
Converting a Corpus into a Hypertext:
An Approach Using XML Topic Maps and XSLT

Eva Anna Lenz, Angelika Storrer

Universität Dortmund, Institut für deutsche Sprache und Literatur
Emil-Figge-Str. 50, D-44227 Dortmund, Germany�

lenz, storrer � @hytex.info

Abstract
In the context of the HyTex project, our goal is to convert a corpus into a hypertext, basing conversion strategies on annotations which
explicitly mark up the text-grammatical structures and relations between text segments. Domain-specific knowledge is represented in the
form of a knowledge net, using topic maps. We use XML as an interchange format. In this paper, we focus on a declarative rule language
designed to express conversion strategies in terms of text-grammatical structures and hypertext results. The strategies can be formulated
in a concise formal syntax which is independend of the markup, and which can be transformed automatically into executable program
code.

1. Project Framework
We illustrate a model for converting a text corpus into

a hypertext. The approach is being developed in the con-
text of the HyTex project (Hypertext conversion based
on textgrammatical annotation, http://www.hytex.info/)
funded by the Deutsche Forschungsgemeinschaft (DFG),
which investigates methods and strategies for text-to-
hypertext conversion. The central idea of the project is
to base conversion strategies on annotations which ex-
plicitly mark up the text-grammatical structures and rela-
tions between text segments, e.g. co-reference relations, se-
mantics of connectives, text-deictic expressions, and ex-
pressions indicating topic handling (Storrer, to appear).
The project will develop a methodology which (semi-
)automatically constructs hypertext layers and views, using
the text-grammatical annotations.

By storing the hypertext as additional document lay-
ers, this methodology preserves structure and content of
the original text documents, thus ensuring their recover-
ability. The multiple-layer approach facilitates the publish-
ing of the same content in different media (cross-media-
publishing), and, in addition, provides the reader with the
choice beween sequential and selective reading modes. Se-
lective hypertext readers will be supported in finding coher-
ent pathways through the document network.

Feasability and performance of the methodology will
be tested and evaluated using a German text corpus. The
corpus documents will deal with the same global subject
domain, namely “text technology”. The corpus comprises
various genres (including papers, project reports, text-
books, FAQ, technical specifications, glossaries/lexicons,
and newsgroup postings). These genres differ with respect
to parameters which are crucial for hypertext conversion:
length, topic handling, linearity. The corpus will be trans-
formed into a hyperbase by a stepwise approach, the steps
being:

� corpus collection and automated annotation of the hi-
erarchical document structure,� (semi-)automatic text-grammatical annotation, e.g.
segmentation of paragraphs into smaller functional
units,

� annotation of co-reference relations between text
units, in particular expressions used in topic-handling
and expressions indicating the rhetorical function of
smaller segments,� annotation of definitions for technical terms of the
subject domain and of term instances,� modelling terminological knowledge of the global
subject domain, using topic maps (Pepper and Moore,
2001),� implementation and evaluation of procedures for seg-
mentation, reorganisation, and linking. These oper-
ate on the text-grammatical annotations and the topic
map model.

In this paper, we concentrate on the technical realisa-
tion of the last step. In particular, we focus on a declarative
rule language for describing the transformation process. In
section 2, we outline this approach. We then give a brief
overview of the model’s components in section 3 before we
focus on the design of the rule language and its implementa-
tion in section 4. Conclusions and an outlook are presented
in section 5.

2. Simplifying the Transformation Process
The transformation process can be viewed as a map-

ping from the corpus to the hypertext. It can be described
by rules consisting of two parts: a condition (on the docu-
ments) and an action that is to be executed when the condi-
tion holds. In particular, on the basis of various coherence
relations modelled by annotations (conditions), a linking
structure of the hypertext is to be generated (actions).

Traditionally, transformations are implemented using
programming languages where these rules remain implicit.
In the project context – as in other contexts – many rules
are similarly structured, leading to either redundant pro-
gram code or complex programming expressions. Further-
more, a programming language includes many constructs
not needed in our context.

The goal of the approach presented here is to de-
sign a declarative rule language optimised for expressing
conditions on text-grammatical structures and hypertext-
generating actions. This approach makes the rules more

compact, easier to understand, and easier to maintain than
program code. We will further discuss the advantages and
drawbacks of the approach in section 5.

