
Extracting Information for Automatic Indexing of Multimedia Material

Horacio Saggion
Hamish Cunningham

Diana Maynard
Kalina Bontcheva

Oana Hamza
Christian Ursu
Yorick Wilks

Department of Computer Science
University of Sheffield

Regent Court
211 Portobello Street

S1 4DP - Sheffield - England
UK�

saggion,hamish,diana,kalina,oana,cursu,yorick � @dcs.shef.ac.uk

Abstract
This paper discusses our work on information extraction (IE) from multi-lingual, multi-media, multi-genre Language Resources, in a
domain where there are many different event types. This work is being carried out in the context of MUMIS, an EU-funded project that
aims at the development of basic technology for the creation of a composite index from multiple and multi-lingual sources. Our approach
to IE relies on a finite state machinery provided by GATE, a General Architecture for Text Engineering, pipelined with full syntactic
analysis and discourse interpretation implemented in Prolog.

1. Introduction
The University of Sheffield is adapting information

extraction (Cunningham, 1999; Gaizauskas and Wilks,
1998; Appelt, 1999) technology to produce formal an-
notations about essential events in football multimedia
programme material for the Multimedia Indexing and
Searching Environment (MUMIS)1 project, which aims
at the development of basic technology for the creation
of a composite index from multiple sources in different
languages.

We are working on information extraction from English
sources while other project participants are dealing with
sources in Dutch (Centre for Telematics and Informa-
tion Technology, Netherlands) and German (Deutsches
Forschungszantrum für Künstliche Intelligenz, Germany).
Information extraction is carried out on textual sources,
but in future stages of development of this project, the
information will also be extracted from transcribed spoken
commentaries from radio and television broadcasts. These
transcriptions are being produced by the University of
Nijmegen (Netherlands). The three IE systems target a
shared domain and multilingual lexicon of the football
domain developed by ESTEAM (Sweden). As the in-
formation is extracted from multiple sources describing
the same events in various ways, a merging component
is in charge of solving conflicts and merging information
(University of Nijmegen). A menu-based user interface
(in Dutch, English, and German) is being developed by
the Max-Planck-Institut für Psycholinguistik (Germany),

1http://mumis.vda.nl/, funded by the EC’s 5th
Framework HLT programme under grant number IST-1999-
10651.

that will allow professional users to query a database of
annotations and play video fragments matching the query
(e.g., “all goals scored by Owen”). For an overview of the
project the reader is referred to (Declerck et al., 2001).

The textual sources used for this project are taken from
reports of the Euro2000 Championships: ticker reports that
give a minute by minute objective account of the match;
match reports that also give a full account of the match
but may be subjective; and comments that give general
information such as player profiles. English reports are
drawn from a variety of online media sources (BBC-online,
Press Association, The Guardian, etc.). These sources
report the same events in different ways: as an illustration
a source may say “Substitute Westerveld comes on for van
der Sar” while another may say “van der Sar (Westerveld
65)” to refer to a substitution event. An example of an
English ticker can be seen in Figure 1. The elements
to be extracted that are associated with the events are:
players, teams, times, scores, and locations on the pitch.
An example of the task is presented in Figure 2: the text
describes a foul event committed by “Beckham” at the 41
minute of the first half. The system extracts the information
and produces XML output. The extraction of temporal
information is essential to our task because it is the key for
locating interesting fragments in the video material.

In this paper, we present our approach to Information
Extraction from English text that is based on the use of fi-
nite state machinery pipelined with full semantic analysis
and discourse interpretation. The rest of the paper is organ-
ised as follows: in the next section we give an overview of
the finite state components of our system and we present its
evaluation. In section 3 we discuss our approach to parsing.

England 1-0 Germany
(Charleroi - Att: 30,000)
3 mins: Germany break down the right in the first attack of the match but Phil Neville covers well and returns the ball to
David Seaman, who clears.
...
41 mins: Beckham is shown a yellow card for retaliating on Ulf Kirsten seconds after he is denied a free-kick.
...
Full-time: England 1-0 Germany

Figure 1: Ticker from the Euro 2000 Championships: Match between England and Germany

41 mins: Beckham is shown a yellow card for retaliating on Ulf Kirsten seconds after he is denied a free-kick.

