
Towards Reusable NLP Components

Amalia Todirascu
�
, Eric Kow

�
, Laurent Romary

�
,

�
Equipe Langue et Dialogue, INRIA

LORIA, Campus scientifique, BP 239, 54506 Vandoeuvre Cedex�
todirasc, kow, romary � @loria.fr

Abstract
We propose a methodology for transforming NLP modules into reusable components that can be integrated it into a distributed and open
architecture. We illustrate the methodology by showing the adaptations needed to transform an LTAG parser into a bundle of parsing and
lexical services.

1. Introduction
The availability of various NLP tools and linguistic re-

sources for several languages opens the possibility that they
be heavily shared and reused. Unfortunately, most of the
tools provide low portability, often as a consequence of
their application-specific resource representations. Build-
ing an NLP tool or adapting it for other languages requires
considerable effort in creating or updating linguistic re-
sources (often incomplete) as well as in integrating them
into new applications.

This paper proposes a methodology to transform an ele-
mentary NLP module into a reusable component which can
be integrated into an open and distributed NLP architec-
ture. The methodology requires standardised input/output,
paramater resource and communication protocol between
various components. We developed methodology through
experiments on the modularisation of a Lexicalized Tree
Adjoining Grammars (LTAG) parser, experiments which il-
lustrated the problems which arise in a real and somewhat
complex situation.

The underlying objective of this work was originally to
integrate such a parsing component into various larger NLP
environments representing various degrees of complexity
from a language engineering point of view: a man-machine
dialogue system in the context of the IST/MIAMM project1

(a dialogue environment providing speech, graphical and
haptic interface to a musical database), an information ex-
traction environment (a message filtering application on
computer security in collaboration with the EADS/MSI
company), an on-line network of NLP services based on
GRID techniques 2.

2. General background and objectives
2.1. Existing initiatives towards integration of NLP

components in unified architectures
A lot of research efforts have concentrated on the is-

sue of building reusable NLP components within specific
integrating frameworks. Several challenges were identified
(B.Gamback and F.Olson, 2000) when transforming exist-
ing NLP modules into reusable components: software chal-
lenges (defining APIs for each type of module), seman-

1see http://www.loria.fr/projets/MIAMM
2see http://www.loria.fr/projets/Guirlande

tic challenges (the output of various modules are not al-
ways semantically consistent), and “political” changes (al-
gorithms and resources not always being publicly available
for the research community).

Several projects propose environements for building
NLP complex applications, based on existing modules.
GATE is one of the most widely known, providing an en-
vironement for integrating several NLP tools from various
platforms, using readily NLP modules (a POS tagger, a
parser, a discourse expert, etc.) (D.Maynard et al., 2002).
GATE supports the reuse of resources (as CELEX (Baayen
et al., 1995) and WordNet (C.Fellbaum, 1998)) and algo-
rithms, and provides technical support for the I/O inter-
face, graphical interface and client-server structure for NLP
tools. The I/O interface conforms with a standard TIP-
STER annotation module. It provides such interesting fea-
tures as JAPE (regular expressions over annotations) and
GUK (enhanced unicode support). GATE is relatively old
(four years) and its use in extremely widespread (for exam-
ple, the SVENSK project for reusing resources and algo-
rithms for the Swedish langauge) (B.Gamback and F.Olson,
2000). This degree of experience with the subtle difficul-
ties that can arise in creating any distributed application,
especially one consisting of such disparate modules, would
make GATE extremely attractive; however, there are also
a small number of noticeable blemishes that might cause
one to hesitate. Namely, it requires huge amount of com-
puter resources (memory, disk space) on a single computer
environment, is not user friendly and imposes a pipe-line
architecture.

