
Annotating the functional chunks in Chinese sentences

Qiang Zhou*, Elliott Franco Drabek*, Fuji Ren
�

* State Key Laboratory of Intelligent Technology and Systems
Dept. of Computer Science and Technology,

Tsinghua University, Beijing 100084, P. R. China
zhouq@s1000e.cs.tsinghua.edu.cn, elliott_drabek@ACM.org1

�
Dept. of Information Science and Intelligent Systems

Faculty of Engineering, The University of Tokushima
2-1 Minamijosanjima, Tokushima 770-8506, Japan

ren@is.tokushima-u.ac.jp

Abstract

The paper proposed a new syntactic annotation scheme --- functional chunk, which tried to represent information about grammatical
relations between sentence-level predicates and their arguments. Under this scheme, we built a Chinese chunk bank with about two
million Chinese characters, and developed some learned models for automatically annotating fresh text with functional chunks. We
also proposed a two-stages approach to build Chinese tree bank on the top of chunk bank, and gave some experimental results of
chunk-based syntactic parser to show the advantage of functional chunk for parsing performance increase. All these work lays good
foundations for further research project to build a large scale Chinese tree bank.

1 Elliott F. Drabek has been a Ph.D. candidate in John Hopkins University since Sept. 2001.

1. Introduction
Corpus annotation is a good way to acquire the

knowledge of language performance in real texts. How to
represent that knowledge in the most informative and
efficient way is its fundamental question. There are two
extremes among the syntactic annotating schemes now.
The simplest way is to assign the words with part-of-
speech tags, i.e. categories designed to reflect the syntactic
behavior of words. Two typical examples are Brown and
LOB corpus in English. This is a good start, and many
efficient algorithms have been proposed to automatically
assign the correct POS tags with very high precision and
recall. But intuition and plentiful experiments tell us that
this is not enough, and the idiosyncrasies of individual
words and their syntactic relations must be considered.
The most complex way is to tag the complete syntactic
trees in sentences. A typical example is Penn tree bank
(Marcus et al., 1993). Although they can give detailed
syntactic information descriptions of the real text
sentences, the cost to build a large-scale tree bank is very
expansive.

In the resent years, many researchers have devoted to
design some better annotation schemes with suitable
trade-off between annotation cost and description
capability. Abney’s chunk parsing scheme is a good
example among them. He defined a chunk essentially as
the continuous set of words belonging to a single s-
projection, or the domain of a single semantic head.
(Abney, 1991). Based on this scheme, CONLL’2000
shared chunk task built an unified training and test set for
partial parsing in English (Sang and Buchholz, 2000). The
text of the corpus was taken from the Wall Street Journal
portion of the Penn Treebank, and the chunks were
extracted automatically from the original syntax trees,
using straightforward heuristic rules. The quantity of the
chunk annotated text amounts to approximately three

hundred thousand words, with an average chunk length of
two words. Many automatic partial parsers proposed in the
conference showed good parsing performance. But it’ s
still very difficult to grasp the overall structure of a
sentence only based on these chunk information.

The paper proposed a new syntactic annotation scheme
--- functional chunk, which tried to represent information
about grammatical relations between sentence-level
predicates and their arguments. Among this scheme, each
sentence can be exhaustively partitioned into a series of
non-nested, non-overlapping units, labeled with functional
tags, such as subject, object, predicate, complement and so
on, while any structural relations within these chunks are
left implicit. Compared with Abney’s chunk, the novelty
of functional chunk appears in the definition of what
constitutes a chunk. Abney’s chunks are defined strictly
from the bottom up; a unit qualifies as a chunk based on
its internal make-up, regardless of any changes in the
larger context, and its category is primarily determined by
the category of its head word. By contrast, the functional
chunks are defined strictly from the top down; a unit
qualifies as a chunk based on its position in the larger
context, regardless of its internal make-up, and its
category is primarily determined by the grammatical
relation between it and the predicate. This top-down
characteristic gives more detailed information to grasp the
overall structure of a sentence than Abney’s chunk.

Under this scheme, we built a Chinese chunk bank
with about two million Chinese characters, and developed
some learned models for automatically annotating fresh
text with functional chunks. We also proposed a two-
stages approach to build Chinese tree bank on the top of
chunk bank, and gave some experimental results of chunk-
based syntactic parser to show the advantage of functional
chunk for parsing performance increase. All these work
lays good foundations for further research project to build
a large scale Chinese tree bank.

