
Efficient Stochastic Part-of-Speech Tagging for Hungarian

Csaba Oravecz
�
, Péter Dienes

�

�
Research Institute for Linguistics

Hungarian Academy of Sciences, Budapest
oravecz@nytud.hu

�
Saarland University

Saarbrücken
dienes@coli.uni-sb.de

Abstract
Many of the methods developed for Western European languages and used widespread to produce annotated language resources cannot
readily be applied to Central and Eastern European languages, due to the large number of novel phenomena exhibited in the syntax
and morphology of these languages, which these methods have to handle but have not been designed to cope with. The process of
morphological tagging when applied to Hungarian data to produce corpora annotated at least at the morphosyntactic level is most
indicative of this problem: several of the algorithms (either rule-based or statistical) that have been used very successfully in other
domains cannot readily be applied to a language exhibiting such a varied morphology and huge number of wordforms as Hungarian.
The paper will describe a robust tagging scenario for Hungarian using a relatively simple stochastic system augmented with external
morphological processing, which can overcome the two most conspcicuous problems: the complexity of morphosyntactic descriptions
and most importantly the huge number of possible wordforms.

1. Introduction

Part of speech tagging is considered a cheap and well-
studied method to produce language resources with some
low level linguistic annotation usable for various purposes
such as serving as a preparatory phase for more complex
language processing tasks. For Western European lan-
guages tagging has been extensively described and vari-
ous methods have been developed (Merialdo, 1994; Brill,
1995; Ratnaparkhi, 1997; Daelemans et al., 1996) and even
combined (van Halteren et al., 1998; Brill and Wu, 1998)
producing results so satisfactory that might seem to sug-
gest that research at this level of natural language process-
ing is no longer that interesting or rewarding. However,
when trying to deal with highly inflectional or agglutina-
tive languages many of the otherwise successful methods
face extra difficulties, the number of different possible mor-
phosyntactic descriptions (MSD) and wordforms being the
most apparent.

There has already been considerable research address-
ing these issues in highly inflectional languages (Hajič and
Hladka, 1998; Erjavec et al., 1999; Tufiş, 1999), experi-
menting with some procedure to overcome the problem of
the large number of morphosyntactic descriptions by gener-
ating or designing a reduced tagset and use it for the proper
tagging of texts. However, this process is faced with a diffi-
culty of identifying those features which actually carry in-
formation relevant for the disambiguation task. The other
phenomenon (which is particularly characteristic of Hun-
garian), i.e. the large number of wordforms, also presents
an unwelcome situation for most statistical models widely
used in state-of-the-art taggers: lexical probabilities are cal-
culated from a wordform lexicon generated during training,
thus extremely large training corpus would be necessary
to derive reliable statistics for the possible wordforms in
unseen data and even if the training corpus is fairly large

(several 100k words), this process will inevitably result in
a large number of words not seen in the training. A simple
solution is mentioned in passing in Tufiş et al. (2000), and
also proposed by Hajič (2000), which basically amounts
to making the list of each possible tags for any wordform
available for the tagger. For Hungarian, this proves to be
the only workable alternative and so will be adopted here,
necessitating an external morphological analyzer as a core
component of the tagging system.1

The paper will empirically investigate how the informa-
tion supplied by the morphological analyzer can be utilized
to improve tagging performance, our goal being here not so
much to build a PoS tagger for Hungarian with high accu-
racy, but rather to define an architecture suitable for the dis-
ambiguation task which, based on a simple stochastic tool,
can cope with the particular characteristics of highly inflec-
tional languages. In section 2. we will discuss the main
problem that originates from these characteristics as it is
reflected in Hungarian data. Section 3. will give a brief de-
scription of the data and tools used in the experiments. In
section 4. we will show how stochastic tagging can be aided
by information from a morphological analyzer. Section 5.
will give a short summary on the error analysis. Conclu-
sions and suggestions for further work will follow in sec-
tion 6.

2. Data sparseness in highly inflective
languages

It is a computational linguistic common sense that (mor-
phological) tagging of highly inflective and agglutinative
languages is a more difficult task than, for example, PoS

1Hajič (2000) proposes the preparation of an independent mor-
phological dictionary by some automatic method. For Hungarian,
the only feasible solution is to use a morphological analyzer that
provides the necessary information on-line.

tagging of morphologically less rich languages, such as En-
glish, French, German, etc. (cf. Hajič (2000)). The reason
for this situation is generally claimed to be data sparse-
ness. Data sparseness, however, manifests itself in several,
clearly different ways when the task of morphological tag-
ging is addressed.