From another perspective, SiSSA (A.Lavelli et al.,
2000) is an infrastructure for prototyping and validating
NLP application architectures. It supports different lan-
guages and platforms, uses the XML format for data inter-
change, and allows the reuse of various processors. What
makes SiSSA possibly more interesting than GATE is the
flexibility it gets from only requiring modules to regis-
ter with a central SiSSA manager. However, in an appa-
rant effort to ensure that any such module is “correct” on
an architectural level, it requires that each module imple-
ment a CORBA, which at the very least, has the perception
amoung potential module developers of being difficult to
master. This perceived learning curve makes SiSSA some-
what unlikely to be adopted as a widespread architecture

for NLP integration.
Reflecting upon these considerations, we do not intend

to develop yet another NLP architecture. Instead, we pro-
pose a standard methodology for transforming NLP tools
into reusable components, based on existing standards for
protocol and I/O interface. Our methodology is based on
simple XML-like format for exchanging data, free of secu-
rity constraints (as in CORBA), and a strong insistence on
decentralisation and flexibility.

2.2. Towards the definition of a parsing service

LTAG parsers are good examples of low reusability of
resources: existing parsers use a variety of resource formats
(XTAG grammar (A.Sarkar, 2000), Feature Tree Adjoin-
ing Grammars (FTAG (A.Abeillé, 2000), SGML (P.Lopez,
1999)). Complete resources are available for English (lex-
icon and grammar), but they are not really available for
French or for other languages. Resources and parsers are
intimately related so that it is far from to, say, using an
XTAG grammer as parameter of another parsing module.
Still, some experiments have been conducted in provid-
ing grammar servers on-line (M.A.Pardo et al., 2000), but
with no intent to connect such ”services” to parsing com-
ponents proper. In this context, the standardization of TAG
resource formats was a necessary step and has resulted in
the TAGML proposal (P.Bonhomme and P.Lopez, 2000),
an XML application for representing elementary TAG trees
and forests 3. To illustrate the methodology, we adapted
the Lopez parser (P.Lopez, 1999) to use TAGML-based lin-
guistic resources and to provide XML-based output. The
component is incorporated into a distributed architecture,
where it is combined with an independant resource server
and user interface. Those two components, as we will see
in this paper, have been designed to be fully independant
from the specificities of the parser. In particular, sharing
resource servers avoids redundancy, duplication or creation
of new resources. One of our aims here was to make sure
that the parsing results could be used both as an indepen-
dant resource, but also to annotate the primary linguistic
content provided as an input to the parser. This induced
some constraints on the definition of the transmission pro-
tocol which should had the specific feature of keeping track
of resource reference within the architecture.

3. Standardisation
One of the crucial points to achieve an easy deployment

and re-use of NLP modules is to make sure that there ex-
ists, for a given type or class of NLP components, the right
standards for representing the various linguistic knowledge
structures that will be used as input, output or parameter
for this module. Unfortunately, even if there has been nu-
merous attempts to define common formats for such object
as lexica (e.g. Genelex), basic annotations (Eagles guide-
lines for part of speech tagging (Calzolari and J.McNaught,
1996)), or multilevel annotation (CES, Mate), none of these

3A revised version of TAGML is under discussion to provide
more coverage of implementers’ needs (representation of deriva-
tion trees, better representation of feature structures (closer com-
patibility with the TEI FS chapter) and should be published in the
near future

initiatives have led to internationally approved standards,
essentially because of the lack of a wide recognition in-
dependant from any funded project or industrial pressure
group. As a direct consequence, most of the existing NLP
architectures or environment have developed their propri-
etary description formalisms for specifying the data transit-
ing between internal components (1).

In this context, the creation of the new committee
TC3/SC4 within ISO provides the first real international
framework for real international proposition in this field.
Our approach aims at allowing an easy integration of future
standards into an open architecture.

3.1. General perspective: Syntax/Semantics

The evident value of such an international framework
is visible in the widespread recognition and adoption of
the XML metastandard that largely arose out of a similarly
widespread agreement on the W3C as a stable background.
Having the stamp of something similarly recognised allows
us to focus our attention on more technically relevant is-
sues, such as the necessity of providing ways to specify
one’s format while ensuring interoperability principles with
similar data that would be provided or consumed by other
components (kind-of semantics). We could approach this
in a given format by identifying the underlying informa-
tion organization (meta-model) and what can be seen as a
parameterization of such structures (data-categories) (N.Ide
and L.Romary, 2001).