The paper is organized as follows. Section 2 gives
detailed definition and description of our functional chunk
scheme, and compares it with other annotating systems.
Section 3 introduces the functional chunk annotation
experiment on a Chinese balanced corpus with two
million Chinese characters, including the annotation
stylebook, processing procedure, and some detailed
statistics of the functional chunk bank. Section 4 describes
some of our work in developing learned models for
automatically annotating fresh text according to this
scheme. Section 5 proposes a two-stages approach to build
Chinese tree bank on the top of chunk bank, and gives
some experimental results of chunk-based syntactic parser
to show the advantage of functional chunk for parsing
performance increase. The final section 6 is a conclusion.

2. Functional Chunk Scheme
The functional chunk scheme we proposed in this

section tries to represent information about grammatical
relations between sentence-level predicates and their
arguments. Under the annotation framework, each
sentence is exhaustively partitioned into a series of non-
nested, non-overlapping labeled units, or functional
chunks, while any structural relations within or between
these chunks are left implicit.

In the typical case, each clause is divided into one
chunk for the main verb, one chunk for each of its
argument constituents and several chunks for the adjuncts
of the main verb or some elements present but not
dependent on the main verb, such as exclamations or
vocative phrases. In the Chinese language, the arguments
of a verbal predicate can be expressed as subject, object,
complements, or some special adverbial adjuncts(most of
them are prepositional phrases with case flags). They are
formed as the basic syntactic patterns of Chinese
sentences. Table 1 outlined all eight functional chunks
used in our tagset, where chunk ‘J’ , which we call as
‘JianYu’ in Chinese, describes the special linguistic
phenomenon in Chinese serial verb constructions, where
the object of a pre-verb can be combined with the subject
of its post-verb. Chunk ‘T’ describes some elements
present but not dependent to any other constituent in the
sentence, such as exclamations or vocative phrases. An
annotated example sentence is shown in as follows:

[S � /m
�

/q ��� /v ��� /v � /u 	�
 /n] [D � /d] [P��
/v � /p] [� /r � /n ��� /s] � /w2

Some unforgettable events from the past once again
floated in front of my eyes.

In most cases, the set of possible chunk sequences is
tightly constrained, so that heuristic rules which work on
the most common cases should be able to recover almost
all grammatical relations. The following regular
expression embraces about ninety percent of the observed
sequences in the Chinese sentences (ignoring independent
constituents):

D* (S D*)? P O? (D* ([JS] D*)? P [CO]?)* Y?

2 The part-of-speech tags used in this sentence are briefly
describes as follows: m--numeral, q--classifier, v--verb,
u-auxiliary word, n--noun, d-adverb, p-preposition, s—
situation noun, w--punctuation.

In general, this means that each sentence is made up of
a series of clauses, possibly followed by a modal particle.
Each clause contains one predicate (P) chunk. Preceding
the predicate there may be some number of adverbial (D)
chunks, possibly with one subject (S) chunk among them.
Following the predicate, there may be one direct object (O)
chunk or one raised object (J) chunk, one indirect object
(O) chunk or one complement (C) chunk.

Table 1. The tagset of our functional chunks

Chunk Tag Basic Function Description
S Subject
P Predicate
O Object
J Raised object
D Adverbial adjunct
C Complement
T Independent constituent
Y Modal particle

In summary, the functional chunk annotation builds

basic links between functional structure (Kaplan and
Bresnan, 1982) and argument structure (Alsina, 1996).
Although there is no explicit annotation of connections
between specific predicates and specific arguments, that
information should be largely recoverable from the
sequence of chunk categories. As we know, it is the first
research work to describe the argument structure through
syntactic function annotation.

In fact, there are several other annotation scheme to
describe argument structure. After finishing the large-
scale corpus annotation of skeleton syntactic tree in
English texts (Marcus et al., 1993), the Penn Treebank has
implemented a new syntactic annotation scheme (Marcus
et al., 1994), designed to highlight aspects of predicate-
argument structure. Through a four-steps editing approach
to the original Penn Treebank, a bank of predicate-
argument structures can be automatically extracted and
built for parser evaluation and other NLP applications. It
is the research work to describe the argument structure
through predicate-argument annotation itself.

