
YAC – A Recursive Chunker for Unrestricted German Text

Hannah Kermes, Stefan Evert

Institute for Natural Language Processing, University of Stuttgart
Azenbergstr. 12, 70174 Stuttgart, Germany

{kermes,evert}@ims.uni-stuttgart.de

Abstract
YAC is a fully automatic recursive chunker for unrestricted German text. It is especially designed to provide a useful basis for the
extraction of linguistic as well as lexicographic information. Consequently, the grammar rules of YAC are implemented such as to make
the resulting analysis meet the needs of an ensuing extraction process. The chunks provided by YAC are continuous parts of intra-clausal
constituents including recursion but no PP-attachment or sentential elements. The chunks are additionally enriched with information
about head lemma, morpho-syntactic features and certain lexical and structural properties.

1. Introduction
YAC is a fully automatic recursive chunker for unre-

stricted German text. It is especially designed to provide a
useful basis for the extraction of linguistic as well as lex-
icographic information. Consequently, the grammar rules
of YAC are implemented such as to make the resulting
analysis meet the needs of an ensuing extraction process.
The chunks provided by YAC are continuous parts of intra-
clausal constituents including recursion in pre-head as well
as in post-head position but no PP-attachment or sentential
elements. They are additionally enriched with feature at-
tributes including information about head lemma, morpho-
syntactic features and certain lexical and structural proper-
ties.

YAC is based on a symbolic regular expression gram-
mar written in the CQP query language (CQP is part of the
IMS Corpus Workbench (CWB)1). The chunker works on
a corpus that is tokenised and part-of-speech tagged using
the STTS-tagset (Schiller et al., 1999)2. The German gram-
mar further needs lemma and agreement information3. Our
definition of a chunk deviates from the definition given by
Abney (1996a), where it is defined as “a non-recursive core
of an intra-clausal constituent, extending from the begin-
ning of the constituent to its head”. The broader concept of
chunk is necessary as German commonly includes both pre-
head as well as post-head recursion with respect to Nominal
Phrases (NP).

1.1. A few words about German
For English the major difficulties encountered are PP-

attachment and coordination with ellipsis. They can be
treated on the basis of chunks according to Abney’s defi-
nition. During the extraction process the single elements
can be combined relatively easily. In German, such con-
structions occur less frequently. Instead, we often have pre-

1For more information see http://www.ims.
uni-stuttgart.de/projekte/CorpusWorkbench/
index.html

2We used the TreeTagger of Schmid (1994) for tokenisation
and part-of-speech tagging

3In our case lemma and agreement information was anno-
tated using the IMSLex morphology (Lezius et al., 2000). For
more information see http://www.ims.uni-stuttgart.
de/projekte/IMSLex

head recursion as in (1), which sounds rather awkward in
English:

(1) [PP mit [NP [AP kleinen] , [AP [PP über [NP die Köpfe
[NP der Apostel]]] gesetzten] Flammen]]
with small, above the heads of the apostles set
flames
“with small flames set above the heads of the apos-
tles”

A simple chunk analysis of this example will display
phrasal structures more or less like the ones in (2). De-
pending on which chunker is used, the internal structures
of the chunks may or may not be present.

(2) [PC mit [NC kleinen]] , [PC über [NC die Köpfe]]
[NC der Apostel] [NC gesetzten Flammen]

Besides, the first NC kleinen and consequently the first PC
mit kleinen will only be analysed as such if the rule for NCs
allows headless NCs. Otherwise, the words would not be
part of a chunk at all.

In the case of a classic chunk analysis, the extraction
process would have to fill the gap between the analyses in
(2) and in (1). In the simplest case, an extraction query
would have to state that a PP can consist of a sequence of
PCs and NCs headed by a PC or preposition, a definition
which is neither very reliable nor theoretically motivated.
And still, the internal structure would remain obscure. In
order to observe the internal structure as well, a far more
complex analysis would have to take place. The NC der
Apostel would have to be identified as a post-head genitive
modifier of the preceeding NC die Köpfe and embedded
together with it in the PC. The last NC gesetzten Flam-
men would have to be split, and gesetzten would have to
be identified as an adjective that is able to embed a PP into
the AP. Then, the complete NP kleinen, über die Köpfe der
Apostel gesetzten Flammen could be identified. Looking at
such complex pre-head embedding, it is obvious that the
classical non-recursive chunk analysis is not sufficient for
German, and that we need a broader definition.

