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Abstract 
In this paper we introduce the ATLAS [Architecture and Tools for Linguistic Analysis Systems] architecture by describing how a 
proposed annotation task would be modeled using ATLAS concepts. We first present a brief motivation for this work and then move 
on to describe an example annotation task that will serve as the basis for this paper. Next we model the example task using ATLAS. 
We describe how the introduction of the new Meta-Annotation construct enables us to move forward by allowing unambiguous 
description of the annotation task and modeling of relations between the different annotation elements. We conclude by describing the 
current state of the ATLAS framework. 

1. Introduction 
Annotated corpora are a central component of research 

in human language technology. As corpora have 
proliferated across languages, disciplines, and 
technologies, the lack of common exchange and storage 
formats has become a critical problem. This profusion of 
formats has made reusing annotated data or adapting 
existing tools for new annotation tasks significantly more 
difficult. 

Standardization of tag sets – an approach we tried with 
our Universal Transcription Format (NIST, 1998) – is of 
moderate usefulness since language research is usually an 
open-ended task, subject to constant revision as the 
research domains change and the theories evolve. 

A solution to this "bazaar of tools and formats" (Bird 
et al., 2000) is to interpose a generic annotation model via 
which annotation data is manipulated. This level of 
indirection1 has several benefits. In particular, physical 
storage and application logic are clearly separated. This 
separation did not exist when most tools were written to 
directly read and write data using a specific format, 
hindering their reusability. Interposing an intermediate 
data model permits tools to be written in terms of the 
generic abstractions instead of having to deal with the 
particulars of specialized data formats. Tools can therefore 
work with any data that can be represented using the 
abstractions of the data model regardless of their actual 
physical storage. 

The recently updated ATLAS [Architecture and Tools 
for Linguistic Analysis Systems] framework, which we 
introduce in this paper, makes use of such a generic data 
model. ATLAS provides an architecture targeted at 
facilitating the development of linguistic annotation 
applications2 and is comprised of four main components: a 
data model, an Application Programming Interface (API), 
the ATLAS Interchange Format (AIF, 1999) and the 

                                                 
1 “Computer Science is the discipline that believes that all 

problems can be solved with one more layer of indirection.” –
Dennis DeBruler 

2 Atlas was (in the Greek mythology) the Titan condemned to 
bear heavens upon his shoulders. ATLAS is designed to bear 
the complexity of annotation management for the benefit of 
linguistic applications! 

Meta-Annotation Infrastructure for ATLAS (MAIA3, 
2002). The data model at its core provides the abstractions 
on which the rest of the framework is built. These 
abstractions can be implemented using any full-featured 
programming languages. NIST has created a Java 
instantiation of the data model. This implementation 
provides a set of objects that can be used to quickly 
develop linguistic applications. These objects each publish 
operations via which their data can be manipulated and 
behavior controlled. The ensemble of these operations 
defines the ATLAS API. ATLAS annotations can be 
serialized to XML using AIF to facilitate their exchange 
and reuse. Finally, MAIA, an important new component, 
was added to permit constraining of ATLAS’ generic 
constructs for specific needs. 

ATLAS began as a collaboration between the LDC, 
MITRE and NIST in 1999 following Bird and Liberman's 
seminal work on Annotation Graphs (Bird and Liberman, 
1999) that demonstrated commonality across a diverse 
range of annotation practices and defined a formalism 
based on labeled, directed acyclic graphs. ATLAS was 
formally introduced at LREC 2000 in Athens, Greece and 
was the subject of (Bird et al., 2000). 

After LREC, the LDC moved on to implement 
Annotation Graphs – also called AGs or ATLAS level 0 
(AG, 1999) – to address immediate needs in annotation 
infrastructure for linear signals. NIST, on the other hand, 
decided to defer immediate implementations to pursue the 
development of the generalized version of ATLAS. 
NIST’s version encompasses signals of arbitrary 
dimensions because, as well-suited to linear signals as it 
was, the logical model provided by AGs did not scale well 
to higher-dimensional cases. A first implementation of the 
generalized model was made available in April 2001. This 
first release allowed us to gather valuable feedback, from 
which we decided to evolve the framework towards better 
expressiveness while fixing existing problems. The data 
model was modified to accommodate new ideas and 
significant parts of the implementation were rewritten. A 
Beta release of this redesigned implementation was 
released at the end of January 2002. 

This paper focuses on this release of the generalized 
version of ATLAS (subsequently referred to as 
"ATLAS"). We present an introduction to ATLAS from a 

                                                 
3 Maia was one of Atlas’ daughters in the Greek mythology. 



practical point of view in the context of our new Rich 
Transcription (RT) evaluation project. We first describe 
part of the annotation task for this project. Next, we model 
these annotations using ATLAS concepts that we 
introduce along the way. We then briefly introduce the 
Meta-Annotation concept before concluding with a 
discussion of the benefits of using ATLAS and a summary 
of the current status of the framework. Note that this paper 
focuses on providing an overview of the core ATLAS 
concepts and how they can be used. Later papers will 
describe specific aspects of the architecture in greater 
detail. 

2. Example Annotation application: rich 
transcription 

In order to present a practical approach to using 
ATLAS, we will work through an ATLAS example based 
on an emerging NIST language technology evaluation. 