<event_entry>
<event_type>yellow card</event_type>
<event_ID>16</event_ID>
<event_time>41</event_time>
<original_doc_name>/Z:/mumis/src/mumis/resources/text/sources/

England-Germany/bbc-england-germany-ticker.txt</original_doc_name>
<player_1>Beckham</player_1>
<team_player_1>England</team_player_1>
<player_2></player_2>
<team_player_2></team_player_2>
<score>0:0</score>

</event_entry>
<event_entry>

<event_type>foul</event_type>
<event_ID>17</event_ID>
<event_time>41</event_time>
<original_doc_name>/Z:/mumis/src/mumis/resources/text/sources/

England-Germany/bbc-england-germany-ticker.txt</original_doc_name>
<player_1>Beckham</player_1>
<team_player_1>England</team_player_1>
<player_2>Kirsten</player_2>
<team_player_2>Germany</team_player_2>
<score>0:0</score>

</event_entry>

Figure 2: Example of the IE Task and Output of the System.

Then, in section 4 we present our work on discourse inter-
pretation and finally, in section 5 we close with conclusions
and future work.

2. Overview of the English Information
Extraction System

An analysis of the domain has revealed that there are 31
types of events in a football match (kick-off, substitution,
goal, foul, red car, yellow card, etc.). Some events, such
as “yellow card”, require only one player while others,
like “substitution”, require two players to be extracted.
All events require temporal and location information to be
extracted from the text.
We have produced semi-formal dictionary definitions for
each event in the domain (e.g. “Corner: An offensive
player kicks the ball from stationary at a corner”) but
these definitions are not enough to produce an operational
system. A careful analysis of textual sources was done to

define each event formally in order to allow its identifi-
cation and extraction from texts by automatic means. We
have used WordSmith (Scott, 1996) as the main tool for
corpus analysis.

Our system is conceptualised as a Java front-end
system based on finite state transduction followed by a
Prolog back-end system for inference over a classification
hierarchy implemented in SICStus Prolog. The system
architecture is shown in Figure 3.

The finite state machinery is based on ANNIE, a free IE
system available as part of GATE, a General Architecture
for Text Engineering (Cunningham et al., 2002) (see
http://gate.ac.uk/).

The input to the process is a document (plain text,
HTML, SGML, XML, RTF, or EMAIL) that is automati-

TOKENISER

UNICODE

LEMMATISER

GATE

DOCUMENT

CLASS SEQUENCE
CHARACTER

RULES

ANTLR LEXICAL
ANALYSIS GRAMMAR

DOCUMENT
FORMAT

TAGGER
HIPHEP LISTS

BRILL RULES
LEXICON

FS GAZETTEER
LOOKUP LISTS

SENTENCE
SPLITTER

SEMANTIC
TAGGER

MATCHER
NAME

BUCHART
PARSER

DISINT

JAPE FST
GRAMMAR
CASCADE

AVM PROLOG
GRAMMAR

XI/PROLOG
WM

EXTRACTION RULES

GATE DOCUMENT
XML DUMP OF

NE/TE/TR/ST ANNOTATIONS

INPUT

URL OR TEXT

PRs

LRs

SENTENCE SPLITTER
GRAMMAR

OUTPUT

NAME MATCH
RULES

Figure 3: English Information Extraction System Architecture

cally transformed by a text structure analyser into a GATE
document: a structure containing the “text” of the original
input and a number of annotation sets. Each component
in the pipeline adds new information to the document in
the form of annotations. An annotation has a type, a pair
of offsets, and a set of feature-values that allow encoding
orthographic, lexical, syntactic, and semantic information.

