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Abstract 
 
The paper proposed a new syntactic annotation scheme --- functional chunk, which tried to represent information about grammatical 
relations between sentence-level predicates and their arguments. Under this scheme, we built a Chinese chunk bank with about two 
million Chinese characters, and developed some learned models for automatically annotating fresh text with functional chunks. We 
also proposed a two-stages approach to build Chinese tree bank on the top of chunk bank, and gave some experimental results of 
chunk-based syntactic parser to show the advantage of functional chunk for parsing performance increase. All these work lays good 
foundations for further research project to build a large scale Chinese tree bank. 
 

                                                      
1 Elliott F. Drabek has been a Ph.D. candidate in John Hopkins University since Sept. 2001. 

1. Introduction  
Corpus annotation is a good way to acquire the 

knowledge of language performance in real texts. How to 
represent that knowledge in the most informative and 
efficient way is its fundamental question. There are two 
extremes among the syntactic annotating schemes now. 
The simplest way is to assign the words with part-of-
speech tags, i.e. categories designed to reflect the syntactic 
behavior of words. Two typical examples are Brown and 
LOB corpus in English. This is a good start, and many 
efficient algorithms have been proposed to automatically 
assign the correct POS tags with very high precision and 
recall. But intuition and plentiful experiments tell us that 
this is not enough, and the idiosyncrasies of individual 
words and their syntactic relations must be considered. 
The most complex way is to tag the complete syntactic 
trees in sentences. A typical example is Penn tree bank 
(Marcus et al., 1993). Although they can give detailed 
syntactic information descriptions of the real text 
sentences, the cost to build a large-scale tree bank is very 
expansive.  

In the resent years, many researchers have devoted to 
design some better annotation schemes with suitable 
trade-off between annotation cost and description 
capability. Abney’s chunk parsing scheme is a good 
example among them. He defined a chunk essentially as 
the continuous set of words belonging to a single s-
projection, or the domain of a single semantic head. 
(Abney, 1991). Based on this scheme, CONLL’2000 
shared chunk task built an unified training and test set for 
partial parsing in English (Sang and Buchholz, 2000). The 
text of the corpus was taken from the Wall Street Journal 
portion of the Penn Treebank, and the chunks were 
extracted automatically from the original syntax trees, 
using straightforward heuristic rules.  The quantity of the 
chunk annotated text amounts to approximately three 

hundred thousand words, with an average chunk length of 
two words. Many automatic partial parsers proposed in the 
conference showed good parsing performance. But it’ s 
still very difficult to grasp the overall structure of a 
sentence only based on these chunk information. 

The paper proposed a new syntactic annotation scheme 
--- functional chunk, which tried to represent information 
about grammatical relations between sentence-level 
predicates and their arguments. Among this scheme, each 
sentence can be exhaustively partitioned into a series of 
non-nested, non-overlapping units, labeled with functional 
tags, such as subject, object, predicate, complement and so 
on, while any structural relations within these chunks are 
left implicit. Compared with Abney’s chunk, the novelty 
of functional chunk appears in the definition of what 
constitutes a chunk. Abney’s chunks are defined strictly 
from the bottom up; a unit qualifies as a chunk based on 
its internal make-up, regardless of any changes in the 
larger context, and its category is primarily determined by 
the category of its head word. By contrast, the functional 
chunks are defined strictly from the top down; a unit 
qualifies as a chunk based on its position in the larger 
context, regardless of its internal make-up, and its 
category is primarily determined by the grammatical 
relation between it and the predicate. This top-down 
characteristic gives more detailed information to grasp the 
overall structure of a sentence than Abney’s chunk.  

Under this scheme, we built a Chinese chunk bank 
with about two million Chinese characters, and developed 
some learned models for automatically annotating fresh 
text with functional chunks. We also proposed a two-
stages approach to build Chinese tree bank on the top of 
chunk bank, and gave some experimental results of chunk-
based syntactic parser to show the advantage of functional 
chunk for parsing performance increase. All these work 
lays good foundations for further research project to build 
a large scale Chinese tree bank. 



