was used not only as the development
platform for the checker, but also as a mean for embed-
ding the checker under Microsoft Word, allowing the user
to check his/her documents in a similar way as a
spell/syntax checker. The architecture of the controlled
language checker (Petasis et al. 2001) is shown in Figure
4.

Figure 4: The architecture of the SCHEMATOPOIESIS
controlled language checker. Ellogon was used as a “vehi-
cle” for embedding the checker under Word. Communica-
tion between Word and Ellogon was achieved by means of

XML and DDE messages.

Figure 5: The interface for correcting errors identified by
the SCHEMATOPOIESIS checker. Ellogon is completely
hidden to the end user. The user simply presses a toolbar

button to process the document with Ellogon and
see/correct the identified errors within Word.

All the components related to linguistic processing and
language checking were running under Ellogon, where as
the components for generating an XML-based representa-
tion of the word document, the components that per-
formed the formatting checks and the components that
marked the identified errors on the document were run-
ning under MS Word. The communication between MS
Word and Ellogon was achieved with the use of either
ActiveX or DDE, services supported by both MS Word
and the Windows version of Ellogon. The reason we have
evaluated two communication methods is related to ro-

8 See also at: http://www.iit.demokritos.gr/skel/en/Projects/
SCHEMATOPOIESIS.htm.

Format
Checking

XML
generator

Word
Document

Processing of
Language and
Format Errors W

or
d

Reading of
XML

documents

Tokenisation
Sentence
Splitting

Part of Speech
Tagging

Case
Tagging

Morphological
Analysis

Lexical
Analysis

Linguistic Processing

Language Checking

Termbase/
Vocabulary Lookup

Language
Checking

E
llogon

bustness. Under the ActiveX technology, the whole El-
logon platform was embedded as an ActiveX component
under MS Word. However, this embeddance reduced the
robustness of the whole integration as sporadic crashes
were observed when the user exited Word, as Word failed
in some cases to successfully terminate the Ellogon
ActiveX component. The communication services offered
by DDE did not cause any robustness problems, as El-
logon runs as a DDE server in a separate process than MS
Word. DDE messages are used for bi-directional commu-
nication between Ellogon and Word as well as for termi-
nating Ellogon when the user exits Word.

3.5.4. CROSSMARC
The “CROSS-lingual Multi Agent Retail Comparison”

(CROSSMARC9) project develops commercial-strength
technology for e-retail product comparison. CROSS-
MARC employs language technology methods for infor-
mation extraction, which can process pages written in sev-
eral languages, and can be adapted semi-automatically to
new product types.

Ellogon is employed by the SKEL laboratory in
CROSSMARC, as it provides significant advantages re-
garding handling of HTML corpora, which is the primary
type of corpora for the CROSSMARC project. These ad-
vantages include:
• Complete HTML support: Ellogon provides facilities

for retrieving HTML pages and the contained images
from HTTP servers, converting them from any possi-
ble character set into Unicode and storing them as
well as their images as Ellogon documents. Addition-
ally, Ellogon provides a complete HTML viewer that
can be used to preview the HTML pages.

• HTML aware annotation tools. These tools can be
used to annotate HTML document while the annota-
tor sees the HTML preview of the document and not
the actual HTML source. An example of such a tool
can be seen in Figure 6.

• Perhaps the most significant advantage is the Ellogon
API: Requiring only an HTML aware tokenisation
component, able to identify and separate HTML to-
kens from non-HTML ones, all subsequent linguistic
processing components can be applied to the HTML
source without any modification, as only tokens cor-
responding to textual data can be transparently se-
lected through the query facilities of the Ellogon API.
An example is presented in Figure 7, where a part-of-
speech tagger has been applied in an HTML docu-
ment but only non-HTML tokens have been assigned
a part-of-speech category.

4. Future Plans
We are continuously working to improve Ellogon along
many directions. Although Ellogon is already highly op-
timised, we still try to further reduce the memory re-
quirements. Currently, we try to enhance CDM with the
ability to selectively load only the needed information
from a document in memory instead of the whole docu-
ment. We are also working towards improving the user
interface by adding new features and improving existing
ones. At the same time, we are trying to further ease the
component development/compilation process. Our goal is

9 See also at: http://www.iit.demokritos.gr/skel/crossmarc/.

to automatically provide some standard compilation tools
for the most common platforms, like configure scripts for
Unix or Visual C++ project files for Windows, as well the
ability to compile components developed in C++ from
inside Ellogon in a cross-platform way, if a suitable C++
compiler is available.