The finite state components we have developed are:

� Unicode Tokeniser: it is a finite state transducer
based on regular expressions over Unicode Character
Classes that splits the text into very simple tokens such
as numbers, punctuation and words of different types;

� Gazetteer Lookup process: it identifies and classifies
key words related to particular entity types in a par-
ticular domain. For MUMIS, we have collected infor-
mation in order to identify players, trainers, referees,
time markers, as well as stadiums, and sites. Features
such as the affiliation and the position of each player in
the Championships are particularly important for dis-
course interpretation (e.g., the team affiliation and po-
sition helps during entity coreference).

� Semantic Tagging: it identifies and classifies more
complex sequences of tokens in the source document.
We use JAPE (Java Annotation Pattern Engine) (Cun-
ningham et al., 2002), a pattern-matching engine im-
plemented in Java and based on the Common Pattern
Specification Language (Appelt, 1996), to identify and
annotate regular expressions over annotations. JAPE
grammars are sets of rules which act on annotations

assigned in earlier phases, in order to produce anno-
tated entities. The rules are separated into two parts:
the left hand side (LHS) of the rule performs pattern-
matching; the right hand side (RHS) of the rule de-
scribes the annotation to be assigned. On the LHS, the
pattern is described in terms of the annotations already
assigned while the RHS of the rule contains informa-
tion about the annotation to be produced, including
attributes and their corresponding values. Distinctive
characteristics of JAPE grammars are the possibility
of specifying context for the pattern, control strategies
and priority for triggering of the rules, and Java code
that is executed whenever the LHS of the rule matches
the annotations allowing for a deeper level of anal-
ysis. JAPE uses a compiler that translates grammar
rules into Java objects that target the GATE API (and
a regular expression library). JAPE grammars were
also used to develop the rule-based sentence splitter
used in the system.

� Orthographic Name Matcher: it looks for association
between named entities by verifying a set of rules
(e.g., “D. Beckham” and “David Beckham”). The in-
formation produced by this module is used during dis-
course interpretation.

The finite state step is essential to identify as early as
possible typical expressions and domain jargon that can
be semantically interpreted without relying on full parsing
or semantic interpretation. For example, an expression
like “van der Sar (Westerveld 65)” indicates a substitution,
and can be identified with gazetteer look up and a regular

Figure 4: MUMIS IE System with the GATE User Interface

grammar.

The JAPE rule bellow allows to identify such construc-
tion:

Rule: Substitute2
(
{Person.kind == player}
(SPACE)
{Token.string == "("}
{Person.kind == player}
(SPACE)
{Token.kind == number}
{Token.string == ")"}
(SPACE)?
):sub

-->

:sub.Substitution =
{rule = Substitute2}

The LHS is a regular pattern over annotations “Token”
(produced by the tokeniser) and “Person” (produced by
other JAPE rules). The rule also refers to SPACE that is a
macro we have used in order to specify space tokens. The
RHS specifies a “Substitution” annotation type to be added
into the annotation set. Further processing using Java code
in JAPE is done by other grammar rules to extract semantic
features from the annotation produced by this rule (the
player that goes in “Westerveld”, the player that goes out
“van der Sar”, and the time of the event “65”).

The GATE GUI is shown in Figure 4. It shows the
document under analysis and the annotations produced by

the system.

2.1. Evaluation of the Semantic Tagger

We evaluated the performance of our semantic tagger in
the named entity recognition task using precision and recall
(Firmin and Chrzanowski, 1999). We used GATE’s auto-
mated precision and recall evaluation tool AnnotationDiff
(Cunningham et al., 2002). As our training corpus refers
to matches where ‘England’, ‘Germany’ or ‘Holland’
participated, we are relying on unseen texts reporting other
events to evaluate our named entity recognition component.
We have manually annotated with category ‘Person’, the
set of all BBC reports about matches of the Group B of
the Euro2000 championships: these constitute our gold
standard for evaluation. In group B none of the above
mentioned countries participated. Our semantic tagging
component for the ‘Person’ (e.g., players) category was
measured at 91% precision, 76% recall, and a combined
F-measure of 82% (when precision and recall are of equall
weight). This compares favourably with results obtained
using the ‘default’ GATE named entity recognition system
that also uses gazetteer and grammar rules. The baseline
system obtained 91% precision, 30% recall, and 45%
F-measure.