2. What is annotated
YAC is designed to provide a basis for the extraction of

lexicographic as well as linguistic information, but it deliv-

ers no full parse. The idea is to build relatively flat anno-
tations of intra-clausal constituents incrementally: adver-
bial phrases (AdvP), adjectival phrases (AP), noun phrases
(NP), prepositional phrases (PP), and verbal complexes
(VC). The structures are built as far as this can be done
with high reliability and with a limited amount of lexical
information. Highly ambiguous attachment decisions, in-
cluding most PP-attachments, are not made. Coordinations
are only taken into account if they are embedded in a larger
chunk (e.g. coordination of NPs within a PP). Discontinu-
ous elements of a phrase are left as separate structures. The
maximal structures project directly to the sentence without
any functional projection in between. Avoiding ambiguous
decisions allows us to produce a single parse of a sentence
rather than a parse forest. A similar approach was con-
ducted by Steve Abney (Abney, 1991; Abney, 1996b) for
English using a cascaded finite-state parser. In contrast to
Abney, we enrich the chunks with certain lexical and struc-
tural properties as well as agreement information, in addi-
tion to the head lemma.

2.1. Recursion

Chunks produced by YAC cover pre-head as well as
post-head recursion. Pre-head recursive embedding in-
cludes constructions such as kleine, über die Köpfe der
Apostel gesetzte Flammen (small, above the heads of the
apostles set flames), where the NP die Köpfe der Apostel is
embedded in the larger NP in pre-head position. Post-head
recursive embedding includes, e.g., genitive NP modifiers
such as the genitive NP der Apostel (embedded in post-head
position of the NP die Köpfe der Apostel), and named enti-
ties functioning as post-head modifiers (e.g., “Endeavour”
in the NP einer Fahrt des Shuttle “Endeavour” (a voyage
of the shuttle “Endeavour”)). While pre-head recursion is
performed fully, post-head recursion is restricted to cases
where the attachment can be made with high reliability.
Therefore, post-head genitive NPs are attached but post-
head PPs are not.

2.2. Enriching Chunks

2.2.1. Head Lemma
YAC enriches the chunks with feature attributes rele-

vant for the extraction process. During the extraction the
lemma information can easily be accessed and used, e.g.,
to identify collocations and lexical preferences.

2.2.2. Agreement
The agreement information annotated for chunks con-

sists of all combinations of case, gender, number that are
consistent with the morpho-syntactic features of relevant
elements. These elements can be terminal nodes (typically
the head of the chunk and the determiner in the case of NPs)
as well as embedded chunks (e.g., APs). In order for the
chunk to be accepted, the single elements have to agree,
i.e., there has to be at least one consistent analysis. Thus,
even large structures, where the elements may be far from
the head, can be assembled with high reliability. The agree-
ment information of chunks is disambiguated as far as can
be done without guessing (in contrast to a PCFG parser).

2.3. Lexical and structural properties

In some cases, chunks are enriched with feature at-
tributes specifying the lexical or structural properties of
a chunk. In many cases the lexical properties are pro-
jected from the head to the chunk. This includes temporal
nouns (Jahr (year)) and adverbs (immer (always), dever-
bal (gechunkt (chunked)) and invariant (lila (violet)) adjec-
tives. Some lexical properties are determined by the whole
chunk, e.g., dates (Januar 1995 (January 1995)), addresses
(Musikantengasse 1), or multiword-cardinals (264,6 Mil-
lionen (264.6 million)). Some structural properties are also
annotated, e.g., whether a chunk is enclosed in quotation
marks (“Wilhelm Meisters Lehrjahre” (a novel by J.W. von
Goethe)). A selection of the lexical and structural feature
attributes associated with APs and NPs can be found in Ta-
ble 1 and Table 2, respectively. These properties are used
during the parsing process to restrict the types of chunks al-
lowed in certain positions. Chunks enclosed in quotes, e.g.,
are taken to be possible post-nominal modifiers. APs whose
head is an invariant adjective do not have to agree with the
other elements of the NP they are embedded in. During ex-
traction, these properties can be used, e.g., to exclude tem-
poral NPs from subcategorisation frames, or proper nouns
from collocations. Besides, deverbal adjectives can be used
to collect information about the corresponding verbs (e.g.
noun-verb collocations). NPs with the feature quot or brac
can be used to identify named entities (e.g. “Pizza Hut”).