3. Model Overview
Our architecture contains three components (see

figure 1):
� the corpus of annotated documents,� the topic map modelling the technical terms of the

subject domain in terms of WordNet relations, and� a set of rules which declaratively describe how the
corpus and the topic map are to be transformed into a
hypertext.

All components are expressed in or transformed into XML
syntax. This allows us to apply available tools (parsers,
generators, browsers, etc.). For example, the syntax of ev-
ery genre in the corpus, the topic map, and the rule lan-
guage can be defined and checked by document grammars
(e.g., Document Type Definitions (DTDs)). We can easily
reuse documents available in XML or HTML, and produce
documents for the web.

Figure 1: Model overview.

3.1. The Corpus

The German text corpus dealing with the subject do-
main “text technology” originally contains texts in various
formats, including Word and HTML. In a first step, these
formats are converted to XML in order to have a consistent
format.

The corpus is then annotated on different levels in sub-
sequent steps in order to prepare it for hypertext con-
version. We annotate the hierarchical document struc-
ture for each genre, the text-grammatical structure, co-
reference relations between text units, and definitions and
instances of technical terms. We gain these annotations
semi-automatically, applying several steps of markup gen-
eration and filtering, where intermediate levels of annota-
tions (e.g., part-of-speech-tagging, lemmatisation, chunk-
ing) finally disappear.

Annotations of technical term definitions and instances
will serve us as examples throughout this paper. These en-
able us to implement a linking strategy based on knowledge
prerequisites. This linking strategy is suitable in an appli-
cation scenario where a reader is a semi-expert, not recog-
nising or being acquainted with every technical term of the

domain, for example in the contexts of interdisciplinary re-
search, studies and education, journalism, or lexicography.

Application of the linking strategy provides the reader
with a hypertext that supports a selective and problem-
oriented reading mode. For example, when a reader comes
across a term (the term instance), we can indicate that it is
a technical term in the domain, and to provide him with the
possibility to learn more about this term, e.g. by following
a link to the term definition.

We differentiate between three kinds of knowledge pre-
requisites:

intratextual knowledge prerequisite: the author of a text
uses a term for which he has given a definition in the
same text,

extratextual knowledge prerequisite: the author indi-
cates that he uses a term whose definition is given in
another corpus document, or

domain-specific knowledge prerequisite: the author uses
a term well known in the community of the subject
domain without indicating that it is a technical term.

We semi-automatically annotate term definitions as well as
term instances together with the type of knowledge prereq-
uisite. For example, we assume that the knowledge pre-
requisite is domain-specific when no term definition can be
found prior to its use.

3.2. The Topic Map

In order to implement the linking strategy based on
knowledge prerequisites, we need to model terminological
knowledge of the subject domain. This knowledge com-
prises

� The terms and their relations to other terms, e.g. su-
perordinates and subordinates, synonyms, etc. We or-
ganise this knowledge according to the principles of
the lexical database WordNet (Fellbaum, 1998), i.e.
in the form of a lexical network, and add domain-
specific relations.� The relationships of terms to documents, e.g. to stan-
dard definitions, or to occurrences of a term in spe-
cific genres, e.g. in an FAQ (“Frequently asked ques-
tions”).� Attributions of terms to usages and communities. For
example, we can express that one term is employed
by the web community rather than the hypertext com-
munity.

Topic Maps (ISO, 2000) provide a standardised syntax
for such networks. The main unit of organisation is called
a “topic”. Topics can be typed, related to other topics, and
related to documents in a user-definable and flexible way.
We model attributions of terms to usages using the topic
map construct of scopes. A topic map can be expressed in
XML syntax (Pepper and Moore, 2001); topic maps thus
meet all our requirements.

Parts of the topic map are eventually transformed into
an extended glossary, to be consulted by a hypertext reader
when he needs domain-specific background knowledge. In

addition to definitions, the extended glossary for a term
contains related terms as well as links to other relevant text
passages.

The topic map syntax can be validated using the topic
map DTD. In the future, topic map software may also be
able to check the semantics of a topic map – for example,
the allowed types for relations between topics – defined in
the form of a topic map schema (Rath, 2000).