3. Parsing
Ticker reports are in essence dynamic texts: a verbal

account of events over time stamps, and this fact is taken
into account during analysis: scores change as well as the
players leaving or entering the game. These texts also have
a specific text structure that we take into account when
parsing. We have developed a simple pre-processing step

that identifies ‘ticker header’, where information about lists
of players and the result of the game is usually stated, and
‘ticker sections’ grouping together sentences describing
events under single time stamps. These sections are dif-
ferent from traditional paragraphs because they can either
span multiple paragraphs or even a paragraph can contain
multiple ticker sections. Other textual sources (e.g., match
reports and comments) do not provide such rich temporal
information, nevertheless they contain complete event
descriptions (“David Beckham - a muted force in attack -
was shown a yellow card for a late challenge on Kirsten”).
March reports and comments have paragraph structure that
is identified by the GATE document structure analyser.

Part of speech tagging is done with an implementation
of the “independence and commitment” approach to POS
tagging (Hepple, 2000), based on (Brill, 1995): the novelty
of this approach is the fact that no rule interaction is
considered, and so the speed of the learning process is
improved while the tagging accuracy is maintained. For
MUMIS, we have enriched the default lexicon produced by
the learning step with our own vocabulary. The lexicon of
the domain was obtained from the corpus and appropriate
part of speech tags were produced with the help of the
CELEX database (Burnage, 1990).

We have also implemented a rule-based lemmatiser
that produces for each noun and verb in the input text an
affix and root. The root is the entry of the word in the
dictionary and the affix is a normalised form that represents
the word ending (“ed” for all past participle forms and
“s” for plurals). The external lemmatiser program is
implemented as a set of regular expressions specified in
flex and translated into C code. These patterns represent
both morphological analyses of the input and exception
rules. The exception rules were derived from WordNet
(Miller, 1995), but also revised by the analysis of a number
of English corpora. In this sense, the lemmatisation process
is domain independent.

We are using an implementation of the Bottom-up chart
parsing described in (Gazdar and Mellish, 1989), enriched
with semantic rules that construct a naive semantic of each
sentence in first order logical form. The parser is complete
in the sense that every analysis licensed by the grammar
is produced, though there is a mechanism to control this.
On completion a “best parse” algorithm is run to select a
single analysis of the sentence, which may be partial if no
tree spanning the whole sentence can be constructed.

The parser uses two grammars: the first is a domain
dependent semantic grammar used to produce logical
forms for the entities of the football domain; the second is
a context-free phrasal grammar of English enriched with
features and values that has been used in many Information
Extraction projects (Cunningham et al., 1999). It consists
of a sequence of sub-grammars for: noun phrases (NP),
verb phrases (VP), prepositional phrases (PP), relative
phrases(R) and sentences (S).

The semantic rules produce unary predicates for entities
and events (e.g., player(e1), save(e2)) and binary predi-
cates for properties (e.g. lsubj(e1,e2)). Constants (e.g., � � ,
���) are used to represent entity and event identifiers. First
order predicate names are: (i) the citation forms obtained
during lemmatisation; (ii) forms used to code syntactic
information (e.g. �����
	�� for the logical subject of a given
verb); or (iii) specific predicate names being used for
domain modelling (e.g., player of). Instantiated values of
properties attached to events are used as the slot fillers in
the template representation the system is producing (e.g.,
the name of the scorer in a goal event).

As an illustration, the semantic representation for the
sentence “41 mins: Beckham is shown a yellow card for
retaliating on Ulf Kirsten seconds after he is denied a
free-kick” is shown in Figure 5. Note that while some
information in the semantic representation is explicit
in the input sentence (e.g., the verb “retaliating” used
to produce the predicate
����������������) other information
is domain dependent and semantic in nature (e.g., the
predicate ����������
). This latter information is produced by
the semantic grammar.