3. Technical framework
Our tools are based on the IMS Corpus Workbench4

(CWB). The CWB is an environment for storage and query-
ing of large corpora with shallow annotations. Currently,
the maximum size of a single corpus can be approximately
300 million words, depending on the number and type of
annotations. The CWB provides fast access to corpora by
constructing a separate lexicon and a full index for each an-
notation level. The data are stored in a compact proprietary
format, and compressed with specialised algorithms (Huff-
mann coding for the token sequence and a variable-length
encoding for the index).

The CWB was initially developed for corpora annotated
only at token level (typically with part-of-speech (PoS) and
lemma values). Later, support for flat, non-overlapping
structural annotation was added (referred to as structural
attributes). Since this mark-up was mainly intended for the
annotation of document structure (e.g., source files, para-
graphs, and sentences), the regions of structural attributes
are neither combined into hierarchical structures nor do
they allow recursion. Besides, compression algorithms are
not necessary to store the relatively small number of sen-
tences, paragraphs, etc. in a corpus.

Queries can be specified in terms of regular expres-
sions over tokens and their linguistic annotations, using the
Corpus Query Processor (CQP). In contrast to most CFG
parsers, the CQP query language allows complex expres-
sions at the basic token level. These include regular ex-

4See (Christ, 1994) for an overview. More information on the
IMS Corpus Workbench is available from http://www.ims.
uni-stuttgart.de/projekte/CorpusWorkbench/

Features associated with adjectival phrases
feature description example
norm default feature
attr attributive adjective
invar invariant adjective lila, Berliner
pred predicative adjective
vder deverbal adjective geplant, gechunkt
meas measure adjective Meter hohe, Hektar große
pp AP embedding PP von seiner Frau geborgten, auf seinen Sohn stolzen
quot AP in quotation marks “allzu plötzlich”, “abenteurerlich”

Table 1: Lexical and structural features associated with adjectival phrases

Features associated with noun phrases
feature description example
norm default feature
meas measure noun Handvoll, Dollar
ne named entities Mecklenburg-Vorpommern, Professor Wilhelm Heimeyer
temp temporal noun Jahr, Wochen später
date date 17. Februar 2002
street street address Musikantengasse 1
brac NP in brackets (LKA), (Framingham Heart Study)
quot NP in quotes “Kommerzielle Koordinierung”
pron pronominal NP er, sich

Table 2: Lexical and structural features associated with noun phrases

pression matching of tokens and annotated strings (option-
ally ignoring case and/or diacritics), tests for membership
in user-specified word lists, and arbitrary Boolean expres-
sions over feature-value pairs. Additional, “global” con-
straints can be used to specify dependencies between arbi-
trary tokens in a CQP query.

CQP provides a simple macro language, based on string
replacement with interpolation of up to 10 arguments. The
“body” of a macro (which is substituted for each macro
“call” in a query) may contain further (non-recursive)
macro invocations. Thus, complex queries can be broken
down into small parts, similar to the rules of a context-free
grammar. Macro definitions are loaded from text files and
can be modified at run-time.

The CWB includes support for feature-set annotations
encoded as string values with a special disjunctive notation.
This allows, in particular, the treatment of agreement fea-
tures: all possible combinations of case, gender, and num-
ber values a certain word or phrase may have, are stored as a
single feature-set annotation. Unification of feature values
(which is the basis of most complex grammar formalisms)
is equivalent to the (set-theoretic) intersection of the cor-
responding feature-sets. Special operators implemented as
regular expressions are available to test for the presence of
features (e.g. an NP which might have genitive case) as
well as the uniqueness of feature values (an NP uniquely
identified as genitive).

We considered a number of alternative approaches for
the parsing stage as well, in particular those for which stan-
dard tools are available.

� Complex grammars (e.g., in the LFG or HPSG frame-

work) can model the hierarchical structure of lan-
guage, and are well-suited for handling attachment
ambiguities. Drawbacks include slow parsing speed,
lack of robustness, dependence on an extensive lex-
icon as a prerequisite, and the complex interactions
between rules that complicate both grammar develop-
ment and the adjustment to a particular domain seri-
ously. Furthermore, complex grammars usually re-
turn a large number of possible analyses for each
sentence, which cannot be stored and queried effi-
ciently for large corpora. Thus, an additional, and
probably rather unreliable disambiguation component
or labour-intensive manual disambiguation would be
necessary.