Future versions of Ellogon will provide more ready to
use tools for a larger set of common tasks as well as more
input filters, like the ability to open Microsoft Word or
PDF documents. In addition, we plan to provide an object-
oriented version of the current CDM API.

Acknowledgements
Our cooperation with the University of Sheffield, de-

veloper of GATE, inside the R&D projects ECRAN and
GIE, motivated us to be actively involved in the area of
text engineering platforms and make our first efforts to-
wards the development of Ellogon.

Figure 6: An HTML aware Ellogon annotation tool, anno-
tating an Ellogon document containing an HTML page

and the corresponding images.

Figure 7: An Ellogon viewer presenting the output of a
part-of-speech tagger applied on an HTML document.

Figure 8: An Ellogon viewer presenting attributes con-
tained in a document. Note that the values of some attrib-

utes are images.

Figure 9: An Ellogon viewer showing a parse tree of a
simple sentence.

5. References
(Amtrup, 1995): Amtrup J. W. 1995. ICE – INTARC

Communication Environment User Guide and Refer-
ence Manual Version 1.4. Technical report, University
of Hamburg.

(Cunningham, 1997): Cunningham H., Humphreys K.,
Gaizauskas R., Wilks Y. 1997. “GATE – a TIPSTER-
based General Architecture for Text Engineering”. In
Proceedings of the TIPSTER Text Program (Phase III)
6 Month Workshop. DARPA, Morgan Kaufmann, Cali-
fornia.

(Cunningham, 2000): Cunningham H., Maynard D.,
Bontcheva K., Tablan V. and Wilks Y., 2000. “Experi-
ence of using GATE for NLP R&D”. In Workshop on
Using Toolsets and Architectures To Build NLP Sys-
tems at COLING-2000, Luxembourg.

(DARPA, 1995): DARPA (Defense Advanced Research
Projects Agency), 1995. In Proceedings of the Sixth
Message Understanding Conference (MUC-6). Morgan
Kaufmann.

(Grishman, 1996): Grishman, R. 1996. “TIPSTER Archi-
tecture Design Document Version 2.2”. Technical Re-
port, DARPA. Available at
http://www.tipster.org

(Karkaletsis et. al. 1998): Karkaletsis, V., Spyropoulos, C.
D., and Petasis, G., 1998. “Named Entity Recognition
from Greek texts: the GIE Project”. In Advances in In-
telligent Systems: Concepts, Tools and Applications, ed.
S. Tzafestas, Kluwer Academic Publishers, Part II
Chapter 12, pp. 131 - 142. (Presented at the 3rd Euro-
pean Robotics Intelligent Systems & Control Confer-
ence (EURISCON '98), June 22 - 25 1998, Athens,
Greece.)

(McKelvie et. al. 1997): McKelvie D., Brew C., Thomp-
son H. S. 1997. “Using SGML as a Basis for Data In-
tensive Natural Language Processing”. Computers and
the Humanities, 31(5): 367-388.

(Petasis et al. 2001): Petasis G., Karkaletsis V., Far-
makiotou D., Samaritakis G., Androutsopoulos I., Spy-
ropoulos C.D., 2001 “A Greek Morphological Lexicon
and its exploitation by a Greek Controlled Language
Checker”. In Proceedings of the 8th Panhellenic Con-
ference on Informatics, Nicosia, Cyprus, 8-10 Novem-
ber 2001.

(Simkins, 1994): Simkins N. K. 1994. “An Open Archi-
tecture for Language Engineering”. In First Language
Engineering Convention. Paris, France.

(Thompson and McKelvie, 1996): Thompson H. S. and
McKelvie D. 1996. “A Software architecture for Sim-
ple, Efficient SGML Applications”. In Proceedings of
SGML Europe ’96, Munich, Germany.

(Wolinski et al. 1998): Wolinski F., Vichot F. and O.
Gremont, 1998. “Producing NLP-based On-line Con-
tentware”. In Natural Language and Industrial Applica-
tions. Moncton, Canada. Available at:
http://xxx.lanl.gov/abs/cs.CL/9809021

	72: 72
	73: 73
	74: 74
	75: 75
	76: 76
	77: 77
	78: 78