The parser is written in SICStus Prolog (version 3.6.8).
In order to call the parser and to obtain the output back we
rely on Jasper, a bi-directional interface between Java and
SICStus (SIC, 2000).

4. Discourse Interpretation
The discourse interpreter is based on a World Model

representing the ontological (or hierarchical) knowledge
about a particular domain. The interpreter works by map-
ping the information produced by the parsing and semantic
interpretation into an evolving Discourse Model of the
input text. The World Model contains rules allowing the
deduction of new knowledge from the “explicit” informa-
tion found on the text, and also the connection between new
and old instances mentioned in the input text (co reference).

Based on the corpus study we have specified a world
model of the football domain. We have adopted the XI
Knowledge Representation Language (Gaizauskas and
Humphreys, 1996b), a formalism that allows the user to
code and operate with symbolic knowledge. XI is compiled
into Prolog, making it possible to mix procedural knowl-
edge with the basic declarative formalism’s constructs. We
have chosen XI because it has been proved successful in
other domains for information extraction (Humphreys et
al., 1998; Humphreys et al., 2000).

4.1. Knowledge Coding

XI provides basic language construct to specify
hierarchical relations. Individuals, classes of individu-
als, inclusion relations between classes of individuals
and multiple inheritance hierarchies can be defined and
attribute-values may be associated with classes or with
individuals.

time stamp(e416) � time count(e416,’41’) � player(e419) �
name(e419,’Beckham’) � player team name(e419,’England’) �
midfielder(e419) � be(e418) � time(e418,present) � aspect(e418,simple) �
voice(e418,active) � adj(e418,e421) � adj(e421,shown) � lsubj(e418,e419) �
card(e422) � number(e422,sing) � adj(e422,yellow) � det(e422,a) �
retaliate(e423) � time(e423,none) � aspect(e423,simple) � voice(e423,active) �
player(e425) � name(e425,’Ulf Kirsten’) � player team name(e425,’Germany’) �
forward(e425) ��� � �

Figure 5: Partial Semantic Output

In XI, classes are represented as unary predicates and
individuals as atoms. An attribute or property is a binary
predicate, the first argument of which is the class/individual
the attribute is assigned to and the second being the value
of this attribute. The value can be a fixed term or a term
that became instantiated in appropriate situations when
new knowledge is deduced during processing. Figure 6
gives an overview of our ontology of the football domain.

Clauses
�����	�

are used to specify ‘inclusion’
relations (all

�
is an

�
). Clauses
���
�� are used to

specify ‘is a’ relations between individuals and classes
(
 is a �). Operators � and & indicate disjunction and
conjunction respectively. In addition to the declarative
operators, a number of constructs can be used during
deduction:

�����
is used to verify class inclusion (every�

is a
�

),
� � �

is used to verify if
�

‘is a’
�

, and� ��� �
�� ����
������ is used to verify if
 ‘has property’ �
(also, ���� �� �
�� ����
������ can be used to verify properties but
only at the instance level). Properties can be attached to
individuals or classes conditionally on the actual state of
the world. Conditional properties are specified with the
“if” operator (!"
).

Properties of individuals and classes are specified
through the �
�� � � predicate in the form:

�
�� � �#�$� ����� �&%
'�� �)(��* � ���)�,+ �
�� ����
 �������.-/�
where �
�� ����
 ������� can be unconditional or conditional

on the current state of the world.

We have created our world model by defining the three
types of properties required by the discourse interpreter:

(i) rules that prevent entity coreference (e.g., a player
who is playing cannot corefer with a player who is no
longer playing); these are specified using the reserved
predicate �������)��0 � ;

(ii) rules that allow the modification of the discourse
model with presuppositions events and entities have
(e.g., a substitution event presupposes a player that
is playing and a player that is on the bench); these
are compiled using the reserved predicate name
�
�������� �1� ��� ���*�2� ,

(iii) rules allowing the modification of the discourse model
with consequences for events and entities (e.g., a goal

event has as consequence a change in the state of the
game); these are defined using the reserved predicate
0.�2� ���23 � �,��0 � . These rules also allow for completing
the partial parse that the parsing process might be pro-
duced.