One of the most frequently discussed issues that might
lead to the sparsity of training data is the high cardinal-
ity of the tagset (Brants, 1997; Tufiş, 1999; Tufiş et al.,
2000). While the number of tags for non-agglutinative lan-
guages is generally between 50 and 200, systems for ag-
glutinative and highly inflective languages use tagsets of
cardinality with a magnitude higher (cf. eg. (Harris et al.,
2000)). This entails that – in case of an � gram statisti-
cal model – we have to estimate

�����
times more param-

eters, which would need bigger training corpora for these
languages. Contrary to the needs, however, the amount of
available annotated linguistic resources for these languages
is much smaller than for well-researched languages, such
as English. One way out of the problem caused by the huge
tagsets is using an internal CTAG set of smaller cardinality
for tagging purposes. Dienes and Oravecz (2000) propose
an automatic tagset reduction algorithm with full recover-
ability (i.e. for each word in an ambiguity class the original
tags are mapped to distinct CTAGS) and discuss the effect
of the size of the internal tagset on morphological tagging
of Hungarian. The results show that significant reduction
can be achived without a decrease in the accuracy of the
tagger.

Another often cited problem with highly inflective lan-
guages is the amount of ambiguity present in the morpho-
logical system, which relates to the tagset size as well.
However, there is some uncertainty about which token
should in fact be taken as ambiguous, and what kind of dis-
tinctions should be made in the morphological specification
of a wordform. Often the decision that a specific token is
assigned to more than one morphological class depends on
several factors ranging from linguistic tradition to the pro-
jected use in further processing.

Two tentative guidelines seem to be considered in the
domain of tagging when ascribing different analyses to the
same wordform:

(i) Full neutralization is dispreferred. That is, a word-
form should only have more than one analysis if there
is an unambiguous wordform for each of the analyses
that can be substituted for the original wordform in
the specific environment.2

(ii) What distinctions are present in features is perfor-
mance oriented. That is, one should underspecify
those features that cannot be resolved reliably, and try
to handle them by post-processing with varying meth-
ods; and should preserve those or even introduce new

2According to this criterion one would not assign for instance
the two analyses genitive and dative to Hungarian nominal forms
with -nak/-nek suffix in an otherwise genitive construction be-
cause there is no unambiguous form that could only be analyzed
as genitive in that environment. On these grounds, one can even
deny the presence of genitive case in Hungarian, which many in
fact do.

distinctions that can be well resolved by the current
model. In any way, the primary objective is to try to
reduce the error rate to that of the oracle available.

Unfortunately, no standard methodology exists that would
provide an independent metric of the difficulty of the tag-
ging task across different settings, so even the standardly
reported measures of tagset size, ratio of ambiguous tokens
and average ambiguity can be of little indication how hard
the task for the classifier actually is, and there are so many
parameters that can be set differently3 that the usual error
rate/performance measures might well become entirely un-
informative.

Nonetheless, following standard practice two measures
of ambiguity will be considered here: the percentage of am-
biguous tokens and the average number of tags assigned
to tokens. According to the first measure, English seems
to be as difficult as any highly inflective language, since
the amount of ambiguous tokens is about the same (En-
glish: 38.65%, Romanian: 40%, Czech: 45.97% (Hajič,
2000)). In this respect, Hungarian should be easier to tag,
since only about 23% of the tokens are ambiguous, though
this obviously depends on the definition of ambiguity and
on how refined analysis we would like to have. Another
measure of ambiguity is the average number of tags per to-
kens. According to this measure, the figures show more
variation: Czech: 3.65 or 2.36 tags per token, depending on
the tagset and corpus (Hajič, 2000), English: 2.34 or 1.72,
Romanian: 1.59-67 (Tufiş, 2000), Hungarian: 1.33. To what
extent these differences have an effect on tagging is far from
clear and is difficult to test, since there are many other fac-
tors that prevent us from controlling this parameter only.
According to these measures, however, all other things be-
ing equal, tagging Hungarian should be easier than tagging
English. This is not the case, which means that there are
other factors that come into play.