Another interested project is FrameNet developed in
UC, Berkeley (Baker et al., 1998). Its primary aim is to
produce frame-semantic descriptions of lexical items
through the construction of a large-scale semantically
tagged corpus. Based on frame semantics proposed by
Fillmore(1982), they associated a word with a frame,
chose a list of frame elements (FEs) for the frame, looked
at sentences which showed a use of the word in the
appropriate sense, and selected and labeled those
constituents in those sentences which instantiated
concepts from the frame. The constituents identified as
FEs were then to be classified (automatically if possible)
as to their phrase type (PP, etc.) and in respect to their
grammatical function (Object, etc.). Therefore, a lexicon
with full descriptions of the frame-semantic and syntactic
combinational properties of the words can be constructed
automatically from the set of annotations (Fillmore et al.,
2001). It is the research work to describe the argument
structure through semantic role annotation.

3. Chunk Annotation Experiments
In March 2000, a chunk bank project work began to

start. It aims to build a large-scale Chinese chunk bank
(THChunk), conceived as a broadly useful linguistic
resource for Chinese linguistics and language engineering.
The project ended in June 2001. About two million
Chinese characters of text were manually annotated with
functional chunks. We believe that the particular
combination form and content of the annotation used in
the THChunk is relatively novel.

3.1. Basic corpus
The THChunk forms a layer of chunk annotation on

top of the original ThCorp, a corpus containing two
million Chinese characters of text drawn from a balanced
collection of journalistic, literary, academic, and other
documents. All of the material has been hand corrected
after processing of sentence-split, word segmentation and
part-of-speech tagging by automatic tools. Table 2 lists
some basis statistics of ThCorp.

Table 2 Basic statistics of ThCorp

Text Type File
Sum

Sent.
Sum

Word
Sum

Char.
Sum

Academic 29 9846 273017 447288
Journal 376 16921 427649 674566
Literary 295 38258 740445 1018839
Others 258 4302 88452 144027
Total 958 69327 1529563 2284720

3.2. Annotation stylebook
To design a detailed annotation stylebook is a

prerequisite for high levels of inter-annotator agreement.
But the linguistic phenomena in real texts are complicated
and ticklish, it is very difficult to comprise all of them
completely in a stylebook at first. Substantially, it is an
incremental process for improvement. At first, we
summarized some basic principles, such as how to
separate a complete sentence into several clauses, how to
identify and annotate different functional chunks in a
clause, etc. Then, some detailed rules and examples can be
added into the stylebook to describe the special linguistic
phenomena encountered during the annotation task. At
last, a better stylebook covering almost all linguistic
phenomena in our current ThCorp corpus has been
completed.

Some detailed information of the stylebook can found
in (Zhou, 2000). It is our hope that such a stylebook will
also alleviate much of the need for extensive cross-talk
between different annotators, thereby increasing
throughput as well.

3.3. Annotating procedure
Our current chunk bank was built through manual

annotation and proofreading. To improve the annotating
efficiency, we designed some special macro commands in
Microsoft’s WORD so that each functional chunk can be
tagged through one-key input. Our tentative count shows
that original annotating speed for an annotator is about
1200 words per work hour. As they are familiar with the
annotation stylebook and processing procedure deeper and

deeper, the annotation speed will gradually increase and
reach about 2400 words per work hour after 1 or 2 months.

We also designed two-levels checking system to
guarantee the quality of the final annotating results. Firstly,
we developed an automatic checking program based on
the basic principles and rules listed in chunk stylebook.
Most wrong chunks can be checked out and provided to
annotator for further conformation or modification.
Secondly, We checked the final annotating results through
random sampling, found and modified the chunk errors
left, until the error ratio is below 0.5%.

3.4. Basic statistics of chunk bank
Table 3 lists some basic statistics of current chunk

bank, including the sum of different functional chunks, the
sum of words among them, and their average chunk length
(ACL). We divided these chunks into 4 types, according
to the different word sum(WSum) among them: 1) WSum
< 5; 2) 5<=WSum<10; 3) 10<=WSum<15; 4) 15<=WSum.
Table 4 shows the distributional data for these 4 types of
different chunks.