More than 300 rules for discourse interpretation have
been manually created for the MUMIS project.

Knowledge processing is done in the following way:

1. The naive semantics of each sentence produced during
parsing is mapped into an evolving discourse model of
the text. Each element in the semantics is mapped into
a node in the hierarchy by consulting a conceptual dic-
tionary developed from the multilingual-lexicon de-
veloped for MUMIS. Ambiguous predicates (e.g. goal
for the event “to score a goal” and goal for the object
in the pitch “the two goal-posts and the crossbar”) are
dealt in with discourse interpretation rules that take
into account the context of the predicate. Predicates
not found in the dictionary are mapped into objects
or events depending on their syntactic category (noun
or verb). Attributes are associated to instances using
�
�� � � constructs.

2. Presuppositions are added to the model. This causes
the creation of new hypothesised instances.

3. Object coreference is applied to solve instances pro-
duced by the parser or by presupposition rules. The
coreference mechanism will try to solve a hypothesis
using the current sentence, any unresolved hypothesis
in this step will be removed from the model.

4. Consequences are added to the model, any hypotheses
will remain active because they might be solved later
as new information is processed.

5. Event coreference is applied mainly to merge partially
instantiated events.

We model the dynamic nature of tickers by maintaining
the “dynamic state of the game”, a logical structure that
records among other elements: the teams playing, the time
stamp under consideration, the players participating in
the game, the final score, and the score at particular time
stamps. This structure is the basis for many of the deduc-
tions the system has to make: for example when the system

entity(X)
���

object(X) � event(X) � attribute(X)
object(X)

���
time(X) � person(X) � soccer artifact(X)

person(X)
���

player(X) � official(X) � player collective(X)
player(X)

���
goalkeeper(X) � midfielder(X) � � � �

soccer artifact(X)
���

ball(X) � goalmouth(X) � goalpost(X) � crossbar(X)
event(X)

���
substitution event(X) � goal event(X) � save event(X) � red card event(X) �

yellow card event(X) � shot on goal event(X) � � � �
attribute(X)

���
functional(X) � relational(X)

player of ��
 functional(X)
trainer of ��
 functional(X)

Figure 6: Partial Ontology for the Football Domain

needs to find the time of a particular event or when it needs
to decide which team scored the goal. The dynamic state
of the game is updated as the text is processed sentence by
sentence. Note that in tickers, expressions like “England
2 - 1 Germany” clearly indicate the state of the game,
nevertheless, out of context they do not provide enough
information about the team that scored the goal, actually
the previous state of the game could be “England 1 - 1
Germany” or “England 2 - 0 Germany”. The “dynamic
state of the game” provides the information or context to
disambiguate. For match reports and comments discourse
interpretation rules hipothesise temporal information that
is solved by the coreference resolution algorithm.

Event and entity coreference is the basic mechanism
that allows the system to fill in properties for each event in
the domain. Coreference is an unification-based process
that is based on: (i) the notion of distance between nodes
in the ontological hierarchy; (ii) a measure of similarity
between entities and events computed using the values of
associated properties (for example two player can be made
coreferent if they were found similar by the name matcher
process); and (iii) rules that constrain coreference. We use
the basic coreference algorithm described in (Gaizauskas
and Humphreys, 1996a). It is a general algorithm that
requires careful coding of the semantic properties of events
and entities of the domain. We approach coreference reso-
lution in a symbolic way by specifying a number of rules
that constrain coreference. Coreference rules are mainly
negative in the sense that they specify when entities should
not corefer. A typical case is when two players participate
in the same event, the two players should be different.
Another typical case would be an event whose semantics
indicate two players of the same team, so the coreference
mechanism should avoid coreference between players that
participate in that event if they are from different teams.
The rule below states that PLAYER1 and PLAYER2 are
different if they participate on the same GOAL event.