The paper is organized as follows. Section 2 gives 
detailed definition and description of our functional chunk 
scheme, and compares it with other annotating systems. 
Section 3 introduces the functional chunk annotation 
experiment on a Chinese balanced corpus with two 
million Chinese characters, including the annotation 
stylebook, processing procedure, and some detailed 
statistics of the functional chunk bank. Section 4 describes 
some of our work in developing learned models for 
automatically annotating fresh text according to this 
scheme. Section 5 proposes a two-stages approach to build 
Chinese tree bank on the top of chunk bank, and gives 
some experimental results of chunk-based syntactic parser 
to show the advantage of functional chunk for parsing 
performance increase. The final section 6 is a conclusion. 

2. Functional Chunk Scheme 
The functional chunk scheme we proposed in this 

section tries to represent information about grammatical 
relations between sentence-level predicates and their 
arguments. Under the annotation framework, each 
sentence is exhaustively partitioned into a series of non-
nested, non-overlapping labeled units, or functional 
chunks, while any structural relations within or between 
these chunks are left implicit.  

In the typical case, each clause is divided into one 
chunk for the main verb, one chunk for each of its 
argument constituents and several chunks for the adjuncts 
of the main verb or some elements present but not 
dependent on the main verb, such as exclamations or 
vocative phrases. In the Chinese language, the arguments 
of a verbal predicate can be expressed as subject, object, 
complements, or some special adverbial adjuncts(most of 
them are prepositional phrases with case flags). They are 
formed as the basic syntactic patterns of Chinese 
sentences.  Table 1 outlined all eight functional chunks 
used in our tagset, where chunk ‘J’ , which we call as 
‘JianYu’  in Chinese, describes the special linguistic 
phenomenon in Chinese serial verb constructions, where 
the object of a pre-verb can be combined with the subject 
of its post-verb. Chunk ‘T’  describes some elements 
present but not dependent to any other constituent in the 
sentence, such as exclamations or vocative phrases. An 
annotated example sentence is shown in as follows: 

[S � /m 
�

/q ��� /v ��� /v � /u 	�
 /n ] [D � /d ] [P��
/v � /p ] [ � /r � /n ��� /s ] � /w2 

Some unforgettable events from the past once again 
floated in front of my eyes. 

In most cases, the set of possible chunk sequences is 
tightly constrained, so that heuristic rules which work on 
the most common cases should be able to recover almost 
all grammatical relations. The following regular 
expression embraces about ninety percent of the observed 
sequences in the Chinese sentences (ignoring independent 
constituents): 

D* (S D*)? P O? (D* ([JS] D*)? P [CO]?)* Y? 

                                                      
2 The part-of-speech tags used in this sentence are briefly 
describes as follows:  m--numeral, q--classifier, v--verb, 
u-auxiliary word, n--noun, d-adverb, p-preposition, s—
situation noun, w--punctuation.  

In general, this means that each sentence is made up of 
a series of clauses, possibly followed by a modal particle.  
Each clause contains one predicate (P) chunk.  Preceding 
the predicate there may be some number of adverbial (D) 
chunks, possibly with one subject (S) chunk among them.  
Following the predicate, there may be one direct object (O) 
chunk or one raised object (J) chunk, one indirect object 
(O) chunk or one complement (C) chunk.  

Table 1. The tagset of our functional chunks  

Chunk Tag Basic Function Description 
S Subject 
P Predicate 
O Object 
J Raised object 
D Adverbial adjunct 
C Complement 
T Independent constituent 
Y Modal particle 

 
In summary, the functional chunk annotation builds 

basic links between functional structure (Kaplan and 
Bresnan, 1982) and argument structure (Alsina, 1996). 
Although there is no explicit annotation of connections 
between specific predicates and specific arguments, that 
information should be largely recoverable from the 
sequence of chunk categories. As we know, it is the first 
research work to describe the argument structure through 
syntactic function annotation. 