Table 3 Basic statistics of different functional chunks

Chunk
Type

Chunk
Sum

Word
Sum

Average
Chunk Length

S 99121 251041 2.53
P 179605 236104 1.31
O 109362 452211 4.13
J 5715 12338 2.16
D 156000 321254 2.06
C 3113 6431 2.07
T 5649 14414 2.55
Y 12111 12225 1.01

Total 570676 1306018 2.29

From these two tables, some distributional

characteristics of functional chunks in Chinese text can be
summarized as follows:

1) The ‘Y’ chunk was defined as one or more modal
particles at the end of a sentence. But few sentences in
Chinese text have two or more final modal particles. So it
has the minimal ACL (1.01) among all chunks.

2) Most of the predicate (P) chunks in Chinese
sentences are verbs, adjectives or phrasal verbs, whose
forms have been strictly defined in our annotation
stylebook. They have the more regular distributional
features (ACL=1.31 and the word sum among more than
99% ‘P’ chunk is less than 5) for automatic identification.

3) The ACL of the ‘D’ chunk and ‘C’ chunk is about 2,
and the word sum among more than 90% of these chunks
is less than 5. These cases indicate that there are few
complex adverbials and complements in Chinese real text.
Some obvious boundary flags of them provide important
heuristic features for automatic identification.

4) The ‘S’ and ‘J’ chunk have larger ACL (2.53 and
2.16), and the ‘O’ chunk has the maximum ACL (4.13).
The main reason is that most of them contain an entire
restrictive clause. They bring in the most difficulty for
automatic parsing models.

Table 4 Word length distribution of different functional chunks

Chunk
Type

Chunk
Sum

WSum �
[0,5)

Ratio
(%)

WSum �
[5,10)

Ratio
(%)

WSum �
[10,15)

Ratio
(%)

WSum �
[15,�]

Ratio
(%)

S 99121 85208 85.96 11023 11.12 1939 1.96 951 0.96
P 179605 178545 99.41 862 0.48 144 0.08 54 0.03
O 109362 75745 69.26 24569 22.47 5888 5.38 3160 2.89
J 5715 5134 89.83 482 8.43 70 1.22 29 0.51
D 156000 141060 90.42 11863 7.60 2151 1.38 926 0.60
C 3113 2857 91.78 219 7.04 31 1.00 6 0.19
T 5649 4984 88.23 388 6.87 136 2.41 141 2.49
Y 12111 12111 100.00 0 0.00 0 0.00 0 0.00

Total 570676 505644 88.60 49406 8.66 10359 1.82 5267 0.92

4. Parsing models
The aspect of the chunking system which likely poses

the greatest difficulty for automatic annotation is the
potentially unbounded length and internal complexity of
the chunks. The top-down definition implies that the status
of a constituent depends only on its context, and not on its
content, so that a chunk may encompass arbitrarily many
modifiers within itself. The annotator must recognize
these as belonging to the same unit, even though under
other circumstances exactly the same constructs might
need to be separated and labeled as individual chunks
themselves. This would seem to pose the most acute
difficulty in the common circumstance that an entire
subordinate clause appears within a single chunk.

The machine learning algorithm we used for almost all
of our experiments was the C4.5 decision tree system
(Quinlan, 1993). Although more sophisticated learners
may be available, C4.5 has the advantages of familiarity,
ease of use, and computational efficiency.

In the following sections, we will briefly introduce our
parsing models and current experimental results. Some
detailed information can be found in (Drabek, 2001).

4.1. The baseline models
Our baseline models base their judgements entirely on

the part-of-speech sequences making up each sentence.
We conducted our experiments in parallel within two
basic parsing frameworks. The first implements a top-
down parser, which uses a generative probability model to
represent knowledge of what kinds of syntactic structures
are likely, and what inputs these structures are likely to be
associated with. The second implements a bottom-up
parser, which uses a constructive probability model or
decision module to represent knowledge of what parsing
actions are likely to be appropriate in response to a given
input.

1) The Generative Model

The generative models model the sentence generation
process as a series of events generating chunk categories,
and then for each chunk, a series of events generating
words. Each of these series is ended by the generation of
a special STOP symbol. The probability assigned to a
given analysis of a sentence is the product of the
probabilities for all the generation events necessary to
generate the structure and the words of the sentence.

Different models are specified by specifying probability
models for these two events, the generation of a chunk
category, and the generation of a word within a chunk. In
the baseline model, probabilities for the generation of
chunk categories are estimated simply, based on the
preceding three chunk categories. The generation of a
word means simply the generation of a part-of-speech tag,
and this probability is estimated based on the preceding
three words.