� Context-free grammars (CFGs) are modular (i.e. there
is little interaction between different rules) and allow
for fast parsing. In most CFG-based systems, how-
ever, modelling agreement and special (lexical) con-
structions requires large numbers of additional rules,
which makes grammars unwieldy and slows down the
parsing process. For the automatic analysis of large
amounts of text, further “robustness” rules are needed.
Partial or full disambiguation of agreement informa-
tion is difficult to achieve.

� Probabilistic context-free grammars (PCFGs) extend
the CFG formalism with a statistical model of lexi-
cal information such as subcategorisation frames and
collocations. In contrast to complex grammars, prob-
abilistic “lexicon entries” are learned from the in-
put text and training data without human intervention.

PCFG-based parsers are slower than their CFG coun-
terparts and require a considerable amount of work-
ing memory for their large parameter sets. A particu-
lar problem for PCFGs are marked constructions and
other special cases, where the parser almost inevitably
prefers a more frequent unmarked alternative. In gen-
eral, PCFG parsers perform a full disambiguation of
agreement features involving guesswork rather than
the partial disambiguation that we prefer.

To sum up, the advantages which led us to use the CWB
as a framework for our tools are: (i) The possibility to
work with large corpora. After compression, the surface
forms and lexical annotations (lemma, etc.) require ap-
proximately 30 bits/token of disk space, whereas categor-
ical annotations (PoS, agreement features, etc.) require 10
bits/token or less5. (ii) CQP efficiently evaluates complex
queries on large corpora. Disk files are accessed directly
using memory-mapping and do not have to be loaded into
memory first. It is this feature which makes a multi-pass
algorithm (in which CQP is frequently restarted in order to
re-use intermediate results) feasible at all. (iii) The query
language is modular and allows easy treatment of special
cases (using additional rules, word lists, or structural mark-
up of multiword entities as structural attributes). (iv) The
same representation formalism and query language can be
used at the parsing stage, for interactive querying of the fi-
nal results, and for the extraction of lexical information. In
order to test a new or changed rule, it is possible to abort
the parsing process at any stage. The rule can be applied to
the current state of the annotation in an interactive CQP ses-
sion. The results of the rules can be viewed on the screen.
If necessary, the rule can be modified and applied again un-
til the desired results are obtained. The parsing process can
then be continued with the new or modified rule.

4. The chunking process
YAC is divided into three levels: (i) a first level, where

most of the lexical information is introduced and specific
chunks are built, (ii) a second level, where the main parsing
is performed, and (iii) a third level, where structures can be
checked for correctness and where the hierarchy is built.

4.1. First Level

In the first level most of the lexical information is intro-
duced and added in the form of chunks with special anno-
tations. It is information about certain lexical properties of
words that can be relevant and helpful for future extraction
processes.

Besides of the lexical information, chunks with a spe-
cific internal structure are annotated at the first level. These
chunks are “non-recursive” units that do not follow the gen-
eral patterns but need highly specialised rules. The detec-
tion of such chunks is in general triggered by lexical prop-
erties. Such properties can sometimes be inferred from

5For instance, a 100 million word corpus would require � 360
MBytes per lexical attribute, and less than 120 MBytes for each
categorical annotation

the PoS-tags, as is the case for noun chunks represent-
ing named entities or proper names (e.g., General Elec-
tric Company; Joint Venture, and Johann Sebastian Bach;
Goalgetter Rod Poindexter), where the trigger is the PoS-
tag NE (proper name). They can also be derived from the
lexical information provided in the form of word and phrase
lists. In this case, the lexical information is not only intro-
duced to help future extraction but also for the parsing pro-
cess itself. It is used as a trigger to build up specific struc-
tural units, such as: (i) dates, e.g., Februar 1991 (February
1991); Anfang April (begin of April); 19.6.1992, and (ii)
multi-word lexemes, e.g., multi-word cardinals (264,6 Mil-
lionen (264.6 millions); fünf Milliarden (five billions)).