In fact, there are several other annotation scheme to 
describe argument structure. After finishing the large-
scale corpus annotation of skeleton syntactic tree in 
English texts (Marcus et al., 1993), the Penn Treebank has 
implemented a new syntactic annotation scheme (Marcus 
et al., 1994), designed to highlight aspects of predicate-
argument structure. Through a four-steps editing approach 
to the original Penn Treebank, a bank of predicate-
argument structures can be automatically extracted and 
built for parser evaluation and other NLP applications. It 
is the research work to describe the argument structure 
through predicate-argument annotation itself. 

Another interested project is FrameNet developed in 
UC, Berkeley (Baker et al., 1998). Its primary aim is to 
produce frame-semantic descriptions of lexical items 
through the construction of a large-scale semantically 
tagged corpus. Based on frame semantics proposed by 
Fillmore(1982), they associated a word with a frame, 
chose a list of frame elements (FEs) for the frame, looked 
at sentences which showed a use of the word in the 
appropriate sense, and selected and labeled those 
constituents in those sentences which instantiated 
concepts from the frame. The constituents identified as 
FEs were then to be classified (automatically if possible) 
as to their phrase type (PP, etc.) and in respect to their 
grammatical function (Object, etc.). Therefore, a lexicon 
with full descriptions of the frame-semantic and syntactic 
combinational properties of the words can be constructed 
automatically from the set of annotations (Fillmore et al., 
2001). It is the research work to describe the argument 
structure through semantic role annotation. 



3. Chunk Annotation Experiments 
In March 2000, a chunk bank project work began to 

start. It aims to build a large-scale Chinese chunk bank 
(THChunk), conceived as a broadly useful linguistic 
resource for Chinese linguistics and language engineering. 
The project ended in June 2001. About two million 
Chinese characters of text were manually annotated with 
functional chunks. We believe that the particular 
combination form and content of the annotation used in 
the THChunk is relatively novel. 

3.1. Basic corpus 
The THChunk forms a layer of chunk annotation on 

top of the original ThCorp, a corpus containing two 
million Chinese characters of text drawn from a balanced 
collection of journalistic, literary, academic, and other 
documents.  All of the material has been hand corrected 
after processing of sentence-split, word segmentation and 
part-of-speech tagging by automatic tools. Table 2 lists 
some basis statistics of ThCorp. 

Table 2  Basic statistics of ThCorp 

Text Type File 
Sum 

Sent. 
Sum 

Word 
Sum 

Char. 
Sum 

Academic 29 9846 273017 447288 
Journal 376 16921 427649 674566 
Literary 295 38258 740445 1018839 
Others 258 4302 88452 144027 
Total 958 69327 1529563 2284720 

3.2. Annotation stylebook 
To design a detailed annotation stylebook is a 

prerequisite for high levels of inter-annotator agreement. 
But the linguistic phenomena in real texts are complicated 
and ticklish, it is very difficult to comprise all of them 
completely in a stylebook at first. Substantially, it is an 
incremental process for improvement. At first, we 
summarized some basic principles, such as how to 
separate a complete sentence into several clauses, how to 
identify and annotate different functional chunks in a 
clause, etc. Then, some detailed rules and examples can be 
added into the stylebook to describe the special linguistic 
phenomena encountered during the annotation task. At 
last, a better stylebook covering almost all linguistic 
phenomena in our current ThCorp corpus has been 
completed.  

Some detailed information of the stylebook can found 
in (Zhou, 2000). It is our hope that such a stylebook will 
also alleviate much of the need for extensive cross-talk 
between different annotators, thereby increasing 
throughput as well. 