2) The Constructive Model

The constructive models model the parsing process as
a series of construction events, alternating between
creating (and labeling) chunks and then extending each,
word by word, until it is completed. The probability
assigned to a given analysis of a sentence is the product of
the probabilities for all the construction events necessary
to build up that structure. Different models are specified
by specifying probability models for these two events, the
choice of a chunk category, and the choice of whether to
break or extend the current chunk. Because this model
does not need to be as concerned about maintaining a
probability distribution, decisions can be based on a wider
range of conditioning information.

4.2. Feature engineering
For improving the parsing performance, our tentative

idea was to extend the above models with more detailed
syntactic features than the POS tags. We selected
Grammatical Knowledge base of Contemporary Chinese
(GKBCC) (Yu et al., 1998) as our main knowledge
resource. Developed specifically for natural language
processing in the Chinese language, it contains
information specifically about the syntactic behavior of
more than fifty thousands Chinese words.

The form of the dictionary seems to give a very direct
fit to the feature vector representation used by C4.5, but
closer inspection revealed a number of places where this
fit is less than perfect, and several adaptations were
necessary. The two larger issues of feature engineering we
needed to address in order to apply the dictionary to our
task were feature presentation and feature selection.

Here, feature presentation refers to the mapping
between dictionary features, which are functions of words,
and the model features, which are functions of automaton
states. We chose to restrict our models to the simplest
form, simply adding the dictionary features of words in

specified positions. These positions are specified in the
same way as those for part-of-speech tags in the baseline
models, but because of the very large number of available
features, we chose to restrict each model to using three
such positions.

The greatest practical difficulty with using the
dictionary was the sheer number of the features available.
This made even training such a model prohibitively
compute-intensive, and seemed likely to introduce more
noise than information. We used a further process of
combined hand selection and automatic methods to
eliminate features from the models described as many
terms as possible without degrading performance on a
separate validation set, and approximately halved their
number in the final model.

4.3. Experimental results and analysis
The 6814 sentences (142,759 words) extracted from

the THChunk were used at the time of the experiments to
generate a test set containing every tenth sentence, and a
training set containing the remainder. Table 5 shows the
experimental results. Where ‘GPM’ represents Generative
Parsing Model, ‘CPM’ represents Constructive Parsing
Model, ‘B’ represents Baseline models, ‘E’ represents the
Enhanced models after feature engineering.

Table 5 Experimental results of different models

Models Labelled
Precision

Labelled
Recall

F-measure

GPM_B 71.0% 67.8% 69.4%
CPM_B 75.4% 79.2% 76.2%
GPM_E 74.3% 74.2% 74.2%
CPM_E 78.3% 79.8% 79.0%

Our experiments have shown that the information from

a rich lexical resource can be made directly useful to a
simple machine-learning based shallow parser to improve
its parsing performance, without significant effort in
linguistic engineering. The information is sufficiently rich
to provide a useful basis for generalization, and the
machine-learning algorithm is able to decide how and
when to use this information.

5. From chunk bank to tree bank
As an important middle product, the completed chunk

bank also plays a key role in our two-stages approach to
build a large scale Chinese tree bank. Figure 1 shows the
overview of this method.

One of the best-known efforts to produce corpora with
syntactic annotations is the Penn Treebank project
(Marcus et al., 1993). It currently includes two corpora
annotated with part-of-speech tags and skeletal syntactic
parse trees. The effort in annotating corpora in this project
included an automated first step(using a part-of-speech
tagger and a parser), but relied heavily on the manual
efforts of linguists to achieve high-quality linguistic
annotations. Although this approach yields a high level of
accuracy, it is impractical if time is relatively limited and
a team of linguists dedicated to corpus-annotation is not
available. In fact, a number of syntactically annotated
corpora (or treebanks) have been produced in recent years
(Garside et al., 1997, Skut, 1997), with varying amounts

of automation, but typically with human effort playing a
major role in the annotation process.