Other chunks with a specific internal structure that are
annotated in the first level are: (i) chunks in brackets,
e.g. (Fortune-Liste); (DEC), and (ii) chunks in quotation
marks, e.g. “Omaha Beach”; “Wilhelm Meisters Lehr-
jahre”. The triggers are textual markers which group to-
gether sequences of words and indicate the specific char-
acter of the chunk. This information is especially helpful
when the PoS-tag (probably a tagging error) does not indi-
cate this property.

The properties of the chunks, whether lexical or struc-
tural, are annotated as a set of feature values. The infor-
mation gathered at the first level, in the form of chunks and
feature attributes, can easily be integrated in further parsing
steps. It is the basic knowledge source and the foundation
for the rules of the main parsing level. The advantages of
introducing lexical information and, especially, assembling
chunks and phrases with a specific internal structure in a
separate level are: (i) the rules can be designed for a specific
purpose without interacting with the rules of the main pars-
ing level and the correction level, and (ii) the rules of the
main parsing level can be kept relatively simple and gen-
eral as many special cases have already been dealt with.

4.2. Second Level

4.2.1. Building complex structures
In the second level a set of relatively simple and general

rules is applied repeatedly to form larger and larger struc-
tures. The rules can be kept relatively simple because they
refer to structures built in the first level or in earlier iter-
ations of the second level. The rule for NPs, e.g., simply
states that APs can modify a head noun. However, it does
not have to state what an AP may consist of as the struc-
ture is already annotated in the corpus. The examples in (3)
show this.

(3) a. [NP eine [AP verständliche] Sprache]
an understandable language

b. [NP eine [AP für den Anwender verständliche]
Sprache]
a for the user understandable language
“a language understandable for the users”

The same rule (NP � Det AP N) can be used for both NPs
in (3) The only difference is that the AP that is being em-
bedded in (3-b) is more complex than the AP embedded in
(3-a). The size, and thus the complexity of the NP in (3-b)
is a result of the complexity of the embedded structure and
not of the grammar rule that builds the NP. The same is true

for the PPs in (4-a) and (4-b) below. The complex PP in
(4-b) is built by the same relatively simple rule stating that
a PP can consist of a preposition and a NP that builds the
simple PP in (4-a). Again, the complexity of the PP in (4-b)
is a result of embedding a complex phrasal structure (in this
case a NP) rather than the result of applying a complex rule.

(4) a. [PP auf [NP dem Giebel]]
on

�
top of � the gable

b. [PP auf [NP dem westwärts gerichteten Giebel
des heute in barockem Gewande erscheinen-
den Gotteshauses]]
on

�
top of � the westwards pointed gable of

the today in baroque garment appearing Lord’s
house
“on top of the westwards-pointed gable of
the Lord’s house that nowadays appears in a
baroque garment”

4.2.2. Function of embedded chunks

As in the examples in (3) and (4), chunks can be em-
bedded in another chunk as complements or modifiers. The
chunks built in the first level can additionally form the ker-
nel of larger chunks. In the examples in (5), noun chunks
are embedded in a larger NP at the position normally occu-
pied by a single head noun. This is exactly what the rule for
NPs states: the position of the head can be occupied by a
common noun or an NC (noun chunk). In the first case the
common noun is taken as head of the NP. In the latter case
the head of the noun chunk is projected to the NP.

(5) a. [NP das [NC “Space Hotel”]]
the “Space Hotel”

b. [NP der ehemalige sowjetische [NC Präsident
Michail Gorbatschow]]
the former soviet President Michail Gorbachev

4.2.3. Function of feature attributes

Chunks may be embedded independently of the feature
attributes associated with them, i.e., they are used accord-
ing to their phrasal category. Any NC can, e.g., form the
kernel of an NP. In (5-a) a NC with the feature attribute
quot (stating that the NC is enclosed in quotation marks)
forms the kernel of the NP, and in (5-b) it is a NC with the
feature attribute ne (a named entity).

The feature attributes, however, can also be used to
specify the characteristics of a chunk that is to be embed-
ded more closely. NPs as post-head modifiers of nouns,
e.g., are restricted to genitive NPs, or NPs with the feature
brac, quot or ne as the examples in (6) show.