3.3. Annotating procedure 
Our current chunk bank was built through manual 

annotation and proofreading. To improve the annotating 
efficiency, we designed some special macro commands in 
Microsoft’s WORD so that each functional chunk can be 
tagged through one-key input. Our tentative count shows 
that original annotating speed for an annotator is about 
1200 words per work hour. As they are familiar with the 
annotation stylebook and processing procedure deeper and 

deeper, the annotation speed will gradually increase and 
reach about 2400 words per work hour after 1 or 2 months. 

We also designed two-levels checking system to 
guarantee the quality of the final annotating results. Firstly, 
we developed an automatic checking program based on 
the basic principles and rules listed in chunk stylebook. 
Most wrong chunks can be checked out and provided to 
annotator for further conformation or modification. 
Secondly, We checked the final annotating results through 
random sampling, found and modified the chunk errors 
left, until the error ratio is below 0.5%. 

3.4. Basic statistics of chunk bank 
Table 3 lists some basic statistics of current chunk 

bank, including the sum of different functional chunks, the 
sum of words among them, and their average chunk length 
(ACL). We divided these chunks into 4 types, according 
to the different word sum(WSum) among them: 1) WSum 
< 5; 2) 5<=WSum<10; 3) 10<=WSum<15; 4) 15<=WSum. 
Table 4 shows the distributional data for these 4 types of 
different chunks. 

Table 3 Basic statistics of different functional chunks 

Chunk 
Type 

Chunk 
Sum 

Word 
Sum 

Average 
Chunk Length 

S 99121 251041 2.53 
P 179605 236104 1.31 
O 109362 452211 4.13 
J 5715 12338 2.16 
D 156000 321254 2.06 
C 3113 6431 2.07 
T 5649 14414 2.55 
Y 12111 12225 1.01 

Total 570676 1306018 2.29 
 
From these two tables, some distributional 

characteristics of functional chunks in Chinese text can be 
summarized as follows: 

1) The ‘Y’  chunk was defined as one or more modal 
particles at the end of a sentence. But few sentences in 
Chinese text have two or more final modal particles. So it 
has the minimal ACL (1.01) among all chunks. 

2) Most of the predicate (P) chunks in Chinese 
sentences are verbs, adjectives or phrasal verbs, whose 
forms have been strictly defined in our annotation 
stylebook. They have the more regular distributional 
features (ACL=1.31 and the word sum among more than 
99% ‘P’  chunk is less than 5) for automatic identification.  

3) The ACL of the ‘D’  chunk and ‘C’  chunk is about 2, 
and the word sum among more than 90% of these chunks 
is less than 5. These cases indicate that there are few 
complex adverbials and complements in Chinese real text. 
Some obvious boundary flags of them provide important 
heuristic features for automatic identification. 

4) The ‘S’  and ‘J’  chunk have larger ACL (2.53 and 
2.16), and the ‘O’  chunk has the maximum ACL (4.13). 
The main reason is that most of them contain an entire 
restrictive clause. They bring in the most difficulty for 
automatic parsing models. 

 



Table 4 Word length distribution of different functional chunks 

Chunk 
Type 

Chunk 
Sum 

WSum �  
[0,5) 

Ratio 
(%) 

WSum �  
[5,10) 

Ratio 
(%) 

WSum �  
[10,15) 

Ratio 
(%) 

WSum �
[15,� ] 

Ratio 
(%) 

S 99121 85208 85.96 11023 11.12 1939 1.96 951 0.96 
P 179605 178545 99.41 862 0.48 144 0.08 54 0.03 
O 109362 75745 69.26 24569 22.47 5888 5.38 3160 2.89 
J 5715 5134 89.83 482 8.43 70 1.22 29 0.51 
D 156000 141060 90.42 11863 7.60 2151 1.38 926 0.60 
C 3113 2857 91.78 219 7.04 31 1.00 6 0.19 
T 5649 4984 88.23 388 6.87 136 2.41 141 2.49 
Y 12111 12111 100.00 0 0.00 0 0.00 0 0.00 