In our opinion, the manual efforts are inevitable in the
construction of a good syntactically annotated corpus. The
key issue is how to reduce them as far as possible through
suitable human-machine collaboration. As we know, the
biggest problem of many current automatic parsers lies in
their poor disambiguation ability. They have difficult to
process some typical ambiguous structures in real texts,
such as the prepositional phrase attachment problem in
English and the “v np uJDE np” structure in Chinese,
especially in complex sentence. In these respects, human
has their advantages. If we can separate the complex
sentence into several chunks with special syntactic
functions through suitable manual preprocessing, then
provide them to the automatic parser for syntactic parsing,
many ambiguous structures in the sentence will be
eliminated or restricted in the smaller context. Therefore,
the accuracy of the parsed results will be greatly improved
and the man workload for post-proofreading will be
greatly reduced.

Starting from the above train of thought, we conceived
the plan of building a large-scale Chinese treebank
through the following two-stages approaching:

At the first stage, each sentence in the corpus can be
exhaustively partitioned into a series of non-nested, non-
overlapping units, labeled with functional tags, such as
subject, object, predicate, complement and so on, while
any structural relations within these chunks are left
implicit. The top-down characteristics of the functional
chunk scheme guarantee its suitableness for manual
annotation and proofreading. Some automatic chunking
models can be also used in the future if possible.

At the second stage, each sentence can be
automatically parser through a chunk-based syntactic
parser, where the skeleton tree of the sentence can be
easily built based on the implicit grammatical relations
among different functional chunks, and many base phrases
can be restrictively parsed among the small context of
functional chunks. Therefore, the searching space for the
syntactic parser will be greatly reduced and the parsing
performance will be greatly increased. After further
manual proofreading, the complete tree bank can be built.

Using this two-stages annotating method, we built a
small-size Chinese tree bank (THTree) consisting of about
200,000 Chinese words. All the sentences of THTree was
automatically extracted from THChunk based on a special
sampling algorithm (Zhou and Sun, 1999). Table 6 lists
some basic statistics of ThTree.

Table 6 Basic statistics of ThTree

Text Type File
Sum

Sent.
Sum

Word
Sum

Char.
Sum

Academic 16 5864 164292 270227
Journal 14 458 11671 18605
Literary 19 1273 25678 38794
Total 49 7595 201641 327626

In the following, we designed a simple experiment for

testing the efficiency of our current annotating method.
We selected two types of corpus sentences as the input

of syntactic parser (Zhou, 1997):

1) Word-split and part-of-speech tagged sentences
(STSent);

2) Word-split, part-of-speech tagged and functional
chunk annotated sentences (CHSent);

This is a close test. All the knowledge based used by
the parser were automatically extracted from THTree,
including:

1) Probabilistic Context-Free Grammar rules, which
can be used for overall disambiguation;

2) Structure Preference Relation rules (Zhou and Ren,
2001), which can be used for local context disambiguation;

Table 7 Experimental results of parser with different
input

Input Labelled
Precision

Labelled
Recall

Crossing
Brackets

STSent 76.7% 78.5% 3.04
CHSent 89.5% 89.2% 1.17

The experimental results in Table 7 shows that

functional chunk information bring in great improvement
in parsing performance: the labeled precision an recall of
the syntactic parser increase about 13%, and the average
number of crossing brackets in a sentence is reduced from
3.04 to 1.17. Therefore, the workload for manual
proofreading will be greatly reduced.

6. Conclusions and Future Work
The construction of a large-scale linguistically

annotated corpus is a long-term and arduous work, where
suitable human-machine collaboration is inevitable and
retains a central role.

The paper proposed a new syntactic annotation scheme
--- functional chunk, representing information about
grammatical relations between sentence-level predicates
and their arguments. We made a tentative step to find
suitable trade-off between annotation cost and description
capability. Under this scheme, we built a Chinese chunk
bank with about two million Chinese characters through
manual annotation and proofreading, and developed some
learned models for automatically annotating fresh text
with functional chunks. Based on the top-down
characteristic of functional chunk scheme, We proposed a
two-stages approach to build Chinese tree bank on the top
of chunk bank, and gave some experimental results of
chunk-based syntactic parser to show the advantage of
functional chunk for parsing performance increase. The

small-size treebank building experiment on the Chinese
text with about 200,000 words have shown the feasibility
of this method.

In the future, we plan to give impetus to the above
research work in the following directions:

1) Automatically annotate (manually proofread if
possible) the constituent type (NP, VP, etc.) and head
word information for each functional chunk, and build a
new version of chunk bank.

2) Extract useful lexical collocations from new chunk
bank and apply them in the partial parsing models to
improve parsing performance.