3.2. Part of speech tagging

While there can be a general agreement on the basic
mechanisms needed to represent data tagged for POS (em-
bbeding of word and multiword units, alternatives to cope
with ambiguities etc.), each tagger will implement its own
tagset corresponding both to the language that it is dealing
with and the granularity of description that one aims at. In
the context of international standardization, there is thus a
need to provide reference sets of data categories that a given
application will use to define its own subset.

Still, it can be useful to suggest a reference syntax (or
a family thereof) for such specific layers as POS tagging
that may make things even easier for someone who does
not want to implement his own dialect.

To illustrate how we standardized the existing linguis-
tic TAG resources, we present some properties of TAGML,
chosen as a resource format, and the input/output format.

3.3. Application: TAGML resources

TAG (Joshi, 1987) lexicons associate with lexical en-
tries all the syntactic trees which represent all the possible
combinations of the lexical entry with other words. These
trees (elementary trees) are combined during the parsing
process by two operations: substitution and adjunction. To
avoid redundancy, several trees are associated to word lem-
mas.

Elementary trees contains several node types: standard
nodes (no leaf nodes), anchor nodes (a leaf node contain-
ing the word associated to the tree), foot nodes (a leaf node
indicating a possible adjunction) and substitution nodes (a

GATE SiSSA Soapical (us)
goal

1. architecture for
reusable NLP compo-
nents, providing I/O,
display, client-server
support

1. infrastructure for pro-
totyping, editing, val-
idating NLP applica-
tion architectures

1. methodology towards
reusable NLP com-
ponents with extreme
ease of adoption

features

1. plug-in modularity of
text processing com-
ponents

2. handles data storage
and module loading

3. niceities: JAPE (reg-
ular expressions over
annotations), GUK
(enhanced Unicode
support)

1. FIST: grammar
metaformalism

2. Grammar Repository
implementation

3. SiSSA Manager for
registering new mod-
ules; gui for selecting
how modules connect
together

1. message diagnos-
tic/visualisation
modules (SOAPMe-
ter/PRISM)

2. heavy emphasis on
lightweightness and
flexibility

3. decentralisation by
default - all modules
strictly optional

tech

1. JDBC for accessing
language resources

2. JavaBean standards to
insert modules into ar-
chitecture

1. all processors must
implement CORBA
interface for SiSSA
objects

2. XML for data

1. SOAP for messages
(thereby XML for
data)

2. use of readily avail-
able SOAP imple-
mentations

Figure 1: Comparison between GATE, SiSSA and Soapical (us)

leaf node indicating a substitution). Trees containing ad-
junction nodes will be adjuncted to the nodes of the same
category as the foot node.�

����� �������

The substitutions are represented by � while the adjunc-
tion are represented as *. The operations are identified by
their adress in the tree. The nodes are counted from left to
right from 1 to n. ‘

Example. Address 2.1 means that the operation is done
at the first son of the V node.

The results of the parsing process are a set of derived
trees (the syntactic structure) and a set of derivation trees
(the history of substitutions and adjunctions used to build
the derived trees).

The substitutions are represented in trees as continuous
lines, while adjunctions are represented as dotted line.

3.3.1. Input/Output Standard
XML (W3 Consortium (***, 2000)) is used by many

NLP applications, for its adequacy for representing anno-
tated text and for structuring data, and its extensibility and

transparency. As a natural choice, we use for our compo-
nent XML for input/output.

The input of the parser is a phrase in natural language
and a set of resources (lexicon, grammar), the format for
which will be explained in the next subsection.

The output of the LTAG parser is a set of derived trees
(syntactic structures) and a set of derivation trees (a de-
pendency structure). This reflects all the possible syntactic
and dependency structures associated to the existing input
phrase.