(6) a. [NP dem Slogan [NP “The Windows Solution”]]
the slogan “The Windows Solution”

b. [NP Ulrike Linden [NP (Klavier)]]
Ulrike Linden (piano)

c. [NP die Firma [NP Nordsee]]
the company Nordsee

4.2.4. Considering special cases
In contrast to many CFG-parsers, YAC considers some

special cases, including parentheses and quotation marks.
This allows us to include PP-attachment in some cases
without losing the reliability of the resulting chunks and
without introducing ambiguities. If there are surrounding
quotation marks, PP-attachment is performed within an NP
construction, as the examples in (7) show.

(7) a. [NP “Einladung [PP zur Enthauptung]”]
“invitation to

�
the � decapitation”

b. [NP die schlagfertige “Frau [PP mit den
Hüten]”]
the quick-witted “woman with the hats”

The quotation marks may be in different positions, e.g., sur-
rounding the whole NP as in (7-a) or only part of the NP as
in (7-b), but both quotation marks have to be present and
the entire PP has to be between them.

4.2.5. Overgeneralisation
The second level allows for overgeneralisation of cer-

tain constructions. The rule building APs, e.g., states that
every adjective may embed any number of immediately
preceding PPs. This leads to a vast overgeneralisation of
structures, producing correct APs such as (8-a) as well as
incorrect APs (8-b) (the correct structure of (8-b) is shown
in (8-c)). These APs are annotated intermediately and
marked as hypothetical. The decision whether they are cor-
rect or not is postponed to the third level, as it is not possible
to make this decision immediately.

(8) a. Lisa hat [NP ihre [AP wegen des Regens nassen]
Füße] abgetrocknet.
Lisa has her because of the rain wet feet dried.
“Lisa has dried her feet that where wet because
of the rain.”

b. Lisa hat [NP [AP wegen des Regens nasse]
Füße].
Lisa has because of the rain wet feet.
“Lisa has wet feet because of the rain.”

c. Lisa hat [PP wegen des Regens] [NP [AP nasse]
Füße].

4.3. Third Level

The third level is responsible for two things: (i) it
checks hypothetical structures, and (ii) it builds the hier-
archical structure of the chunks.

4.3.1. Checking of hypothetical structures
In order to determine whether to accept or reject a hy-

pothetical structure, its position in the sentence is taken into
account. Hypothetical structures are accepted if they are in
a “secure context” and rejected otherwise. In the case of
the APs in (8) this means that they have to be embedded in
a NP with at least one non-hypothetical element preceding
the AP, in order to be accepted. The AP in (8-a) is ac-
cepted as it is embedded in the NP ihre wegen des Regens
nassen Füße with the possessive pronoun ihre preceding it.
In (8-b) the AP is embedded in the NP wegen des Regens
nasse Füße. However, there is no non-hypothetical element
preceding it inside the NP. Thus, the AP is rejected and

built back to the AP-kernel nasse. The NP is built back to
nasse Füße, respectively. The result is the correct structural
analysis as in (8-c).

4.3.2. Hierarchy building
At the end of the parsing process, only maximal con-

stituents of each category are annotated. In order to ob-
tain the internal structure of recursive chunks (such as the
embedded NPs in (1)), the results of each stage of the in-
cremental parser are collected and combined into a hierar-
chy. Using the position of the head as a reference, only
the largest version of each phrase is included. Hypothetical
structures (4.2.5.) may be deleted in the third level.

4.4. Output

The output of YAC is a simple XML format (an exam-
ple is given in Figure 1), which can be imported into the
TIGERSearch program (König and Lezius, 2001a; König
and Lezius, 2001b)6 and displayed with the TIGERSearch
graph viewer (Figure 2). Alternatively, the chunks can be
automatically “written back” to the original CWB corpus.

The XML format can also be easily converted to HTML
for displaying. Data extraction is possible with simple
XSLT stylesheets. An example of a XSLT stylesheet ex-
tracting adjective-noun collocations is displayed in Figure
3. More complex queries modelling sentence structure (e.g.
to identify V+Obj collocations) can be written in the CQP
query language.