3) Build a 1,000,000 words Chinese treebank
annotated with syntactic constituent and function
information on the top of current chunk bank.

7. Acknowledgements
This work was supported by the Chinese National

Science Foundation (Grant No. 69903007) and National
973 Foundation (Grant No. 1998030507). We would like
to thank Prof. Changning Huang for his original idea in
functional chunk annotation, Dr. Weidong Zhan and Dr.
Haibo Ren for their good suggests to perfect the chunk
annotation stylebook, all the corpus builders for their hard
works in annotating the chunk bank, and the anonymous
reviewers for their insightful comments and suggestions.

8. References
Abney, S. 1991. Parsing by chunks. In Principle-Based

Parsing, Kluwer Academic Publishers,.
Alsina. A. 1996. The Role of Argument Structure in Grammar:

Evidence from Romance. CSLI Lecture Notes No. 62, CSLI
Publications: Stanford, California, USA.

Baker, C.F., Fillmore, C.J., and Lowe, J.B. 1998. The Berkeley
FrameNet project. In Proceedings of the COLING-ACL’98,
Montreal, Canada, 86-90.

Drabek, E.F. 2001. Use of Machine Learning Techniques for
Partial Parsing of Chinese. Master thesis, Dept. of Computer
Science, Tsinghua University.

Fillmore, C. J. 1982. Frame semantics. In Linguistics in the
Morning Calm, Hanshin Publishing Co., Seoul, South Korea.
111-137.

Fillmore, C.J., Wooters, C., and Baker, C.F. 2001. Building a
Large Lexical Databank Which Provides Deep Semantics. In
Proceedings of the Pacific Asian Conference on Language,
Information and Computation. Hong Kong.

Figure 1 Build the Chinese treebank through two-stages processing

Input
sentences

Segmentation
and POS
tagging

Chunk
Annotating

Syntactic
Parsing

Manual
proofreading

Tree bank

Chunk
bank

Garside, R., Leech, G., and McEnery, A. (eds.) 1997. Corpus
Annotation: Linguistic Information from Computer Text
Corpora. Longman, London, England

Kaplan, R. and Bresnan, J. 1982. Lexical-Functional Grammar:
A Formal System of Representation, In Joan Bresnan (ed.)
The Mental Representation of Grammatical Relations. MIT
Press, Cambridge, Mass. 173-281.

Marcus, M.P., Marcinkiewicz, M.A. and Santorini, B.
1993. Building a Large Annotated Corpus of English:
The Penn Treebank. Computational Linguistics, 19(2),
313-330

Marcus, M., Kim, G., Marcinkiewicz, M.A. et al. 1994.
The Penn treebank: annotating predicate argument
structure. In Proceedings of ACL’94 post.

Quinlan, J.R. 1993. C4.5: Programs for Machine
Learning, Morgan Kaufmann, San Mateo, CA.

Sang T.K. and Buchholz, S. 2000, Introduction to
CoNLL-200 shared task: chunking. In Proceedings of
CoNLL-2000 and LLL, Lisbon, Portugal. 127-132.

Skut, W., Krenn, B., Brants, T., and Uszkoreit, H. 1997.
An Annotation Scheme for Free Word Order Language.
In Proceedings of the Fifth Conference on Applied
Natural Language Processing(ANLP-97), Washington,
DC, USA.

Yu, S.W., Zhu, X.F., Wang, H., Zhang Y.Y. 1998. The
Grammatical Knowledge base of Contemporary
Chinese --- A Complete Specification. Tsinghua
University Press,

Zhou, Q. 1997. A Statistics-Based Chinese Parser. In Proc.
of the Fifth Workshop on Very Large Corpora, 4-15.
Bejing, China.

Zhou Q. 2000. The stylebook for Chinese functional chunk
annotation. Technique report, Dept. of Computer
Science, Tsinghua University.

Zhou, Q. and Ren, F.. 2000. Acquisition and applications
of structure preference relations in Chinese. Natural
Language Engineering 6(2): 163-181.

Zhou, Q. and Sun, M.S. 1999. Build a Chinese Treebank
as the test suite for Chinese parser. In Proceedings of
the Workshop MAL'99 (Multi-lingual information
Processing and Asian Language Processing), Beijing,
China.

	731: 731
	732: 732
	733: 733
	734: 734
	736: 736
	737: 737