In fact, the most relevant manifestation of data sparse-
ness is not the one we mentioned above. The principal rea-
son for the rather poor performance of otherwise fairly ac-
curate taggers (eg. for English) can be inferred from Ta-
ble 1 (HU and EN stand for Hungarian and English, respec-
tively; with AC we refer to the modified Hungarian corpus
where every word is mapped to its ambiguity class – see
Section 4.2.). Generally, in the case of Hungarian and En-
glish, there are twice as many different word types in a cor-
pus of the same size (for a brief description of the data see
Section 3.). This entails that, for lexicalized taggers, Hun-
garian is much more difficult, since the data is sparser to

3It is not unusual that in the tagging of highly inflective lan-
guages morphological syncretism is not reflected in underspeci-
fied values in cases when the resulting disambiguation task is not
easier than resolving a distinction not inherently present in the
morphology of some other language would be (e.g. different -ing
forms of English main verbs are not normally distinguished al-
though they have quite distinct distributions). While in certain lan-
guages some disambiguation problems are just naturally regarded
as belonging to the domain of tagging, in other languages it is
delegated to other levels of analysis, and this can be due only to
the presence of morphological marking of some phenomena, not
necessarily to the fact that the disambiguation task itself would be
any harder in one language than in the other.

HU EN AC
571 tags 50 tags 571 tags

Training corpus tokens 243829 245714 243829
Training corpus types 49649 19021 1914
Test corpus tokens 27001 27319 27001
Test corpus types 9994 5701 892
Types in test not seen while training 36.1% 17.5% 7.2%
Tokens in test not seen while training 17.3% 4.5% 0.29%
Tokens in test with unseen tags while training 17.9% 5.6% 0.5%
% of diff. tags in test not seen while training 8.0% 1.6% 8.0%

Table 1: Comparison of English and Hungarian corpora

make accurate estimation for the probability distribution of
tags given a word.

Figure 1 (lines EN and HU) shows a different aspect of
the same phenomenon: in Hungarian low frequency words
(words with at most 5 occurrences) amount to 33% of the
word tokens, whereas in English low frequency words con-
stitute only 10% of the total corpus (without numbers). The

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

%
 o

f t
ok

en
s

frequency

HU
EN
AC

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

%
 o

f t
ok

en
s

frequency

HU
EN
AC

Figure 1: Cumulative percentage of tokens wrt. type fre-
quency

difference is even more striking in the case of singletons: in
Hungarian, they add up to 16% of the corpus, while in En-
glish they contribute only 4% of the words to the corpus. A
straightforward consequence of the difference in the behav-
ior of the two languages is the different amount of tokens of
the test data previously not seen during the training phase.
As Table 1 shows, for Hungarian, 17.3% of the word tokens
in the training data is not seen while training, which is al-
most four times as much as the corresponding amount for
English (4.5%). This means that, without a suitable guess-
ing method, lexicalized taggers on Hungarian are bound to
achieve much worse results than on English. Or, to put it
the other way round, in order to be able to achieve accept-
able tagging accuracy for Hungarian (and other agglutina-
tive languages), one has to apply a suitable guesser to han-
dle previously unseen words. In these experiments we used
an external morphological analyzer, which is able to return
the possible morphological analyses for a wordform.

3. Data and tools
The data for calculating the results in Figure 1 and Ta-

ble 1 and for the tagging experiments discussed in Sec-
tion 4. consisted of the Hungarian training corpus which
contained 270,830 tokens. We used a similar sized part of
the first section of the Wall Street Journal with the Penn
Treebank PoS tagset as an English reference corpus. The
results were obtained by standard 10-fold cross validation.
In the tagging experiments the default tagset used preserved
basically all morphological information with the cardinal-
ity of more than 2000, of which only 571 actually occurred
in the training corpus.

The external morphological analyzer is a wide cover-
age,4 rule based morphological analyzer developed origi-
nally for Hungarian (Prószéky and Tihanyi, 1996), which
returns a list of possible morphological analyses for the
given word.