5. Evaluation
As a gold standard for the evaluation of the NP chunks

we used the NEGRA Corpus (Skut et al., 1998)7 consisting
of 355,096 tokens of German newspaper text with manually
corrected part-of-speech tagging and parse trees. A refer-
ence set of 99,238 NPs was extracted from a version of the
NEGRA corpus encoded in the TigerXML format (Mengel
and Lezius, 2000) using XSLT stylesheets. Unfortunately,
the syntactic annotation scheme of the NEGRA treebank
(Skut et al., 1997), which omits all projections that are not
strictly necessary to determine the consituent structure of
a sentence, is not very well suited for automatic extraction
tasks. Thus, it was not sufficient to look for all instances
of NPs in the NEGRA corpus that suited our definition of
a noun chunk, as not all NPs have an NP node (e.g. single
item NPs, NPs embedded in a PP, and cardinal numbers.
The latter where removed as it was not possible to filter
them out correctly). Besides, some NPs have a different
category (e.g. multiword proper nouns (MPN)). Therefore,
the various instances ofa NP notation had to be extracted
using separate rules.

5.1. Construction of the reference set

The annotation of the NEGRA corpus consists of full
parse trees. YAC, however, is a recursive chunker pro-
ducing only structures according to our chunk definition

6see also http://www.ims.uni-stuttgart.de/
projekte/TIGER/TIGERSearch/

7for details, see http://www.coli.uni-sb.de/
sfb378/negra-corpus/negra-corpus.html

(repeated here for convenience): continuous parts of intra-
clausal constituents including recursion in pre-head as well
as in post-head position but no PP-attachment or sentential
elements. Therefore, the NEGRA NPs have to be reduced
so as not to include PP-attachments and clausal attach-
ments, besides discontinous NPs are removed. Because of
the characteristics of the NEGRA annotation as described
above, this was not a trivial task, requiring complicated and
inefficient XSLT stylesheets.

Some categories (e.g. MPN) include material that would
usually not be subsumed under the category NP (e.g. all
kinds of foreign word material). Because of the rather spe-
cific annotation scheme of the NEGRA corpus it was not
always possible to filter out all the elements listed above.
We plan to refine the stylesheets and check critical cases
manually, in order to obtain a true gold standard for future
evaluations.

5.2. Evaluation results
For the evaluation we ran YAC on the text of the NE-

GRA corpus using the manually disambiguated part-of-
speech tagging provided. Lemma and agreement informa-
tion from the IMSLex morphology was added. The 99,238
NPs in the reference set were then compared to the 96,447
NPs identified by YAC. Of those, 81,730 were correct (true
positives), corresponding to a precision of 84.74% and a re-
call of 82.36%.8 Since the head lemmas of NPs are not ex-
plicitly annotated in the NEGRA treebank and would have
to be guessed from the part-of-speech tags at token level,
we did not evaluate the head lemma annotations provided
by YAC.

In real applications manually corrected part-of-speech
tagging is not available. For this reason, we also evalu-
ated YAC on a version of the corpus that was automatically
part-of-speech tagged with the TreeTagger. Using its stan-
dard training corpus and a custom tagger lexicon based on
the IMSLex morphology, the TreeTagger achieved a tag-
ging precision of 94.82% (336,692 tokens correct out of
355,096). Most of the tagging errors were proper nouns
that where not correctly identified by the morphology.

With this fully automatic process, YAC identified
99,353 NPs, of which 78,391 were correct. This gives a
precision of 78.90% and a recall of 78.99%.

5.3. Discussion of the results
YAC was not developed and tested on the NEGRA tree-

bank. Therefore, evaluating YAC on this corpus shows its
realistic performance on German newspaper text. The rules
of YAC allow it to be easily adapted to specific text types.
Thus, it would have been possible to optimise the rules for
the specific characteristics of the NEGRA corpus. We de-
liberately did not do so, as we want to present a tool that
is useful for extraction processes on unrestricted text as it
performs in a real-life application.

Therefore, we believe the overall system performance
(combining TreeTagger, IMSLex, and YAC) with a preci-
sion and recall close to 80% to be a good indicator of the
usefulness of our tool.