4. Describing the Transformation in Terms
of a Rule Language

Before explaining the rule language, we give an ex-
ample of rules implementing the linking strategy based on
knowledge prerequisites. These rules make use of the an-
notation of term definitions and instances described above.

Two rules based on this linking strategy can be ex-
pressed as follows:

intratextual linking rule: For each technical term used
intratextually (i.e. for each instance of a term defined
in the same text), generate a link from the term in-
stance to its definition.

domain-specific linking rule: For each technical term
used domain-specifically (i.e. for each instance of a
technical term known in the community and not de-
fined by the author), generate an icon indicating a link
to the glossary entry for this term.

4.1. The rule language

It should be possible to formulate hypertextualisation
strategies – and transformation rules – independently of the
markup actually used in the source and target documents.
To this end, we introduce the notion of conceptual con-
structs (or constructs). Each time when a new construct is
introduced, the correspondance between the construct and
the markup has to be defined (see section 4.2.). Once de-
fined, rules can operate on the constructs.

We distinguish between two forms of constructs:

Source constructs are constructs of the source documents,
e.g. constructs for expressing coherence relations,
term definitions and instances, or WordNet synsets.

Target constructs are constructs of the target documents
to be generated by the rules. Target constructs in the
domain of hypertext comprise, for example, source
and destination anchors for hyperlinks, as well as link
types or stretchtext.

Each construct has a unique name and can have a num-
ber of arguments. The construct depends on the arguments;
they form the construct.

In order to address a construct, we use the following
syntax:

c (��� , ��� , ����� , ���)

where c is the name of the construct, and 	�
 to 	� are the
arguments.

As a simplified example from our domain, the construct

termDefinition (term, defText)

is a source construct which denotes a definition of a techni-
cal term. It is named termDefinition and characterised
by the technical term defined (term) and the text passage
containing the definition (defText). Accordingly, the
construct

termOccurrence

(termRef, usageType, termInstance)

is a source construct denoting a term instance of a tech-
nical term. Here, the arguments are the technical term
referenced (termRef), the way it is used in relation to
its definition (usageType: intratextually, extratextually,
or domain-specifically) and the actual word form used in
the text (termInstance). As an example for a target
construct, consider

sourceAnchor

(destinationAddress, anchorContent)

which denotes a source anchor for a link (in HTML:
�
a href=" ����� " ������� � /a �), and

destinationAnchor

(anchorName, anchorContent)

which denotes a destination anchor for a link (in HTML:
�
a name=" ����� " ������� � /a �).

The definition of a construct comprises the following:

� the declaration of the construct’s name,� the declaration of its arguments, if any,� and a fragment of program code relating the con-
struct to its markup.

A rule consists of a source construct, serving as a con-
dition on the source documents, an arrow, and a target con-
struct, denoting an action that is to be performed when the
condition holds. The arguments of the source construct can
be bound to variables (indicated by a $ sign), whose values
can be used in the target construct. It can also be expressed
that an argument has to have a given value (indicated by
single quotes) in order for the source construct to match.
Consider the following two rules as examples:

termDefinition
(term=$termVar, defText=$defTextVar)

���

destinationAnchor
(anchorName=$termVar,

AnchorContent=$defTextVar)

and

termOccurrence
(termRef=$termRefVar,
usageType=’intratextual’,
termInstance=$termInstanceVar) ���

sourceAnchor
(destinationAddress=$termRefVar,

anchorContent=$termInstanceVar)

Together, these two rules create a link from a term instance

to its definition, thus describing the above intratextual
linking rule.

Target constructs can be nested. We use this property to
express the domain-specific linking rule described above:

termOccurrence
(termRef=$termRefVar,
usageType=’domainspecific’,
termInstance=$termInstanceVar)

���

sourceAnchor
(destinationAddress=
concat($termRefVar, ’.html’),

anchorContent=glossaryIcon())

where concat(� , �) is a target construct concatenating 	
and � , and glossaryIcon() is a target construct without
arguments that generates the icon. (We assume that the
glossary entry already exists).

In order to keep the examples for target constructs sim-
ple, we have used examples close to HTML. Of course, the
target constructs can also be formulated in terms of an ab-
stract hypertext model like the Dexter Hypertext Reference
Model, or the hypertext model by Tochtermann (1995). We
also define hypertext target constructs for the user interface,
such as stretchtext or window expansions, the latter being a
self-defined concept.