The tagging experiments needed a slightly modified5

version of Thorsten Brants’ TnT tagger (Brants, 2000),
the underlying architecture of which is a trigram Hidden
Markov Model. The present model, however, did not learn
lexical probabilities from the training corpus, but could be
fed with inverted lexical probability distribution, that is, in
the input each token was associated with a list of possible
tags augmented with the conditional probabilities of tags
given the token (��������� 	�
). The tagger, then, calculated
the lexical probabilities ����	
��� ����
 required by the Markov
Model via Bayesian inversion.

4. Class-based guessing
4.1. Using a morphological analyzer

As mentioned above, in the case of languages with rich
inflection, an accurate tagger must have a proper guesser
which is able to provide all possible tags for words un-
seen in the training corpus. In these experiments we opt
for a symbolic guesser, that is, for a morphological ana-
lyzer. When using a symbolic module in a stochastic NLP
architecture, one has to answer three important questions:

4Considering that our aim in the tagging experiments was to
test the tagging architecture instead of the guesser, there were no
unknown words for the morphological analyzer in the test and
training corpora.

5We would like to thank Thorsten Brants for making these
modifications for our purposes.

(i) why using a symbolic module instead of an alternative
stochastic one

(ii) how to incorporate the symbolic module into a
stochastic framework (eg. how to induce probabilities
from the output of the symbolic module)

(iii) what is the domain of application of the symbolic
module

Our choice of using an external morphological ana-
lyzer is due to the fact that the suffix guessing algorithm
of Samuelsson (1996), which is built into TnT, and which
seems to be suitable for English and German (Brants,
2000), does not work well for Hungarian (cf. Table 2, mod-
els 2 and 3). In our opinion, there are two main reasons
for the unsuitability of the suffix guessing algorithm for ag-
glutinative languages: (i) data sparseness and (ii) high level
of suffix ambiguity. On the one hand, agglutinative lan-
guages carry a considerable amount of morphological in-
formation on the suffixes, and the suffix sequence can be
usually fairly long (up to 8 characters in our training cor-
pus). This means that, in the worst case, there could be
�����

morphologically distinct endings. This is, of course, an
overestimation, but clearly shows that long suffixes might
carry important morphological information, but they might
not occur in the training corpus in sufficient number. On
the other hand, the most frequent suffix forms in Hungar-
ian are homographs, ie. they tend to participate in several
inflectional paradigms (eg. the ending -ek can be attached
to a verb or a noun). Interestingly, words with these end-
ings do not tend to be ambiguous, since the stem gener-
ally takes either reading – a suffix guessing algorithm can-
not disambiguate these cases whereas a morphological an-
alyzer can. The problem is further complicated by the fact
that the zero morph is the allomorph of several frequent
morphemes, though, as before, the stem generally disam-
biguates between the morphemes. Finally, morphemes in
Hungarian usually have several surface forms, which also
contribute to the sparse data problem. These findings moti-
vated us to use a morphological analyzer instead of relying
on the suffix guessing algorithm.

Table 2 summarizes the results of experiments with a
few basic models. In the baseline model, tokens seen in
the training phase were assigned tags on the basis of uni-
gram frequencies calculated from the training corpus while
previously unseen tokens with a very rudimentary strategy
received the nominal tag that was found most frequent in
training.6 In the second model the baseline strategy for seen
words was augmented with the suffix guessing algorithm
which gave some rise in overall accuracy, whereas the third
model was based on (the trigram) TnT with the same suffix
guessing algorithm again. Given that it was now a trigram
model it is predictable that accuracy on previously seen to-
kens should be higher. However, performance on unseen
tokens did not increase to a level comparable to other lan-

6We did not exclude specifically punctuation from evaluation
since once a morphological analyzer is utilized, they become just
the same unambiguous tokens as any other unambiguous token.

guages.7

When the symbolic morphological analyzer is plugged
into the system, a significant increase in the unseen (and
consequently in the overall) accuracy is clearly noticeable
(Model 4 in Table 2). This is hardly surprising provided
that a fair number of tokens are already assigned only one
analysis by the analyzer. More striking, however, is the very
high accuracy on previously seen tokens obtained by the
primitive unigram models in Table 2, which suggests that
in Hungarian the frequent ambiguous items tend to occur
in running text with their most frequent analysis.

