
Using the Spoken Dutch Corpus for type-logical grammar induction1

Michael Moortgat†, Richard Moot†

†Utrecht Institute of Linguistics – OTS
Trans 10, 3512 JK Utrecht, The Netherlands

{moortgat,moot}@let.uu.nl

Abstract
The dependency-based annotation format employed within the Spoken Dutch Corpus (CGN) project (van der Wouden et al., 2002) has
been designed in such a way as to enable a transparent mapping to the derivational structures of current ‘lexicalized’ grammar formalisms.
Through such translations, the CGN tree bank can be used to train and evaluate computational grammars within these frameworks. In
this paper we use the computational facilities of the Grail system (see Moot, 2002) to extract type logical grammars from the CGN
annotation graphs. Grail is a general grammar development environment for type-logical categorial grammars (TLG). The Grail parsing
engine combines proof net technology with structural rewriting.

1. Type logical grammar
Type logical grammar, as described in (Moortgat,

1997), is a generalization of Lambek categorial gram-
mar. TLG has a two-component architecture. A universal
base component captures grammatical invariants and pro-
vides the input for meaning assembly, along the lines of
the Curry-Howard interpretation of derivations. This base
component is combined with a structural module, which
relates the semantically interpreted structures to surface
structure configurations. The structural module accommo-
dates cross-linguistic variation; its rules have the status of
non-logical axioms or postulates. Structural rules do not
operate in a global fashion; they have to be explicitly li-
censed by control features, and are thus lexically anchored.

The TLG type language is obtained by taking a small set
of basic types (say, s, n, np, . . . ), and closing it under n-
ary type-forming operations. The type-forming operations
come in families consisting of an n-ary structure-building
operation, together with its n residuals for disassembling
complex structures. The type-forming operations are in-
dexed with a composition mode index. The different com-
position modes all share the same logical rules, given by
the residuation inferences below for the unary and binary
case, but they can differ in their structural possibilities.

(R0) ♦iA ` B if and only if A ` 2iB
(R1) A •j B ` C if and only if A ` C/jB
(R2) A •j B ` C if and only if B ` A\jC

An illustration of a structural rule is given below. Rather
than attributing global associativity to the •0 operation, this
rule allows a form of controlled rebracketing, keyed to the
♦1 feature.

(A •0 B) •0 ♦1C ` A •0 (B •0 ♦1C)

The strict separation of logical and structural compo-
nents creates subtle tools for probing the mildly context-
sensitive territory. The TLG base component is of polyno-
mial complexity. The complexity of the combination with

1An earlier version of this paper appeared as (Moortgat and
Moot, 2001)

the structural module depends on the constraints one im-
poses on allowable structural inferences. In (Moot, 2002) it
is shown that a linearity constraint (no duplication or waste
of grammatical material) corresponds to context-sensitive
expressivity (PSPACE complexity), but that with appropri-
ate further restrictions on structural rules and lexical entries
polynomial fragments of LTAG expressivity can be identi-
fied.

2. Proof nets for TLG
The parsing theory for TLG — a refinement of the proof

nets originally developed for Linear Logic — directly ex-
ploits the resource-sensitivity of the grammar logic. We re-
fer the reader to (Moot and Puite, 2002) for formal results,
showing soundness and completeness of these proof nets
with respect to the sequent calculus for multimodal cate-
gorial grammar of (Moortgat, 1997). Below one finds an
informal introduction.

Definition 1 A categorial proof net system consists of the
following:
[Terminals] The terminal symbols are the lexical items of

our grammar. We denote a word as a terminal by en-
closing it in a square box, as follows.

alcohol Apeldoorn reclame . . .

[Nonterminals] The proof net nonterminals are the basic
type formulas. For example: s, np, n, . . .

[Constructors] Finally, we have constructors which al-
low us to make complex expressions out of terminals
and nonterminals. For the binary type-forming opera-
tions, our proof nets have four basic binary construc-
tors. The upward branching constructors, drawn with
a grey center, which we will call auxiliary, denote con-
straints on the use of their lexical entry, in a sense to
be made precise later. The downward branching con-
structor, the main constructor, has no constraints as-
sociated with its use.

A

B C
?