The derived trees are represented as XML elements as:
�

��� �	�

� �

��� � ������ ���

� �

�� ������� �

<n address="0" cat="s" lex="" type="0">

<n address="1" cat="np" lex="" type="1">
<n address="1" cat="n" lex="Jean" type="2" /n>
</n>
<n address="2" cat="vp" lex="" type="1">
<n address="2.1" cat="v" lex="" type="1">
<n address="2.1.1" cat="v" lex="aime" type="2"/>
</n>
<n address="2.2" cat="np" lex="" type="1">
<n address="1" cat="n" lex="soupe" type="1">
<n address="1" cat="d" lex="la" type="2">
</n>
</n>
</n>
</n>

The n element contains several attributes: the lexical
category cat, the address were the operation has been done
address, the node type type (standard, anchor, foot, substi-
tution), the word lex.

Example. The derivation tree for the input phrase Jean
aime la soupe is �������

� ���
	 ��������

� �

and it is represented in XML as:

<subs string="aime">
<subs string="Jean"/>
<subs string="soupe">
<adj string="la"/>
</subs>
</subs>

Two types of elements are used: subs for tracing substi-
tution operations, and adj for adjunction operations.

3.3.2. The Resources
Resource format is an important issue when reusing

data and algorithms. We propose a simple, standard format.
We chose to represent our linguistic resources in a standard
format: TAGML (Tree Adjoining Grammar Markup Lan-
guage). TAGML is also a XML-based format: it is easy to
use by linguists and it structures the linguistic resources (a
set of lexical entries, related to the associated elementary
trees). The availability of TAGML resources is provided
by tools (M.A.Pardo et al., 2000) translating existing gram-
mars (XTAG grammar, FTAG) or generating them from a
meta-grammar.

TAGML proposes a representation of all the elements
of the TAG lexicon: lexical entries, lemmas and elemen-
tary trees. TAGML structures the TAG resources on three
levels: lexical entries, lemmas and tree families. Lexical
entries are associated to lemmas and have some specific
morpological features as number, tense, mode.

Example of a lexical entry in a TAGML lexicon

<morph lex="aimera">
<lemmaref cat="v" name="*AIMER*">

<fs>
<f name="num"><val>sing</val></f>
<f name="mode"><val>ind</val></f>
<f name="tense"><val>fut</val></f>

</fs>
</lemmaref>

</morph>

lemmaref contains the pointer to the lemma, and the fs
element contains the morphological feature structure.

Lemmas contain pointers to tree families and some con-
straints imposed on the feature structures associated to el-
ementary trees. anchor keeps the pointer to the family
tree and the equations impose some constraints on various
nodes of the tree (the attribute restr is plus for the node
labeled np at the 0 address).

<lemma cat="v" name="*AIMER*">
<anchor tree_id="family[@name=tn1]">

<equation node_id="np_0" type="top">
<fs>

<f name="restr"><val>+</val></f>
</fs>

</equation>
</anchor>

</lemma>

Tree families contain several elementary trees grouped
by their syntactic properties. For example, the following
family describes the properties of complex noun phrases
containing relative clauses. A tree is a set of nodes. Each
node has a category, a type (standard, anchor, foot, subst,
lex), a property adj, allowing or not adjunctions and a set
of constraints on each node (narg elements).

<family name="tn1">
<tree name="r0tn1">

<node cat="np" type="std">
<node cat="np" type="foot">

<narg type="top">
<fs>

<f id="X0" name="num" />
<f id="X1" name="pers" />
<f id="X7" name="restr" />

</fs>
</narg>

</node>
<node cat="s" adj="no" type="std">

<node cat="np" type="std">
<node lex="qui" type="lex" />

</node>
<node cat="s" type="std">

<narg type="bot">
<fs>

<f name="inv"><minus /></f>
<f id="X2" name="mode" />

</fs>
</narg>
<node cat="np" id="np_0" adj="no" type="std">

<narg type="top">
<fs>

<f id="X7" name="restr" />

</fs>
</narg>
<node type="lex" />

</node>
<node cat="vp" type="std">

<narg type="bot">
<fs>

<f id="X3" name="mode" />
<f id="X5" name="num" />
<f id="X6" name="pers" />

</fs>
</narg>
<narg type="top">

<fs>
<f id="X2" name="mode" />
<f id="X0" name="num" />
<f id="X1" name="pers" />