4.2. Weighting the output of the analyzer
Since the morphological analyzer does not assign prob-

abilities to the tags, we have to address the question how
to incorporate such knowledge into our tagging system. As
described in Section 3., the underlying model of the archi-
tecture is a Hidden Markov Model, so we have to augment
the information about the tokens with inverted lexical prob-
abilities. The most naive way to get around this problem
is simply assuming uniform distribution of the tags pro-
posed by the guesser given the word. This approach al-
ready gives a considerable rise in accuracy compared to the
suffix guessing method discussed above (cf. Model 4 in Ta-
ble 2 and Model 7 in Table 3). In this paper, however, we
propose another approach which yield higher accuracy with
the present architecture.

How could we infer the inverted lexical probabilities of
tags given a previously unseen word? Even if we have not
seen the word in the training corpus, we might have seen
other words that behave similarly in the sense that they oc-
cur in similar environments, where they take the same tag.
Words, for example, that are in the same ambiguity class,
that is, words that show the same ambiguity behavior (eg.
books and loves, both of which are ambiguous between NNS

and VBZ) might be very good candidates for inferring in-
formation about the word in question. Indeed, (infrequent)
words with the same morphology tend to have the same
preferences. Hence, to determine the distribution of the tags
for a previously unseen word belonging to a given ambigu-
ity class, it is a motivated step to use the (inverted) lexical
probabilities for the words in the same ambiguity class. A
computational motivation for taking ambiguity classes into
account is that such a step highly reduces the sparse data
problem. As Figure 1 and Table 1 show, with the intro-
duction of ambiguity classes (AC) instead of lexical words,
Hungarian becomes a very well-behaved language: low-
frequency tokens amount only to the less than 1% of the
training corpus and only 0.29% of the tokens in the test are
unseen while training.

To our knowledge the idea of using ambiguity classes is
first proposed by Kupiec (1989) and later is pursued by, for
example, Tzoukermann and Radev (1996). Their method-
ology is simple and elegant: in both the training and test
corpora, words are substituted with their ambiguity class
(thus the training and test corpora contained tokens like
NNS_VBZ instead of books or loves), and train and test their
models with the modified corpora. The problem with such a

7Brants (2000) reports 85.5% for English and 89% for German
with TnT.

Model
Performance

% of unseen Seen acc. Unseen acc. Overall acc.

1. Baseline 17.31% 97.97% 17.54% 84.06%

2. Baseline +
Suffix Guess

17.31% 98.00% 64.51% 92.18%

3. TnT 17.31% 98.32% 67.07% 92.88%

4.
Baseline +

Morph. Analyzer
17.31% 97.97% 87.67% 96.19%

Table 2: The performance of basic models

Model
Performance

% of unseen Seen acc. Unseen acc. Overall acc.

5. TnT + AC 2.16% 98.27% 61.89% 97.48%
6. TnT + Full AC 0.29% 97.83% 6.57% 97.57%

7. TnT + MA
Uniform

17.31% 98.25% 95.50% 97.77%

8. TnT + MA
Classbased

17.31% 98.25% 97.32% 98.08%

9. TnT + MA
Smoothed

17.31% 98.28% 97.32% 98.11%

Table 3: The performance of TnT aided by the morphological analyzer (MA)

move, however, is that we lose preferences of the frequent
tokens. For example, even though books and looks share
the same ambiguity class, in the WSJ the former tends to
prefer the nominal tag (there is no verbal occurrence at all)
while the latter takes the verbal tag in most of the cases.
(The results without using any lexical information are de-
scribed in Table 3, model 6.) To remedy the situation, Ku-
piec (1992) maps only infrequent words to their ambiguity
classes, and retain frequent tokens as they are. In our ex-
periment, we tried a similar scenario: to determine which
token is mapped to its ambiguity class, first, an independent
token frequency list was prepared from an 80 million word
corpus, which was analyzed by a morphological analyzer,
allowing for the construction of another frequency list, that
of the ambiguity classes. Now, in the conversion from to-
kens to equivalence classes, a token was represented by its
actual wordform if the token occurred at least 500 times in
the 80 million corpus, otherwise it was substituted with its
ambiguity class. Clearly, this approach leaves much room
for fine tuning, but we do not expect the different parameter
settings to influence performance significantly. We trained
and tested the tagger on the new corpora, and the result is
described in Table 3 model 5. It is interesting to see that the
slightly lexicalized model is (insignificantly) worse than the
non-lexicalized one.