A

B C
�

A

B C
I

A

B C



Definition 2 A lexical entry for a categorial proof net sys-
tem is a tree made from constructor nodes such that

1. every root node (there can be multiple root nodes be-
cause the auxiliary constructors) is labeled with a
nonterminal symbol.

2. every leaf is labeled with either a nonterminal or a
terminal symbol.

3. at least one leaf of every lexical entry is labeled with
a terminal symbol.

Because the auxiliary constructors have more than one
parent node, they prevent the graph we are constructing
from being a tree. To remove these auxiliary constructors,
we define the following graph contractions on the graphs in
our system.

Definition 3 We define the following graph contractions on
categorial proof net systems. Whenever we find one of the
following three configurations of constructors, we can con-
tract this configuration to a single point.

?

� I

Note that all contractions are of the same general form:
they combine an auxiliary constructor with a main con-
structor on both ends not marked by the arrow and in a
way which respects the left-right ordering of the nodes.

Also note that drawing these graphs on a plane some-
times requires us to bend one of the connections.

Definition 4 A grammatical expression of type t in a proof
net system is graph which contracts to a tree T , with t as
its root, and where all leaves are labeled with terminals.

Example 1 An example lexicon for a categorial proof net
system looks as follows.

We have simple lexical entries, like ‘Albanië’ (Albania)
and ‘politie’ (police), which simply assign a syntactic cate-
gory to a word, but also more complex lexical entries, like
‘de’ (the) which combines with a syntactic expression of
category n to its right to form a syntactic expression of cat-
egory np. Similarly, the transitive verb ‘steunt’ (supports)
combines with an np to its right and with an np to its left to
form an expression of type s.

np

Albanië

np

alcohol

np

Milosevic

n

tram

n

politie

np

de n

n

ernstige n

n

amsterdamse n

s

np slaapt steunt np

s

np

To obtain a direct correspondence to the multimodal
sequent calculus, the full system described in (Moot and
Puite, 2002) is more extensive than what we have described
so far in a number of ways. We will see later that we need
some of these extensions for our proposed translation.

First of all, we allow our lexical graphs to have unary
branches, corresponding to the ♦, 2 connectives. The
unary constructors look as follows.

?

6

Secondly, we allow our constructors to have different
modes of composition by writing and index i, out of a finite
set of possible indices I , inside the constructor, as follows.

i

?

i

6
i

i

?

i

�
i

I
i

Finally, in addition to the contractions we allow a gram-
mar to specify structural conversions which convert one
tree of main constructors into another tree of main con-
structors with the same leaves. An example of a structural
conversion is given below. It corresponds to the postulate
(A•0B)•0♦1C ` A•0 (B•0♦1C) we saw in the previous
section. Note that the structural conversions perform, from
the logical point of view, a type of backward chaining proof
search and therefore the direction of the structure postulate
needs to be reversed.

x

0

y

0

z

1

→

x y

0

0

z

1

3. From CGN to TLG
In the following sections we discuss the extraction of

a type logical grammar from the CGN dependency anno-
tations. The logic+structure architecture of TLG suggests



WHQ

body

SV1

VNW8

wat gaan we doen het komend uur

WW2 VNW1 WW4 LID WW6 N1

NPINF

whd hd suobj1 hd det mod hd

vc mod

Figure 1: A CGN annotation graph

that the task can be naturally divided in two subtasks. The
first of these consists in solving type equations: in the TLG
setting this means breaking up the CGN annotation graph
into the subgraphs that correspond to lexical type assign-
ments. In the presence of multiple and discontinuous de-
pendencies, the lexical type assignments will not always
be directly compatible with surface constituency and word
order. The second subtask then consists in calibrating the
lexical type assignments in such a way that one has con-
trolled access to the structural reasoning component of the
grammar.

Our TLG grammar extraction algorithm for the CGN
tree bank is parameterized in a number of ways.

Node labels Which syntactic category labels does one re-
tain as atomic types for the resulting TLG?

Edge labels How does one translate the dependency infor-
mation into the TLG function/argument/modifier ar-
ticulation?

Thematic hierarchy How does one fix the canonical order
of complements within a dependency domain in terms
of the degree of coherence with the head?

Head position For the various clausal types, one can de-
termine the directional orientation of the head with re-
spect to its complements.