</fs>
</narg>
<node cat="v" type="anchor">

<narg type="bot">
<fs>

<f id="X3" name="mode" />
<f id="X5" name="num" />
<f id="X6" name="pers" />

</fs>
</narg>

</node>
<node cat="np" id="np_1" type="subst" />

</node>
</node>

</node>
</node>

</tree>
<tree name="r1tn1">

</tree>
</family>

is represented as:
���

����� �

��� �

���
	�������

�������

3.4. SOAP protocol

As our system uses the parser and the resource ac-
cessing module distributed as service over various sites,
we needed a communication protocol between the vari-
ous components, ideally a homegeneous way to handle all
the data: messages, input/output, resources. SOAP is a
XML-based standard (***, 2000) for exchanging messages
between components of a distributed application, and we
chose it because of its simplicity and flexibility.

There are two ways to look at SOAP. The first is on a
higher level, as a format for messages between agents in
any distributed system. A SOAP message consists of an
envelop, which wraps a header and a body. This header is
where standard SOAP metadata, such as the actors required
to understand a message, go, and the body, the actual data
we are interested in. While SOAP does also offer some
of its own metadata, exceptions (faults), and some default
primitives (ints and strings, for example), it is actually a
more useful understanding of the protocol to pretend that
in its entirety, SOAP is only composed of those three tags:
envelop, header, and body. Because it specificies exactly so
little, we are free to design the contents of the body and add
things to the header at will. For instance, our SOAP bodies
would merely be in TAGML (see figure 3.4.). This is what
we mean by flexibility.

On a second, lower level, we can think of what peo-
ple actually do with SOAP, or rather, how it is used as a
communication protocol. One path of very little resistance
is to bind these SOAP enveloppes to HTTP headers and
send the resulting message along its way. In fact, this is
what most default implementations of SOAP do; they are
little programs (CGI scripts, servlets) that can be attached
to webservers. Any software that uses such a SOAP imple-
mentation thus only worries about producing and consum-
ing data, leaving it to the SOAP implementation to wrap
such data into SOAP envelops, or unwrap such SOAP en-
velops and turn it back into useful data. Some sophisticated
implementations, like Apache SOAP even go a step further,

and provide a Remote Procedural Call mechanism on top of
this, such that function calls are translated into SOAP mes-
sages, unwrapped by the server, then called accordingly,
with the resulting data then being itself wrapped and sent
back to the client. Once attached to a such a SOAP imple-
mentation, a client then concerns itself with function calls,
and the server to the provision of these functions. This is
what we mean by simplicity.

We feel that SOAP will bring us to our goal of hav-
ing a widely adopted methodology towards reusability, and
we feel this way not because SOAP is any more techno-
logically interesting than other object-sharing mechanisms,
but because it is easy. Rather than dictate plausibily cor-
rect specifications for inserting an NLP module into spe-
cific architecture, we instead propose a protocol that spec-
ifies just enough: data and metadata. It is lightweight,
built upon pre-existing standards, tied to familiar transport
mechanisms, and has thus been widely implemented (Even
the Mozilla web browser has a SOAP implementation). In
short, we find SOAP to be useful because its standardness
and familiarity provides a path towards reusability, but at
a mental cost low enough to compete with the ad hoc ap-
proach favoured by the computational linguist of today.

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header/>
<SOAP-ENV:Body>

<tag>
<family name="tmpfam_Jean"><tree name="np">

<node cat="np" id="np_" type="anchor"/>
</tree></family></tag>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 2: a simplified example of a SOAP message

4. System architecture

To experiment this methodology, we split the parser into
various modules: the module implementing the connected-
routes-based algorithm (P.Lopez, 1999), the visual work-
bench and the resources. We integrate all these mod-
ules into a distributed, flexible architecture. Each module
contains a XML-based communication level for data ex-
changes, via the SOAP protocol. We used for tests small
resources for French (338 lexical words, 50 trees) and En-
glish (279 words, 421 trees).

Users enter its texts via a graphical interface. The input
texts are sent to the parser, sentence by sentence. The parser
creates an instance for each sentence and it sends a request
to the resource server to access LTAG resources. The parser
will be a client of the Lexicon server. The lexical entries to-
gether with the elementary trees are sent back to the parser
which continues the process. It sends the resulting forest of
derivation and derived trees back to the user interface. The
user interface lets the user browse the forest tree by tree.