Although the equivalence class approach improves the
tagging accuracy considerably, it has some important short-
comings. The most important one is the fact that we lose
information which is otherwise present in the training cor-
pus. Indeed, if a word is not mapped to its ambiguity class,
it does not contribute to the tagger’s knowledge about the
tag distribution of its ambiguity class. On the other hand, if
the token is not frequent enough and is mapped to its am-

biguity class, we lose its lexical properties. In the light of
the high baseline accuracy, which suggests that words gen-
erally occur with their most frequent tags, this approach is
slightly penalized. Naturally, we would not like to lose any
information when considering ambiguity classes, thus we
propose a method that makes use of the distribution of the
tags given both the lexical token and its ambiguity class.
Moreover, the approach of using ambiguity classes needs
further modification in order to be able to handle previously
unseen ambiguity classes (in the previous experiments, we
used the built-in suffix guesser).

In order to avoid loss of information, we train our
model with both lexical items and ambiguity classes. In
the present architecture, this means the generation of two
lexicons: one of them containing frequency counts of tags
for each word, from which we calculate the inverted lexical
probabilities

�

����� ��� 	 ��
 . The other lexicon is quite similar,
containing the frequency counts of tags for each ambiguity
class. The input to the tagger is words with their ambiguity
class and optionally with a list of possible tags. When the
tagger encounters a previously unseen word, it uses the tag
distribution of its ambiguity class. On the other hand, if the
word is seen in the training corpus, we take the distribution
of the tags for the lexical token. However, it is possible that
a word did not occur in the training corpus with an other-
wise possible tag predicted by the ambiguity class. In these
cases we give some probability mass to the previously un-
seen tag. To be more exact, we add some (fixed) frequency
counts to the tag, thus a previously unseen tag with low
frequency tokens will get a higher conditional probability
than with high frequency tokens. The algorithm is more
formally described in Figure 2. The results of the exper-
iment using this kind of weighting method, described in

Table 3 (model 8), show a considerable increase over the
approaches using equivalence classes or assuming uniform
distribution of tags.

if unseen(word)
return normalize(dist(class))

else
tags=union of tags of dist(word) and dist(class)
num=number of tags in tags
foreach tag in tags

if tag is in distrib(word)
add tag with freq from dist(word) to newdist

else
add tag with freq=1/num to newdist

return normalize(newdist)

Figure 2: The calculation of the tag distributions given the
word and its ambiguity class

Note that there is an important and welcome side-effect
if a tagging architecture is of the type described above.8

Apart from its ambiguity class, in the input file, each word
can also be associated with a list of possible tags – the sys-
tem then restricts the calculation of the inverted lexical dis-
tribution to the tags given. This enables us to use exter-
nal (possibly symbolic) modules in order to filter out some
readings based on wider contextual, semantic, etc. informa-
tion, thus making the tagger even more suitable for fast and
accurate shallow text processing.

4.3. Smoothing

The third question concerning the incorporation of the
morphological analyzer into our stochastic NLP system ad-
dresses the domain of application of the symbolic module.
At first sight, we only make use of the morphological ana-
lyzer when encountering a previously unseen word. This is
partly true, however, since the algorithm described in Fig-
ure 2 does some simple smoothing for words that occur in
the training corpus as well: possible but unseen tags get
some probability mass depending on the number of occur-
rences of the word in the training. This method, however,
does not really combine the tag distributions given the word
and the ambiguity class – the most important factor is the
word if it is seen. A more sophisticated approach would
try to combine the two distributions via, for example, fre-
quency dependent linear combination, i.e. for each tag, the
inverted lexical probability given the word and ambiguity
class would be

�

����� � 	�� �
�� ���	�
 �

����� � 	�
	� � �
� ���	�

 �

����� � �

at least for infrequent tokens. If we adopt this model, we
have to find out how to determine

���	�

. If the word is not

very rare (in our experiments, words occurring more than
5 times in the training corpus), we used no smoothing (or
more explicitly, we used the smoothing technique of the

8Beside being able to robustly handle unseen data.

algorithm of Figure 2). But what to do with infrequent
words? There are several options, the most obvious is to
fix
���	�

independently of the word and the ambiguity class.
Alternatively, one could set the parameter according to the
relative frequency of the word and its ambiguity class. The
problem with this approach is that the ambiguity class gen-
erally occurs much more often than the lexical item, hence
the ambiguity class would get too heavy a weight. Thus, we
have chosen

���	�

to be dependent on the number of word

types belonging to the ambiguity class and the frequencies
of the word and the ambiguity class. This kind of smooth-
ing gives an insignificant rise in the accuracy (cf. Table 3
model 9).