Of course, the source constructs can operate on both
levels of our model, i.e. on the corpus documents and
the topic map. For example, a construct for WordNet
word forms has as arguments for the word’s synonyms,
antonyms, and other related words.

4.2. Implementation

XSLT (Clark, 1999) is a functional programming lan-
guage optimised for parsing and generating XML docu-
ments. An XSLT program takes one or more XML files
as its input, and transforms them into one or more files in
character string based formats (e.g. HTML or XML).

The following three properties make XSLT the best can-
didate for our requirements as a programming language:

� All the components of our model are in XML format,
or – in the case of the rules – can easily be converted
to XML.� XSLT is a functional programming language support-
ing a rule-based, declarative programming style. In
XSLT, the programmer specifies what output should
be produced when particular patterns occur in the in-
put, as distinct from a procedural program where the
programmer has to specify what tasks to perform in
what order (Kay, 2001, 39). This makes it relatively
easy to transform our rules into XSLT.� An XSLT program is written in XML syntax. This
makes it easy to generate XSLT programs with XSLT.

The actual transformation process is twofold. An XSLT
program is often called a stylesheet. An initial XSLT
stylesheet – the rule transforming stylesheet – takes the
rules and conceptual constructs as input and translates them
into a second XSLT stylesheet, i.e. it translates the rules
into an executable form. This second stylesheet – the rule

applying stylesheet – then generates the hypertext from the
corpus documents and the topic map.

For those who are familiar with XSLT, in the remainder
of this section, we roughly outline how the rule applying
stylesheet is generated automatically.

The basic idea of our algorithm is to generate a match-
ing template for every source construct and a named tem-
plate for every target construct. We stated in section 4.1.
that with the definition of a conceptual construct a fragment
of program code has to be provided that relates the concept
to its markup. In the case of a source construct, this is a
fragment of XSLT code permitting to match the construct
in the XML markup and to bind the arguments accordingly.
This is achieved by a list of variable assignments, where
each variable corresponds to one of the source constructs’
arguments. Each variable is assigned a value which is usu-
ally taken from the XML tree, using XPath. In the case of
a target construct, the code generates an output, possibly
using the variables’ values. In both cases, this code frag-
ment is inserted into the matching template or the named
templated, respectively.

Here is an example of the code associated with the
source construct termOccurrence and the target construct
sourceAnchor:

termOccurrence (termRef, usageType, termInstance)
<xsl:template match="termOccurrence">
<xsl:variable name="termRef" select="@termRef"/>
<xsl:variable name="usageType" select="@usageType"/>
<xsl:variable name="termInstance" select=".">

</xsl:template>

sourceAnchor (destinationAddress, anchorContent)
<xsl:template name="sourceAnchor">
<xsl:param name="destinationAdress"/>
<xsl:param name="anchorContent"/>
<!-- inserts
$anchorContent
-->
<xsl:element name="a">

<xsl:attribute name="href">
<xsl:value-of select="$destinationAddress"/>

</xsl:attribute>
<xsl:value-of select="$anchorContent"/>

</xsl:element>
</xsl:template>

A rule S(�
 , ����� , � �) ��� T(��
 , ����� , �
) inserts a call
of the named template for T into the matching template for
the source construct S, transferring the variables (and their
values) as parameters to the named template.

Basically, the rule language presented above provides
a simplified syntax for one of four possible programming
styles supported by XSLT (Kay, 2001, 599 ff.), namely the
rule based programming style.

5. Conclusion and Outlook
We have presented a model for the transformation of a

corpus into a hypertext, using declarative rules and topic
maps. In the context of the HyTex project, our main goal is
to test different strategies for text-to-hypertext-conversion.
The availability of a declarative way for expressing this
conversion greatly facilitates the task.

Although we could use XSLT as a program language
which already supports a declarative style of programming,
our approach has major advantages over programming di-
rectly in XSLT.