Licensing features In TLG (as in Minimalist Grammars),
structural inferences have to be explicitly licensed by
control features. Depending on their position in the
type structure, one obtains (the deductive counterpart
of) head movement or phrasal movement.

Below we report on the options for setting these param-
eters. In §4., we focus on the proof nets corresponding to
lexical type assignments; in §5., we discuss the options for
the structural module.

4. Obtaining the lexical proof nets
Our running example for the sections that follow is

given in Figure 1. Its word-by-word translation would be
‘What shall we do the next hour?’ The annotation graph,
with its crossing branches and multiple dependencies in the
case of the question word ‘wat’, exhibits the typical features
our TLG will have to deal with.

4.1. Basic Entries

When translating the basic entries, the issue of granu-
larity surfaces. The tags for some words differ only in their
morphological information. For example, the syntactic cat-
egory VNW for ‘voornaamwoord’ (pronoun) has 19, in the
CGN annotation standard, different instantiations depend-
ing on whether it is a personal pronoun, a reflexive pronoun,
a demonstrative pronoun, and so on. Do we want to distin-
guish all of these or do we want to keep them mostly the
same? For the moment, we take this last option, and we
translate the syntactic categories of our example into non-
terminal categories as follows.

VNW1 → np
VNW8 → np
N1 → n

INF → inf
SV1 → sv1
WHQ → whq

With this translation in hand, we can immediately as-
sign two of the words of the example a lexical entry.

np

we

n

uur

If a more fine-grained approach turns out to be desir-
able, we can use the built-in TLG facilities for expressing
subtyping patterns. A direct implementation would be to
use the part-of-speech tags as mode indices on unary con-
nectives. One could then type ‘we’ as ♦vnw12vnw1np,
from which one can derive type np.

4.2. Modifiers

The example sentence of Figure 1 has two modifiers:
‘komend’ (next) is a modifier at the np level, whereas the
phrase ‘het komend uur’ (the next hour) is a sentence level
modifier.

The n modifier is lexically anchored and is in fact the
same lexical graph used for noun modifiers in the example
lexicon in Example 1. The translation for the sv1 modifier
is still partial, since it depends on the translation for the
functor of the NP domain.

n

komend n

sv1

sv1 ?

4.3. Functors

For functors, we again have to make a choice: do we
want to follow the surface structure as much as possible
and basically generate the words of the sentence in the right
order, or do we want to assign functors a structure which is
as canonical as possible, which would reduce the number
of different lexical assignments and require us to derive the
other possibilities from this canonical structure. Below we
illustrate the first option.

The functor ‘doen’ (to do) selects a direct object np to
its left to produce an inf category. This is coded by the
following lexical graph.



doen

np WW4

obj1 hd

INF

;

inf

np doen

The functor ‘het’ (the) selects a noun to its right to pro-
duce the translation of the np category.

het

nLID

det hd

NP

;

?

het n

As we have seen in the previous section this translation
is an sv1 modifier, so the final result will select an n to its
right to produce an sv1 modifier as follows.

het n

sv1

sv1

The auxiliary verb ‘gaan’ (go) selects for a subject np
and an infinitival complement inf , which is translated as
follows.

gaan

np infWW2

hd su vc

SV1

;

gaan np

sv1

inf

4.4. Multiple Dependencies

Because the auxiliary links for lexical proof structures
have more than one parent, it seems evident we can use
auxiliary links to encode the multiple dependencies which
are possible in the CGN annotation graphs.

The multiple dependency in our example, schematically
repeated below for convenience, will be converted as fol-
lows, indicating ‘wat’ (what) produces an expression of
type whq if it finds an expression of type sv1, in which
‘wat’ will function as an np, to its right.

wat

VNW8

SV1

WHQ

whd body

; I

sv1

np

whq

wat

The introduction of an auxiliary constructor in the lexi-
cal graph commits us to contract this constructor and doing
this may require the use of structural conversions. We will
return to the topic of structural conversions §5., where they
allow us to derive discontinuous constituents.

4.5. Edge Labels

So far, we have treated the edge labels as only providing
us with the information we need to determine which struc-
tures are functors and which structures are modifiers. We
now want to refine the translation function to also take the
information about the dependency relations into account.