�
�� � �#� ����������
 � PLAYER1 � �,+
�� �������)��0 �.� PLAYER1 � PLAYER2 � !"

GOAL � � ����� �,(��,�
�.� � �� ��� �
�� ��� GOAL ������������
 � � GOAL � PLAYER1 � � �� ��� �
�� ��� GOAL ������������
 �"� GOAL � PLAYER2 � � �
-/� �

Presuppositions allow hypothesis of entities essential to
complete the semantics of a particular event. A typical case
is when the parser is unable to find the logical subject or
logical object of a domain verb, in which case they need to
be presupposed and passed to the discourse interpreter to
complete the meaning of the domain verb. Presuppositions
are hypotheses local to the sentence under analysis. The
rule below says that if the concept “substitution” is found,
then presuppose a “substitution” event and hypothesise two
players where the second player is introduced by preposi-
tion ‘for.’

�
�� � �#�����
	 ����� �������*�2� � SUBS � �,+
� �
�������� �1� ��� ���*�2� � SUBS �
+ ���
	 ����� �������*�2� �,(��,�
�.��� � ������������
 � PLAYER1 � �
����������
 � PLAYER2 � � ��� ��� � TEAM � �
����������
 ��� � PLAYER1 � TEAM � �
����������
 ��� � PLAYER2 � TEAM � �
����������
 � ��� � PLAYER1 � �
����������
 �"��� � PLAYER2 �)-/� !"
� ��� �
�� ��� PLAYER2 ��� �
 � FOR � PLAYER2 � � �
-/�

We also use presuppositions to dealt with ambiguous
items.

Consequences also allow hypothesis of entities and
events but in a more general way, because they can be in-
stantiated with entities coming from remote parts of the
document or not yet processed. The rule below indi-
cates that �
	 ��� ��
 plays for a given ��� ��� with name� ��� � (where

� ��� � is knowledge coming from the
gazetteer look-up step on the finite state machinery).

�
�� � �#� ����������
 � PLAYER � �,+
��0.�2� ���23 � �,��0 �&� PLAYER �
+ ��� ��� � TEAM � ������������
 ��� � PLAYER � TEAM � �
� ��� �&� TEAM � NAME �)-/� !"
� ��� �
�� ��� PLAYER � ��� ��� � ��� �&� PLAYER � NAME � � �
-/�
Event coreference is carried out to merge partially

instantiated events. Consider for example the text “Goal!
England 1 - 0 Germany”: Both expressions “Goal!” and
“England 1 - 0 Germany”, are used to indicate a goal
event, if two goal events are deduced from the text, the
event coreference mechanism should merge them using
constraints such as the time stamp of the events and the

participating players and teams. This is carried out with
specific Prolog code.

A template extraction algorithm was implemented that
explores the discourse model, extracting and sequencing in
temporal order instances of the 31 event types. For each
event instance, values from properties attached to them in
the discourse model are extracted and used to instantiate
event templates. A template writing algorithm is used to
read the list of templates and produce XML output.

5. Conclusions and Future Work
In this paper, we have presented our approach to in-

formation extraction from football reports for the MUMIS
project. We have been successful in the integration of
two complementary paradigms: finite state machinery
implemented in Java with full syntactic analysis and dis-
course interpretation implemented in Prolog. The system
is complete and operative and we are in the process of
producing complete XML annotations for the full corpus.

A stimulating aspect of this project was the domain
modelling of a complex event such as a football match
where 31 events, their participants and relationships need
to be accurately identified in plain English texts. This is a
challenging situation for information extraction.

Our work in progress involves formal evaluation of the
information extraction task that is being carried out using
gold standards produced by professional annotators. Future
work will address information extraction from transcribed
spoken commentaries.

Acknowledgements
We would like to thank Rob Gaizauskas and George

Demetriou for their help with the discourse interpreter.
We also thank Wim Peters for his help with the CELEX
database. This work is funded by the EC’s 5th Framework
HLT programme under grant number IST-1999-10651.

6. References
D.E. Appelt. 1996. The Common Pattern Specification

Language. Technical report, SRI International, Artificial
Intelligence Center.