GUI Parser Server

Metagrammar

Lexicon Server

Input phrase getLexicon

Elementary Trees
Derivation forest

Derivation forest

Elementary Trees

Parser Client

Annotated Corpus

Figure 3: System architecture

Some optional modules for resource aquisition (lexicon,
annotated corpora) might be added into the architecture in
the future. The resource server might be updated by an
optional module, describing a metagrammar generating el-
ementary trees. The parser output (validated by the user
via the interface) should be used to create annotated cor-
pora. Additionally, we might incorporate a test-suite ser-
vice, which would allow us to comparatively evaluated cur-
rently available parsing techniques.

The architecture integrates also some metaservices,
dedicated to visualisation and diagnosis.

4.1. The services

The initial parser has been split into several services:
the core of the parser acting as a central service installed on
a server, the resource access module (loading the grammar
and the lexicon) and the graphical user interface.

4.1.1. The parser
The parser implements a connected-routes-based algo-

rithm (P.Lopez, 1999) for TAG grammars. It builds syn-
tactic structures from elementary trees, combining them by
substitution and adjunction. The output of this parser is a
forest of derivation and derived trees. Its input is a phrase in
natural language. It asks the lexicon server for the trees as-
sociated with each input word of the phrase. When the trees
are returned to the parser core, the parsing process tries to
build derivation and derived trees associated to the phrase
and even if the process fails to produce a syntactic structure
for all the input phrase, it returns a set of partial derived
and derivation trees. Optimisations of Lopez parser to han-
dle large resources (unification of feature structures during
parsing, other algorithms) are still under development. re-
sources. In the future, we intend to integrate other parser
services (M.A.Pardo et al., 2000), validating our methodol-
ogy.

4.1.2. The lexical service
The lexicon server is structured into three levels: mor-

phological level (containing flexed words and pointers to
lemmas), the lemma level (containing the lemmas, the fea-
tures associated with lemmas and pointers to trees) and the
tree level (containing families of trees). If a word is not
found in the lexicon, it returns an null answer.

It returns a set of trees associated to the input phrase.
For some applications (Vulcain, MIAMM), we need to se-
lect only domain-specific lexicons. We intend to use several
lexical services into our architecture.

4.1.3. The GUI
The graphical interface is designed to help the user to

interact with the other services in the architecture (see fig-
ure 4). The results of the parser might be validated by the
user to create annotated corpora.

4.2. The metaservices

We also deploy in this architecture a set of reusable di-
agnostic modules. The first of these is the SOAPMeter,
which is to be inserted between two SOAP nodes, such as
a parser and its lexicon service. Once in place, the SOAP-
Meter analyses the communication between the two nodes,
and displays them as a series of individually timestamped
SOAP messages. This way, the implementor knows in-
stantly if instead of an actual problem with the modules
themselves, there is a lower level problem, say, that the rea-
son the parser is not doing anything useful is that it is not
receiving any requests from the client. Once freed from
these concerns, the implementor then proceeds to a higher
level, seeing a series of requests and responses, rather than
losing his place in the flow of HTTP headers and XML text.

To further illuminate these requests and responses, the
SOAPMeter acts as a SOAP client for our PRISM service
(Parameretisably Readable Interpretation of SOAP Mes-
sages), which receives XML text and returns a graphical
representation of that text. XML messages can be challeng-
ing to read because so much of the message is dedicated
to describe a document’s structure, after wading through
which, one does not attain a solid grasp on its contents or
their relationship to each other. With a graphical represen-
tation, we no longer describe the structure, but show it,and
furthermore, show it in a way that is relevant to the spe-
cific data at hand. Syntatic trees, for example, can be actual
trees instead of block upon block of open/close XML tags.
Likewise, if we were dealing instead with a logical descrip-
tion (such as Discourse Representation Structures DRSs) it
would be possible to visualise it as something more appro-
priate (for DRSs, using the classical ”box” representation).