In the example below, ‘doen’ (to do) selects an np
which functions as a direct object [obj1]. One possibility
is to encode this information into the mode of composition,
assigning ‘doen’ the type np\obj1inf, as in the graph below.
Note that the [hd] syntactic relation is implicit in this encod-
ing, in the sense that functors and heads are identified. Note
also, that in a language (like Dutch) with both head-initial
and head-final phrases, one would have to take the head po-
sition into account. This can be done by distinguishing, say,
l(M) versus r(M) for left- versus right-headed structures, as-
signing the dependency role M to the non-head component.
In the case of our head-final transitive infinitive, this yields
the type np\r(obj1)inf.

doen

np WW4

obj1 hd

INF

;

inf

np doen

o1

An alternative solution would be to encode the gram-
matical relations as unary branches in the lexical graph.
This allows us to code also the [hd] edge label explicitly,
as in the graph below. In the remainder, we go for the first
option, because we want to reserve the unary connectives
for another purpose — they will act as control features for
structural reasoning.

doen

np WW4

obj1 hd

INF

;

inf

np

o1

doen

hd

4.6. Implementation

As already suggested by the previous sections, the trans-
lation from the CGN annotation graphs to the TLG frame-
work can be fully automated. The implementation of the
conversion, given in Figure 2 proceeds on the assump-
tion, which does not necessarily hold of general DAGs, but
which is true of the DAGs we use for the CGN annotation,
namely that every connected component of the DAG has a
unique root vertex.



BEGIN
FOR EVERY component c of C

LOOK UP the formula F corresponding
to the unique root vertex v

TRANSL(v,F )
END FOR
END

PROC TRANSL(v,F )
IF v is a leaf corresponding to word w

add w with formula F to the lexicon
ELSE

FOR EVERY daughter d with edge label e of v
IF d is a modifier

TRANSL(d,F\l(e)F )
ELSE IF d is a complement

LOOK UP the formula D corresponding
to the vertex label d

TRANSL(d,f1\l(e1) . . . fi\l(ei)D)
WHERE f1 . . . fi are the formulas corresponding to

secondary edges of descendants of d
ELSE IF d is a head

TRANSL(d,f1\l(e) . . . fi\l(e)F/r(e)fj . . . /r(e)fm)
WHERE f1 . . . fi are the formulas corresponding to

complements occurring to the left of d
WHERE fj . . . fm are the formulas corresponding to

complements occurring to the right of d
END IF

END FOR
END IF

END PROC

Figure 2: The translation algorithm

5. Discontinuity and structural reasoning
As remarked above, the dependency relations coded in

the CGN annotation graphs can be at odds with surface or-
der and constituency. In our example of Figure 1, we al-
ready saw an illustration of such a discontinuous depen-
dency: the secondary edge linking the question word ‘wat’
to the direct object role within the infinitival complement
headed by ‘doen’ crosses the finite verb and subject edges.

To make the lexical type-assignments compatible with
surface order, we have to combine the categorial base logic
with some form of structural reasoning. Earlier versions of
categorial grammar were ill equipped to deal with the com-
bination of logical and structural inference, because they
were operating from an essentially one-dimensional per-
spective on grammatical composition. If there is only one
composition operation around in the grammar, attributing
structural properties to this operation (such as associativity,
or commutativity) has a global effect, destroying structural
discrimination (for constituency or linear order) through-
out the grammar. What is needed instead of such global
choices, is lexically controlled, local options for structural
reasoning.

The multimodal architecture of TLG provides for this
form of structural control. In the presence of multiple
modes of composition, one can differentially treat the struc-
tural behavior of individual modes and of their interaction.
A constituent bearing the [obj1] dependency role, for exam-

ple, could have a different structural behavior from a sub-
ject constituent. The unary type-forming connectives (♦
and the residual 2 in the type language) in this respect act
as licensing features, providing controlled access to struc-
tural inferences.

5.1. The structural package

We are currently experimenting with the structural
package below (from (Moortgat, 2001)) that seems to have
a pleasant balance between expressivity and structural con-
straint. We first discuss the postulates in schematic form —
further fine-tuning in terms of mode distinctions for the •
and ♦ operations is straightforward.