Total 570676 505644 88.60 49406 8.66 10359 1.82 5267 0.92 

 

4. Parsing models 
The aspect of the chunking system which likely poses 

the greatest difficulty for automatic annotation is the 
potentially unbounded length and internal complexity of 
the chunks. The top-down definition implies that the status 
of a constituent depends only on its context, and not on its 
content, so that a chunk may encompass arbitrarily many 
modifiers within itself.  The annotator must recognize 
these as belonging to the same unit, even though under 
other circumstances exactly the same constructs might 
need to be separated and labeled as individual chunks 
themselves. This would seem to pose the most acute 
difficulty in the common circumstance that an entire 
subordinate clause appears within a single chunk. 

The machine learning algorithm we used for almost all 
of our experiments was the C4.5 decision tree system 
(Quinlan, 1993).  Although more sophisticated learners 
may be available, C4.5 has the advantages of familiarity, 
ease of use, and computational efficiency.  

In the following sections, we will briefly introduce our 
parsing models and current experimental results. Some 
detailed information can be found in (Drabek, 2001).  

4.1. The baseline models 
Our baseline models base their judgements entirely on 

the part-of-speech sequences making up each sentence.  
We conducted our experiments in parallel within two 
basic parsing frameworks.  The first implements a top-
down parser, which uses a generative probability model to 
represent knowledge of what kinds of syntactic structures 
are likely, and what inputs these structures are likely to be 
associated with. The second implements a bottom-up 
parser, which uses a constructive probability model or 
decision module to represent knowledge of what parsing 
actions are likely to be appropriate in response to a given 
input.  

1) The Generative Model   

The generative models model the sentence generation 
process as a series of events generating chunk categories, 
and then for each chunk, a series of events generating 
words.  Each of these series is ended by the generation of 
a special STOP symbol. The probability assigned to a 
given analysis of a sentence is the product of the 
probabilities for all the generation events necessary to 
generate the structure and the words of the sentence.  

Different models are specified by specifying probability 
models for these two events, the generation of a chunk 
category, and the generation of a word within a chunk. In 
the baseline model, probabilities for the generation of 
chunk categories are estimated simply, based on the 
preceding three chunk categories. The generation of a 
word means simply the generation of a part-of-speech tag, 
and this probability is estimated based on the preceding 
three words. 

2) The Constructive Model 

The constructive models model the parsing process as 
a series of construction events, alternating between 
creating (and labeling) chunks and then extending each, 
word by word, until it is completed. The probability 
assigned to a given analysis of a sentence is the product of 
the probabilities for all the construction events necessary 
to build up that structure.  Different models are specified 
by specifying probability models for these two events, the 
choice of a chunk category, and the choice of whether to 
break or extend the current chunk. Because this model 
does not need to be as concerned about maintaining a 
probability distribution, decisions can be based on a wider 
range of conditioning information. 

4.2. Feature engineering 
For improving the parsing performance, our tentative 

idea was to extend the above models with more detailed 
syntactic features than the POS tags. We selected 
Grammatical Knowledge base of Contemporary Chinese 
(GKBCC) (Yu et al., 1998) as our main knowledge 
resource. Developed specifically for natural language 
processing in the Chinese language, it contains 
information specifically about the syntactic behavior of 
more than fifty thousands Chinese words. 

The form of the dictionary seems to give a very direct 
fit to the feature vector representation used by C4.5, but 
closer inspection revealed a number of places where this 
fit is less than perfect, and several adaptations were 
necessary. The two larger issues of feature engineering we 
needed to address in order to apply the dictionary to our 
task were feature presentation and feature selection. 

Here, feature presentation refers to the mapping 
between dictionary features, which are functions of words, 
and the model features, which are functions of automaton 
states. We chose to restrict our models to the simplest 
form, simply adding the dictionary features of words in 



specified positions.  These positions are specified in the 
same way as those for part-of-speech tags in the baseline 
models, but because of the very large number of available 
features, we chose to restrict each model to using three 
such positions.  