D. Appelt. 1999. An Introduction to Information Extrac-
tion. Artificial Intelligence Communications, 12(3):161–
172.

Eric Brill. 1995. Transformation-based error-driven learn-
ing and natural language processing: A case study in part
of speech tagging. Computational Linguistics.

G. Burnage. 1990. CELEX: A Guide for users. Centre for
Lexical Information, Nijmegen.

H. Cunningham, R.G. Gaizauskas, K. Humphreys, and
Y. Wilks. 1999. Experience with a Language Engineer-
ing Architecture: Three Years of GATE. In Proceedings
of the AISB’99 Workshop on Reference Architectures and
Data Standards for NLP, Edinburgh, April. The Society
for the Study of Artificial Intelligence and Simulation of
Behaviour.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan,
and C. Ursu. 2002. The GATE User Guide.
http://gate.ac.uk/.

H. Cunningham. 1999. Information Extraction: a User
Guide (revised version). Research Memorandum CS–
99–07, Department of Computer Science, University of
Sheffield, May.

T. Declerck, P. Wittenburg, and H. Cunningham. 2001.
The Automatic Generation of Formal Annotations
in a Multimedia Indexing and Searching Environ-
ment. In Workshop on Human Language Technol-
ogy and Knowledge Management, Toulouse, France.
http://www.elsnet.org/acl2001-hlt+km.html.

T. Firmin and M.J. Chrzanowski. 1999. An Evaluation of
Automatic Text Summarization Systems. In I. Mani and
M.T. Maybury, editors, Advances in Automatic Text Sum-
marization, pages 325–336. The MIT Press.

R. Gaizauskas and K. Humphreys. 1996a. Quantitive Eval-
uation of Coreference Algorithms in an Information Ex-
traction System. In DAARC96 - Discourse Anaphora
and Anaphor Resolution Colloquium. Lancaster Univer-
sity.

R. Gaizauskas and K. Humphreys. 1996b. XI: A Simple
Prolog-based Language for Cross-Classification and In-
hetotance. In Proceedings of the 7th International Con-
ference in Artificial Intelligence: Methodology, Systems,
Applications, pages 86–95, Sozopol, Bulgaria.

R. Gaizauskas and Y. Wilks. 1998. Information Extraction:
Beyond Document Retrieval. Journal of Documentation,
54(1):70–105.

G. Gazdar and C. Mellish. 1989. Natural Language Pro-
cessing in Prolog: An Introduction to Computational
Linguistics. Addison-Wesley Publishing Company.

Mark Hepple. 2000. Independence and commitment: As-
sumptions for rapid training and execution of rule-based
POS taggers. In Proceedings of the 38th Annual Meeting
of the Association for Computational Linguistics (ACL-
2000), Hong Kong, October.

K. Humphreys, R. Gaizauskas, S. Azzam, C. Huyck,
B. Mitchell, H. Cunningham, and Y. Wilks.
1998. Description of the LaSIE system as used
for MUC-7. In Proceedings of the Seventh
Message Understanding Conference (MUC-7).
http://www.itl.nist.gov/iaui/894.02/-

related projects/muc/index.html.
K. Humphreys, G. Demetriou, and R. Gaizauskas. 2000.

Two applications of information extraction to biological
science journal articles: Enzyme interactions and protein
structures. In Proc. of Pacific Symposium on Biocomput-
ing (PSB-2000), Honolulu, Hawaii.

G. Miller. 1995. WordNet: a Lexical Database for English.
Communications of the ACM, Volume 38(Number 11),
November.

M. Scott. 1996. WordSmith Tools Manual. Oxford Univer-
sity Press.

SICSTUS. Intelligent Systems Laboratory. Swedish Insti-
tute of Computer Science, PO Box 1263. SE-164 29
Kista, Sweden, 2000. SICStus Prolog User’s Manual,
May.

	669: 669
	670: 670
	671: 671
	672: 672
	673: 673
	674: 674
	675: 675
	676: 676