♦A • (B • C) a` (♦A • B) • C (P l1)
♦A • (B • C) a` B • (♦A • C) (P l2)

(A • B) • ♦C a` (A • ♦C) • B (Pr2)
(A • B) • ♦C a` A • (B • ♦C) (Pr1)

The postulates can be read in two directions. In the
Output a Input direction, they have the effect of revealing
a ♦ marked constituent, by promoting it from an embedded
position to a dominating position where it is visible for the
logical rules. In the Input ` Output direction, they hide a
marked constituent, pushing it from a visible position to an
embedded position. Apart from the a` asymmetry, there
is a left-right asymmetry: the P l postulates have a bias for
left branches; for the Pr postulates only right branches are
accessible.

We highlight some properties of this package.

Control The postulates operate under ♦ control. Because
the logic doesn’t allow the control features to enter a
derivation out of the blue, this means they have to be
lexically anchored.

Linearity The postulates rearrange a structural configura-
tion; they cannot duplicate or waste grammatical ma-
terial.

Locality The window for structural reasoning is strictly lo-
cal: postulates can only see two products in construc-
tion with each other (with one of the factors bearing
the licensing feature).

Recursion Non-local effects arise through recursion.

5.2. Calibrating the lexicon/syntax interface

In order to give the lexical type assignments of §4. ac-
cess to structural reasoning, we have to systematically re-
fine them with the licensing control features. We follow
the ‘key and lock’ strategy of (Moortgat, 2001), which con-
sists in decorating positive subtypes with a ♦2 prefix. For
a constituent of type ♦2A, the ♦ component provides ac-
cess to the structural postulates discussed above. At the
point where such a marked constituent has found the struc-
tural position where it can be used by the logical rules,
the control feature can be cancelled through the basic law
♦2A ` A — the ♦ key unlocking the 2 lock.

We illustrate the effect of the ♦2 decoration on the lex-
ical type assignments for our running example of Figure 1.



Note that the positive subtype np in the type assignment to
the question word ‘wat’ (the ‘gap’ hypothesis) gains access
to structural reasoning by means of its se decoration (for
secondary edge).

doen : ♦hd2hd(np\r(obj1)inf)
gaan : ♦hd2hd((s1/l(vc)inf)/l(su)np)
het : ♦det2det(♦mod2mod(s1\s1)/l(hd)np)
komend : ♦m2m(♦m2m(s1\s1)/♦m2m(s1\s1))
uur : np
wat : ♦whd2whd(whq/l(body)(♦se2senp\r(obj1)s1))
we : np

we

l(su) r(o1)

hd se hd

?

hd

gaan
?

se

x
?

hd

doen

→Pl2

l(vc)

�
r(o1)

x

whq

l(bd)

whd

?

whd

wat

we

l(su)

l(vc)

hd

?

hd

gaan

se

?

se

x

hd

?

hd

doen

r(o1)

�
r(01)

x

whq

l(bd)

whd

?

whd

wat

Figure 3: The application of the P l2 conversion

For reasons of space, we shorten the example to ‘Wat
gaan we doen?’ (‘what shall we do’) — this provides
enough information to see how the discontinuous depen-
dency is established, and step through the proof net deriva-
tion of the simplified sentence. Figure 3 shows the net with
the right connections on the left. Note that the two occur-
rences of x correspond to the same vertex in the graph. For
a successful contraction as required by Definition (4), the
direct object hypothesis labeled x has to be moved upward.
For this we need the following mode-instantiated version of
postulate P l2.

♦seA •r(obj1) (B •l(vc) C) ` B •l(vc) (♦seA •r(obj1) C)

After the P l2 structural rewriting, the unary and binary
redexes are all in the right configuration for contraction,
as shown in Figure 3 on the right. The resulting tree is
displayed in Figure 4.

Note that in this derivation, only the licensing feature on
the hypothesis np subtype for ‘wat’ played an active role —
the inert control features in that type assignment could be
simplified away. We can anticipate that the m feature for
the sentential modifier ‘het komend uur’ (‘the next hour’)
will be active too, if we want to derive our running example

gaan we

l(su)

doen

l(vc)

whq

wat

l(bd)

Figure 4: The resulting tree

Standard
Reduced

0 5 10 15 20 25

0

50

100

150

200

Most ambiguous
Lexical items

Lexical
Entries

Figure 5: Reduction of the size of the lexicon for the most
ambiguous lexical entries

and the variant ‘wat willen we het komend uur gaan doen’
from the same type assignments. In this variant the modi-
fier separates the infinitival complement from its head — a
structural conversion that can be accomplished by Pr2 (in
the ‘hiding’ a direction).