5. Error analysis
The following is a short overview of the main find-

ings from the analysis of tagging errors; a detailed account
would be beyond the scope of the present paper. Most of the
frequent errors fall into either of two basic categories, both
consisting of items where the information needed for cor-
rect disambiguation cannot be captured by present model:

(i) disambiguation information is available in local con-
text but model cannot utilize it. In particular, a typical
type of behavior of the system is to overweight the un-
igram frequency scores to the detriment of bigram or
trigram values even in places where local context def-
initely favors an alternative against the unigram fre-
quencies.

(ii) disambiguation information would only be available
from higher levels of linguistic analysis. These items
are practically irresolvable by the model and consti-
tute good candidates for feature merger in a (perfor-
mance oriented) tagset.

For (i), one might have recourse to context dependent
linear interpolation where, in standard practice, parameters
are calculated for various frequency groupings. However,
very often all possible alternative analyses of a token are
related to low frequency bigrams falling to the same group-
ing so no distinct parameters are calculated, and the errors
persist. We do not pursue the issue further here whether
more elaborate partitioning of parameter settings would
help solve the problem; instead we opt for a small symbolic
preprocessor on the data, which operates with environmen-
tally triggered deterministic rules. This has been built into
the system filtering on the input to the stochastic classifier,
and is able to achieve about 10% reduction in the average
number of errors (0.2% rise in the overall accuracy in the
present settings).

6. Conclusions
We have discussed a straightforward method that we

hope have demonstrated that a simple tagging scenario
based on a second order HMM can effectively cope with
morphological disambiguation in an agglutinative language
traditionally regarded as unsuitable for such a trivial model.
We have shown that appropriate use of the information pro-
vided by an external morphological analyzer can solve the
ubiquitous data sparseness problem. The advantages of the

system are that there is no need for huge dictionary re-
sources (which are in fact practically impossible to prepare,
an independent morphological lexicon would need to con-
tain billions of entries), the architecture is able to tag run-
ning text robustly on-line, using the language model built
from some training corpus, which does not need to be ex-
tremely large allowing for low cost manual preparation.

The choice of the tagging tool was motivated by the sur-
prisingly high baseline performance with the brute force
unigram relative frequency counts, which predicted that a
relatively simple model would be able to give sufficient per-
formance for real life applications, which was exactly to
apply a statistical learner trained on labeled examples us-
ing Maximum Likelihood Estimates. This is why an HMM
and TnT in particular was a comfortable choice for the task,
which is rather contrary to intuition which would suggest
that a trigram-based Hidden Markov Model is not a suit-
able method since Hungarian is a relatively free word order
language where the constituents are ordered according to
the information structure instead of the argument structure
of the predicates. However, free word order does not lead to
the crash of the HMM approach: once the problems stem-
ming from the highly inflectional nature of Hungarian are
overcome, the HMM tagger can give good results.

Some further work is needed to develop an external
guesser which will preprocess words genuinely unknown
even to the morphological analyzer and provide all possi-
ble analyses that Hungarian morphology would allow for
a form, instead of the suffix approximating technique built
into the tagger, which does not perform well for Hungarian.

It is also worth exploring next how much the good re-
sults are language specific, applying the method to other
languages of similar characteristics.

7. Acknowledgments
The authors are especially grateful to Thorsten Brants

for modifying TnT, which enabled us to use his tagger with
the architecture presented. The authors were supported by
grant number T026091 of the Országos Tudományos Ku-
tatási Alap.

8. References
Thorsten Brants. 1997. Internal and external tagsets in

part-of-speech tagging. In Proceedings of Eurospeech,
Rhodes, Greece.

Thorsten Brants. 2000. TnT – a statistical part-of-speech
tagger. In Proceedings of the Sixth Applied Natural
Language Processing Conference (ANLP-2000), Seattle,
WA.

Eric Brill and Jun Wu. 1998. Classifier combination
for improved lexical disambiguation. In Proceedings of
COLING-ACL’98, pages 191–195, Montreal, Canada.