8Note that this evaluation strategy is equivalent to computing
labelled precision and labelled recall restricted to NP chunks.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>
<tlipp>

<!-- Sentence #1 -->
<s>

<pp f="|nodet|norm|" h="mit:Flamme">
<t><a>mit</t>
<np f="|nodet|norm|" h="Flamme">

<ap f="|attr|norm|" h="klein">
<ac f="|attr|norm|" h="klein">
<t><a>kleinen</t>

</ac>
</ap>
<t><a>,</t>
<ap f="|attr|hypo|pp|vder|" h="gesetzt">

<pp f="|norm|" h="über:Kopf">
<t><a>über</t>
<np f="|norm|" h="Kopf">

<t><a>die</t>
<t><a>Köpfe</t>
<np f="|norm|" h="Apostel">
<t><a>der</t>
<t><a>Apostel</t>

</np>
</np>

</pp>
<ac f="|attr|norm|vder|" h="gesetzt">
<t><a>gesetzten</t>

</ac>
</ap>
<t><a>Flammen</t>

</np>
</pp>

</s>
</tlipp>

Figure 1: XML output format of YAC

Figure 2: Tree diagram of YAC output

As extracting the reference from the NEGRA tree-
bank proved to be problematic we intend to improve our
stylesheets further. Additionally, the reference will have to
be manually checked to provide a true gold standard ac-
cording to our chunk definition. Thus, the evaluation fig-
ures presented have to be relativised.

6. References
Steven Abney. 1991. Parsing by chunks. In Robert

Berwick, Steven Abney, and Carol Tenny, editors,
Principle-Based Parsing. Kluwer Academic Publishers.

Steven Abney. 1996a. Chunk stylebook. Working draft.
Steven Abney. 1996b. Partial parsing via finite-state cas-

cades. In Proceedings of the ESSLLI ’96 Robust Parsing
Workshop.

Oliver Christ. 1994. A modular and flexible architecture
for an integrated corpus query system. In Papers in
Computational Lexicography COMPLEX ’94, Budapest,
Hungary.

Esther König and Wolfgang Lezius. 2001a. The TIGER
language - a description language for syntax graphs. Part
1: User’s guidelines. Technical report, IMS, University
of Stuttgart.

Esther König and Wolfgang Lezius. 2001b. The TIGER
language - a description language for syntax graphs. Part
2: Formal definition. Technical report, IMS, University

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>
<xsl:transform version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text" encoding="ISO-8859-1"/>
<xsl:strip-space elements="*"/>

<!-- simply process each <np> element which has <ap> children -->
<xsl:template match="np">

<xsl:param name="self" select="."/>
<xsl:for-each select="ap">

<xsl:value-of select="@h"/>
<xsl:text> </xsl:text>
<xsl:value-of select="$self/@h"/>
<xsl:text>
</xsl:text>

</xsl:for-each>
<xsl:apply-templates/> <!-- process embedded NPs -->

</xsl:template>

<!-- skip the tokens -->
<xsl:template match="t" />

</xsl:transform>

Figure 3: XSLT stylesheet extracting adjective-noun collocations

of Stuttgart.
Wolfgang Lezius, Stefanie Dipper, and Arne Fitschen.

2000. IMSLex – representing morphological and syntac-
tical information in a relational database. In Ulrich Heid,
Stefan Evert, Egbert Lehmann, and Christian Rohrer, ed-
itors, Proceedings of the 9th EURALEX International
Congress, Stuttgart, Germany, pages 133–139, Stuttgart,
Germany.

Andreas Mengel and Wolfgang Lezius. 2000. An XML-
based representation format for syntactically annotated
corpora. In Proceedings of the Second International
Conference on Language Resources and Engineering
(LREC), volume 1, pages 121–126, Athens, Greece.

Anne Schiller, Simone Teufel, Christine Stoeckert, and
Christine Thielen. 1999. Guidelines fuer das tagging
deutscher textcorpora mit stts. Technical report, Univer-
sitaet Stuttgart,IMS and Universitaet Tuebingen, Novem-
ber.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In International Conference
on New Methods in Language Processing, pages 44–49,
Manchester, UK.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and Hans
Uszkoreit. 1997. An annotation scheme for free word
order languages. In Proceedings of the Fifth Confer-
ence on Applied Natural Language Processing ANLP-
97, Washington, DC.

Wojciech Skut, Thorsten Brants, Brigitte Krenn, and Hans
Uszkoreit. 1998. A linguistically interpreted corpus of
german newspaper texts. In Proceedings of the ESSLLI
Workshop on Recent Advances in Corpus Annotation,
Saarbrücken, Germany.

	1805: 1805
	1806: 1806
	1807: 1807
	1808: 1808
	1809: 1809
	1810: 1810
	1811: 1811
	1812: 1812