In PRISM, we acheive this parameterisability through
the use of XML stylesheets (XSL) that describe the trans-
formation of XML to graphics, which is to say that, chang-
ing the nature of a SOAP diagnosis is adding or changing a
stylesheet rather than modifying any of the diagnostic soft-
ware. As for the SOAPMeter, this leaves the implementor
with a single button-click to visualise any SOAP messages
which might be particularly interesting or difficult (see fig-
ure 5.).

5. Applications
The system was developped in order to integrate the

parser into complex applications: the MIAMM project
(Multimedia Information Access using Multiple Modali-
ties), developping a multi-modal interface (combining hap-
tic, text, speech, graphics) to search songs in a database and
the Vulcain project, dedicated to message filtering about

Figure 4: GUI for LTAG Parser

computer security. The applications have various degrees
of complexity and the resources are very different: Vulcain
is an information-extraction system using local grammars
and domain-specific lexicons, but MIAMM uses resources
handling dialogue and reference resolution. Both appli-
cations integrate heterogeneous modules and offer a good
framework to apply the methodology we propose.

6. Conclusion
The paper illustrates a methodology for transforming a

NLP module into a reusable, parametrizable component for
a particular case: a LTAG parser. The methodology requires
input/output and resource format standardization (XML-
compatible) and the definition of a communication protocol
(SOAP). The methodology will be validated by transform-
ing other NLP modules into reusable components, access-
ing resources available on-line. The SOAP protocol will be
extended with more complex functions (handling XML ref-
erences, implementing XML query for updating resources,
extending the mechanisms for handling errors). The parser
component will be integrated into an open architecture han-
dling human-machine dialogues.

7. References
***. 2000. The world wide web consortium

(http://www.w3c.org).

A.Kinyon A.Abeillé, L.Clément. 2000. Building a tree-
bank for french. In Proceedings of LREC Conference,
Athens.

A.Lavelli, F.Pianesi, E.Maci, I.Prodanof, L.Dini, and
G.Mazzini. 2000. Sissa: A software infrastructure for
developping distributed nlp applications. In ?, ?

A.Sarkar. 2000. Statistical Parsing Algorithms for Lexical-
ized Tree Adjoining Grammars. Ph.D. thesis, University
of Pennsylvania.

R.H. Baayen, R.Piepenbrock, and L. Gulikers. 1995. The
celex lexical database (release 2) [cd-rom]. Technical re-
port, Linguistic Data Consortium, University of Pennsyl-
vania.

B.Gamback and F.Olson. 2000. Experiences of language
engineering algorithm reuse. In Proceedings of LREC
Conference, Athens.

N. Calzolari and J.McNaught. 1996. Eagles guidelines.
C.Fellbaum. 1998. WordNet: An Electronic Lexical

Database. MIT Press.
D.Maynard, V.Tablan, and H.Cunningham. 2002. Archi-

tectural elements of language engineering robustness.
Natural Language Engineering, pages 00–00.

A. Joshi. 1987. An introduction to tree adjoining gram-
mars. Mathematics of Language, pages 87–115.

M.A.Pardo, D.Seddah, and E. de la Clergerie. 2000. Prac-

Figure 5: Visualising the Lexicon service with the SOAPMeter and PRISM

tical aspects in compiling tabular tag parsers. In Pro-
ceedings of TAG+5 workshop, pages 27–32, Universit
Paris 7, Jussieu, Paris, France.

N.Ide and L.Romary. 2001. Standards for language re-
sources. In Proceedings of IRCS Workshop on Linguistic
Databases, 11-13 December 2001, pages 148–153, Uni-
versity of Pennsylvania, Philadelphia.

P.Bonhomme and P.Lopez. 2000. Tagml: Xml encoding
of resources for lexicalized tree adjoining grammars. In
Proceedings of LREC Conference, Athens.

P.Lopez. 1999. Robust Parsing with Lexicalized Tree Ad-
joining Grammars. Ph.D. thesis, INRIA Nancy.

	1116: 1116
	1117: 1117
	1118: 1118
	1119: 1119
	1120: 1120
	1121: 1121
	1122: 1122
	1123: 1123