Eric Brill. 1995. Transformation-based error-driven learn-
ing and natural language processing: a case study
in part of speech tagging. Computational Linguistics,
21(4):544–565.

Walter Daelemans, Jakub Zavrel, Peter Berck, and
Steven E. Gillis. 1996. MBT: a memory-based part of
speech tagger-generator. In Proceedings of the Fourth

Workshop on Very Large Corpora, pages 14–27, Copen-
hagen, Denmark.

Péter Dienes and Csaba Oravecz. 2000. Bottom–up tagset
design from maximally reduced tagset. In Anne Abeille,
Thorsten Brants, and Hans Uszkoreit, editors, Proceed-
ings of the Workshop on Linguistically Interpreted Cor-
pora, COLING 2000, pages 42–47.

Tomaž Erjavec, Sašo Džeroski, and Jakub Zavrel. 1999.
Morphosyntactic tagging of Slovene: Evaluating pos tag-
gers and tagsets. Technical Report 8018, Dept. of Intel-
ligent Systems, Jožef Stefan Institute, Ljubljana.

Jan Hajič and Barbora Hladka. 1998. Tagging inflective
languages: prediction of morphological categories for a
rich structured tagset. In Proceedings of the 36 �

�
annual

meeting of the ACL – COLING, Montreal, Canada.
Jan Hajič. 2000. Morphological tagging: Data vs. Dic-

tionaries. In Proceedings of ANLP-NAACL Conference,
pages 94–101, Seattle, Washington, USA.

Papageorgiou Harris, Prokopidis Prokopis, Giouli Voula,
and Piperidis Stelios. 2000. A unified pos tagging ar-
chitecture and its application to Greek. In Proceedings
of Second International Conference on Language Re-
sources and Evaluation, Athens.

Julian Kupiec. 1989. Probabilistic models of short and
long distance word dependencies in running texts. In
Proceedings of the 1989 DARPA Speech and Natural
Language Workshop, pages 290–295, Philadelphia. Mor-
gan Kaufman.

Julian Kupiec. 1992. Robust part-of-speech tagging us-
ing a hidden Markov model. Computer Speech and Lan-
guage, 6:225–242.

Bernard Merialdo. 1994. Tagging English text with a prob-
abilistic model. Computational Linguistics, 20(2):155–
171.

Gábor Prószéky and László Tihanyi. 1996. Humor – a
Morphological System for Corpus Analysis. In Proceed-
ings of the first TELRI Seminar in Tihany, pages 149–
158, Budapest.

Adwait Ratnaparkhi. 1997. A maximum entropy part-of-
speech tagger. In Conference on Empirical Methods in
Natural Language Processing, University of Pennsylva-
nia.

Christer Samuelsson. 1996. Handling sparse data by
successive abstraction. In Proceedings of COLING-96,
Kopenhagen, Denmark.

Dan Tufiş, Péter Dienes, Csaba Oravecz, and Tamás
Váradi. 2000. Principled hidden tagset design for tiered
tagging of Hungarian. In Proceedings of the Second
International Conference on Language Resources and
Evaluation, Athens.

Dan Tufiş. 1999. Tiered tagging and combined language
models classifiers. In F. Jelinek and E. Nöth, editors,
Text, Speech and Dialogue, Lecture Notes in Artificial
Intelligence 1692, pages 28–33. Springer.

Dan Tufiş. 2000. Using a large set of EAGLES-compliant
morpho-syntactic descriptors as a tagset for probabilistic
tagging. In Proceedings of Second International Confer-
ence on Language Resources and Evaluation, Athens.

Evelyne Tzoukermann and Dragomir R. Radev. 1996. Us-

ing word class for part-of-speech disambiguation. In
Fourth Workshop on Very Large Corpora (WVLC-4),
pages 1–13, Copenhagen, Denmark. International Con-
ference on Computational Linguistics.

Hans van Halteren, Jakub Zavrel, and Walter Daelemans.
1998. Improving data driven wordclass tagging by sys-
tem combination. In Proceedings of COLING-ACL’98,
pages 491–497, Montreal, Canada.

	710: 710
	711: 711
	712: 712
	713: 713
	714: 714
	715: 715
	716: 716
	717: 717