We particularly benefit from the separation between
conceptual constructs and the markup actually used in cases
where the markup is complex, and especially when the in-
formation about a construct is scattered about an XML file,
as it is the case with topics in topic maps (due to the fact that
a network structure cannot be presented hierarchically). In
this case, a programmer can once define the desired con-
struct (e.g., a construct for WordNet word forms, with syn-
onyms, antonyms etc. as arguments), writing an inevidently
complex code fragment. An expert in hypertext, although
not familiar with XSLT, can then apply the construct in a
rule describing the transformation of a WordNet word form
into a glossary entry.

The separation between constructs and markup has
the further advantage that changes in the structure of the
markup will only necessitate a change in the program code
associated with the definition of the corresponding con-
struct, i.e. it will require a revision at only one particular
and well-defined place. Rules operating on the construct
do not have to be changed at all.

We also consider it an advantage that at the time of
defining a construct, one has to reflect on its arguments.
We believe that thinking in an abstract way independently
of the markup can enable us to find out where information
in the markup is missing, or where the markup should be
reorganised.

However, a serious restriction of the present approach is
the fact that target constructs can effectuate an output only
at one place in the target document. We intend to enhance
the rule language in such a way that an output at two or
more places in the target document can be produced. This
will enable us to define target constructs such as “link” that
can generate both a source and a destination anchor at dif-
ferent places in the target document. Likewise, the possi-
bility to combine different source constructs in one rule is
very desirable.

An interesting extension of the rule language would al-
low to define constructs with different markup in different
contexts. For example, the source construct heading could
be marked up differently in different kinds of input docu-
ments, or it might be desirable to choose between the output
formats HTML and XLink for target constructs generating
hyperlinks.

Although performance is not crucial in our context, we
also plan to optimise the implementation, using the “key”
construct of XSLT which implements a hash mechanism.

It is also necessary to check the semantics of rules, con-
struct definitions, and other parts of the model automati-
cally. For example, it should be ensured that rules contain
only constructs that have been defined. We intend to use
Schematron (Cagle et al., 2001, cp.14), a schema language
designed to generate this kind of messages for XML docu-
ments.

The model will also be extended to include the gener-
ation of adaptive hypertexts (Brusilovky, 2001), i.e. hyper-
texts adapted to a particular user. For example, the different
usages of terms modelled in the topic map could be used to
generate different hypertext versions for users from differ-
ent domains or subdomains. Brusilovsky describes several
adaptive hypertext techniques (e.g. stretchtext, sorting, vi-

sual annotation, and “dimming” of links). Conceptual tar-
get constructs for these techniques would greatly facilitate
the task of adaptive hypertext generation.

6. References
Peter Brusilovky. 2001. Adaptive hypermedia. User Mod-

eling and User-Adapted Interaction, 11(1/2):87–110.
Kurt Cagle, Jon Duckett, Oliver Griffin, Stephen Mohr,

Francis Norton, Nik Ozu, Ian Stokes-Rees, Jeni Ten-
nison, and Kevin Williams. 2001. Professional XML
Schemas. Wrox Press, Birmingham.

James Clark, editor. 1999. XSL Transformations (XSLT)
Version 1.0. W3C Recommendation. W3C.
http://www.w3.org/TR/xslt/.

Christiane Fellbaum, editor. 1998. WORDNET: an elec-
tronic lexical database. MIT Press, Cambridge, Mas-
sachusetts.

ISO. 2000. ISO/IEC 13250:2000 Document de-
scription and processing languages – Topic Maps.
http://www.y12.doe.gov/sgml/sc34/document/0129.pdf,
Geneva.

Michael Kay. 2001. XSLT Programmer’s Reference. 2nd
edition. Wrox Press.

Steve Pepper and Graham Moore, editors. 2001. XML
Topic Maps (XTM) 1.0. TopicMaps.Org Specification.
TopicMaps.Org. http://www.topicmaps.org/xtm/1.0/.

Hans Holger Rath. 2000. Topic maps self-control. Markup
Languages: Theory & Practice, 2(4):367–388.

Angelika Storrer. to appear. Coherence in text and hyper-
text. Document Design. Journal of research and problem
solving in organizational communication.

Klaus Tochtermann. 1995. Ein Modell für Hyperme-
dia – Beschreibung und integrierte Formalisierung
wesentlicher Hypermediakonzepte. Ph.D. thesis,
Aachen. Shaker.

	432: 432
	433: 433
	434: 434
	435: 435
	436: 436