The greatest practical difficulty with using the 
dictionary was the sheer number of the features available. 
This made even training such a model prohibitively 
compute-intensive, and seemed likely to introduce more 
noise than information. We used a further process of 
combined hand selection and automatic methods to 
eliminate features from the models described as many 
terms as possible without degrading performance on a 
separate validation set, and approximately halved their 
number in the final model.  

4.3. Experimental results and analysis 
The 6814 sentences (142,759 words) extracted from 

the THChunk were used at the time of the experiments to 
generate a test set containing every tenth sentence, and a 
training set containing the remainder. Table 5 shows the 
experimental results. Where ‘GPM’ represents Generative 
Parsing Model, ‘CPM’ represents Constructive Parsing 
Model, ‘B’  represents Baseline models, ‘E’  represents the 
Enhanced models after feature engineering. 

Table 5 Experimental results of different models 

Models Labelled 
Precision 

Labelled 
Recall 

F-measure 

GPM_B 71.0% 67.8% 69.4% 
CPM_B 75.4% 79.2% 76.2% 
GPM_E 74.3% 74.2% 74.2% 
CPM_E 78.3% 79.8% 79.0% 
 
Our experiments have shown that the information from 

a rich lexical resource can be made directly useful to a 
simple machine-learning based shallow parser to improve 
its parsing performance, without significant effort in 
linguistic engineering.  The information is sufficiently rich 
to provide a useful basis for generalization, and the 
machine-learning algorithm is able to decide how and 
when to use this information. 

5. From chunk bank to tree bank 
As an important middle product, the completed chunk 

bank also plays a key role in our two-stages approach to 
build a large scale Chinese tree bank. Figure 1 shows the 
overview of this method. 

One of the best-known efforts to produce corpora with 
syntactic annotations is the Penn Treebank project 
(Marcus et al., 1993). It currently includes two corpora 
annotated with part-of-speech tags and skeletal syntactic 
parse trees. The effort in annotating corpora in this project 
included an automated first step(using a part-of-speech 
tagger and a parser), but relied heavily on the manual 
efforts of linguists to achieve high-quality linguistic 
annotations. Although this approach yields a high level of 
accuracy, it is impractical if time is relatively limited and 
a team of linguists dedicated to corpus-annotation is not 
available. In fact, a number of syntactically annotated 
corpora (or treebanks) have been produced in recent years 
(Garside et al., 1997,  Skut, 1997), with varying amounts 

of automation, but typically with human effort  playing a 
major role in the annotation process. 

In our opinion, the manual efforts are inevitable in the 
construction of a good syntactically annotated corpus. The 
key issue is how to reduce them as far as possible through 
suitable human-machine collaboration. As we know, the 
biggest problem of many current automatic parsers lies in 
their poor disambiguation ability. They have difficult to 
process some typical ambiguous structures in real texts, 
such as the prepositional phrase attachment problem in 
English and the “v np uJDE np”  structure in Chinese, 
especially in complex sentence. In these respects, human 
has their advantages. If we can separate the complex 
sentence into several chunks with special syntactic 
functions through suitable manual preprocessing, then  
provide them to the automatic parser for syntactic parsing, 
many ambiguous structures in the sentence will be 
eliminated or restricted in the smaller context. Therefore, 
the accuracy of the parsed results will be greatly improved 
and the man workload for post-proofreading will be 
greatly reduced. 

Starting from the above train of thought, we conceived 
the plan of building a large-scale Chinese treebank 
through the following two-stages approaching: 

At the first stage, each sentence in the corpus can be 
exhaustively partitioned into a series of non-nested, non-
overlapping units, labeled with functional tags, such as 
subject, object, predicate, complement and so on, while 
any structural relations within these chunks are left 
implicit. The top-down characteristics of the functional 
chunk scheme guarantee its suitableness for manual 
annotation and proofreading. Some automatic chunking 
models can be also used in the future if possible. 