5.3. Lexical Reduction

As some preliminary test data we have extended the
translation function of Figure 4.5. to produce modally dec-
orated lexical entries and eliminated the entries which have
become derivable from other lexical entries for a cross-
section of 50.000 words of CGN Release 5. Figure 5 plots
the data for the 25 words with the most lexical graphs as-
signed to them.

Table 1 lists the individual number of lexical entries in
the inital and the reduced lexicon. As can be seen from
these figures, lexical ambiguity is still a serious problem
even in the reduced case. We are currently investigating
ways of reducing the size of the lexicon even further and
ways akin to suppertagging (Joshi and Srinivas, 1994) for
reducing the complexity of lexical lookup.

6. Concluding Remarks
We have shown that the theory neutral annotation for-

mat used by CGN contains enough information to extract
a type logical grammar from it. The translation we have
proposed is parametric in a number of ways, which makes
it possible to study the trade-offs between storage and com-
putation, optimization of the TLG lexicon (reduction of lex-



Initial Lexicon

is 213
en 88
van 80
dat 78
zijn 74
in 72
niet 67
maar 67
als 61
de 60
wat 58
een 57
om 55
met 55
op 54
voor 53
ook 52
het 51
nog 49
dan 48
je 47
zo 45
wel 45
was 43
of 43

Reduced Lexicon

is 184
en 85
van 74
dat 71
in 68
zijn 67
niet 63
maar 63
als 60
de 59
wat 58
met 55
om 54
een 54
op 52
voor 47
ook 46
nog 46
het 46
zo 43
of 43
dan 42
wel 41
die 38
je 37

Table 1: Initial and Reduced Lexicon

ical ambiguity, formula complexity) and parsing complex-
ity (constraints on structural rules). At the time of writing,
the fifth CGN release has become available, with a total
of 210.000 words of syntactically annotated spontaneous
speech. On the basis of this material, we are currently eval-
uating different structural modules and parameter settings
for the extraction of a type logical lexicon. The reader is
refered to the Utrecht CGN page (http://cgn.let.uu.nl) for
the computational tools described in this paper, and for
some numerical data obtained by running these algorithms
on the Release 5 material.

7. References
Aravind Joshi and Bangalore Srinivas. 1994. Disambigua-

tion of super parts of speech (or supertags): Almost pars-
ing. In Proceedings of the 17th International Conference
on Computational Linguistics, Kyoto.

Michael Moortgat and Richard Moot. 2001. CGN to Grail:
Extracting a type-logical lexicon from the CGN annota-
tion. In Walter Daelemans, editor, Proceedings of CLIN
2000.

Michael Moortgat. 1997. Categorial type logics. In Johan
van Benthem and Alice ter Meulen, editors, Handbook
of Logic and Language, chapter 2. Elsevier/MIT Press.

Michael Moortgat. 2001. Structural equations in language
learning. In Philippe de Groote, Glyn Morrill, and Chris-
tian Retoré, editors, Logical Aspects of Computational
Linguistics, volume 2099 of Lecture Notes in Artificial
Intelligence, pages 1–16. Springer.

Richard Moot and Quintijn Puite. 2002. Proof nets for the
multimodal Lambek calculus. In Wojciech Buszkowski

and Michael Moortgat, editors, Studia Logica. Kluwer
Academic Publishers. To appear.

Richard Moot. 2002. Proof Nets for Linguistic Analy-
sis. Ph.D. thesis, Utrecht Institute of Linguistics OTS,
Utrecht University.

Ton van der Wouden, Heleen Hoekstra, Michael Moortgat,
Bram Renmans, and Ineke Schuurman. 2002. Syntactic
Analysis in the Spoken Dutch Corpus (CGN). Proceed-
ings LREC 2002.


	419: 419
	420: 420
	421: 421
	422: 422
	423: 423
	424: 424
	425: 425