At the second stage, each sentence can be 
automatically parser through a chunk-based syntactic 
parser, where the skeleton tree of the sentence can be 
easily built based on the implicit grammatical relations 
among different functional chunks, and many base phrases 
can be restrictively parsed among the small context of 
functional chunks. Therefore, the searching space for the 
syntactic parser will be greatly reduced and the parsing 
performance will be greatly increased. After further 
manual proofreading, the complete tree bank can be built. 

Using this two-stages annotating method, we built a 
small-size Chinese tree bank (THTree) consisting of about 
200,000 Chinese words. All the sentences of THTree was 
automatically extracted from THChunk based on a special 
sampling algorithm (Zhou and Sun, 1999). Table 6 lists 
some basic statistics of ThTree.  

Table 6  Basic statistics of ThTree 

Text Type File 
Sum 

Sent. 
Sum 

Word 
Sum 

Char. 
Sum 

Academic 16 5864 164292 270227 
Journal 14 458 11671 18605 
Literary 19 1273 25678 38794 
Total 49 7595 201641 327626 
 
In the following, we designed a simple experiment for 

testing the efficiency of  our current annotating method.  
We selected two types of corpus sentences as the input 

of syntactic parser (Zhou, 1997): 



1) Word-split and part-of-speech tagged sentences 
(STSent); 

2) Word-split, part-of-speech tagged and functional 
chunk annotated sentences (CHSent); 

This is a close test. All the knowledge based used by 
the parser were automatically extracted from THTree, 
including: 

1) Probabilistic Context-Free Grammar rules, which 
can be used for overall disambiguation; 

2) Structure Preference Relation rules (Zhou and Ren, 
2001), which can be used for local context disambiguation; 

Table 7 Experimental results of parser with different 
input 

Input Labelled 
Precision 

Labelled 
Recall 

Crossing 
Brackets 

STSent 76.7% 78.5% 3.04 
CHSent 89.5% 89.2% 1.17 
 
The experimental results in Table 7 shows that 

functional chunk information bring in great improvement 
in parsing performance: the labeled precision an recall of 
the syntactic parser increase about 13%, and the average 
number of crossing brackets in a sentence is reduced from 
3.04 to 1.17. Therefore, the workload for manual 
proofreading will be greatly reduced.  

6. Conclusions and Future Work 
The construction of a large-scale linguistically 

annotated corpus is a long-term and arduous work, where 
suitable human-machine collaboration is inevitable and 
retains a central role.  

The paper proposed a new syntactic annotation scheme 
--- functional chunk, representing information about 
grammatical relations between sentence-level predicates 
and their arguments. We made a tentative step to find 
suitable trade-off between annotation cost and description 
capability. Under this scheme, we built a Chinese chunk 
bank with about two million Chinese characters through 
manual annotation and proofreading, and developed some 
learned models for automatically annotating fresh text 
with functional chunks. Based on the top-down 
characteristic of functional chunk scheme, We proposed a 
two-stages approach to build Chinese tree bank on the top 
of chunk bank, and gave some experimental results of 
chunk-based syntactic parser to show the advantage of 
functional chunk for parsing performance increase. The 

small-size treebank building experiment on the Chinese 
text with about 200,000 words have shown the feasibility 
of this method.  

In the future, we plan to  give impetus to  the above 
research work in the following directions: 

1) Automatically annotate (manually proofread if 
possible) the constituent type (NP, VP, etc.) and head 
word information for each functional chunk, and build a 
new version of chunk bank. 

2) Extract useful lexical collocations from new chunk 
bank and apply them in the partial parsing models to 
improve parsing performance. 

3) Build a 1,000,000 words Chinese treebank 
annotated with syntactic constituent and function 
information on the top of current chunk bank. 
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Figure 1  Build the Chinese treebank through two-stages processing 
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