For over fifteen years, NIST has been conducting 
common evaluations of the performance of automatic 
speech recognition technology. Traditionally, these 
evaluations have focused on the accuracy of 
automatically-generated orthographic word transcriptions. 
The technology is now evolving and future speech 
recognition systems will be required to output a variety of 
integrated metadata as well as orthography to produce 
data which will be more useful for downstream processing 
and human readability. We refer to these enriched systems 
as "Rich Transcription" (RT) systems. To support research 
and evaluation in automatic RT, NIST is conducting a 
pilot evaluation, Rich Transcription 2002 (RT-02, 
Garofolo et al., 2002) that, in addition to the evaluation of 
orthographic transcription, will also address the automatic 
production of metadata. Given time and resource 
constraints, the metadata annotation to be explored in the 
pilot evaluation will involve only the segmentation of an 
audio excerpt by speaker and then clustering the speaker 
segments according to speaker identity within the excerpt. 
However, a variety of other metadata annotations can be 
envisioned for future RT evaluations including, but 
certainly not limited to: 

• Speaker segmentation and identification 
• Sentence or phrasal unit segmentation and 

classification 
• Acronym detection and expansion 
• Verbal edit detection, identifying regions of 

disfluency 
• Named entity detection/classification 
• Numeric expression detection/classification 
• Temporal expression detection/classification 
Note that some of these detection tasks involve the 

generation of sub-recognition or classification 
information. This diversity of output requires a new 
flexible non-monolithic approach to the development of 
evaluation software. 

The goal of the speaker segmentation and 
identification task is to divide the audio signal excerpt into 
homogeneous units spoken by the same person. The task 
involves two concepts, identifying a set of speakers in the 
recording and maintaining a list of speaker segments 
where that speaker was talking. The speaker concept 
encapsulates global attributes about the speaker, for 
instance the gender, dialect, and etc., while a speaker 
segment is used to record the extent of a particular speaker 

utterance. Once speaker segments are identified, the next 
step is to transcribe what was said. To represent the 
orthography, we are using the generic concept of 
‘orthographic units’ (OUnits). 

OUnits are a way to generalize the transcription of 
spoken units of language. There are many types of units 
that need to be transcribed including the continuum from 
non-speech verbalizations to spoken words. In English, 
these are represented with printed words, in Mandarin, 
printed characters. As such, OUnits can have a variety of 
attributes that will further define their content. 

While it is conceivable to attribute metadata directly to 
the time stream, it is often expedient to attribute these 
phenomena to the transcribed OUnits. Therefore, once 
OUnits are established, other forms of metadata can then 
be identified via the set of OUnits that constitute them. 
For example, verbal edit detection can be accomplished by 
identifying the set of OUnits involved in a verbal edit. 
Detection of acronyms, Named Entities (NEs), numeric 
expressions and temporal expressions can be identified in 
the same way. Since the OUnits are related to a speaker 
through a speaker segment annotation, these metadata can 
be traced back to the speaker they are attributed to. 

We envision that over time, RT systems will become 
very complex, generating metadata covering a variety of 
linguistic and non-linguistic phenomena. To support 
current and future rich transcription evaluation needs, we 
are developing evaluation software leveraging the ATLAS 
framework. Using ATLAS, we are able to design a 
relatively generic evaluation software engine that can 
elegantly accommodate a vast variety of different 
metadata types. 

For the purpose of this paper, we will create a 
hypothetical integrated RT annotation from an audio 
excerpt from a speaker containing a word transcript and a 
variety of metadata annotations. Our hypothetical excerpt 
will be a recording of the spoken sentence: "Joe f- fell off 
the log", containing a verbal edit ("f-") and a NE ("Joe"). 

Next, we outline the steps taken to create the transcript 
described above and introduce ATLAS’ main concepts. 

3. Annotating using ATLAS 
The entry point to ATLAS is the core linguistic 

annotation ontology upon which it is built: 
 

An annotation is the fundamental act of 
associating some content to a region in a 
signal. 

 
These four primary concepts are represented within the 

ATLAS framework by $QQRWDWLRQ, &RQWHQW, 5HJLRQ and 
6LJQDO constructs. The preceding notation defines a 
convention that we follow in this paper: ATLAS concepts 
are formatted using WKLV� IRQW� DQG� VW\OH to allow us to 
distinguish them. 

Even though ATLAS’ core ontology is fairly simple, it 
is nevertheless surprisingly powerful when it comes to 
expressing complex annotation schemes. The annotation 
process using ATLAS can be broken down into three 
major steps: 

• Identification of regions of interest in a signal 
• Association of content with these regions to form 

annotations 
• Linking related annotations together 



Next, we detail each step in sequence. 

3.1. Identification of regions of interest in a 
signal 

The annotation process begins by specifying a 6LJQDO. 
An ATLAS 6LJQDO is an immutable, N-dimensional space 
containing phenomena that might be the target of 
$QQRWDWLRQV. Even though typical 6LJQDOV can be equated 
to physical signal files (speech waveforms, newswire text, 
video or other more complex data with higher 
dimensionality), it is not a necessity. In ATLAS, a 6LJQDO 
is an entity that identifies a logical (as opposed to a 
physical file) target for $QQRWDWLRQV and can thus refer, 
for example, only to the left track of a stereo recording. 
ATLAS also does not prescribe to any single format or 
dimensionality for physical signals, but there must be a 
way to define an unambiguous coordinate system for the 
6LJQDO. 

Once a 6LJQDO is established, it is possible to begin 
annotating it. The first step is to identify a region within 
the 6LJQDO relative to a phenomenon of interest. In 
ATLAS, a 5HJLRQ is an abstraction for identifying an area 
of the 6LJQDO space. 5HJLRQV are delimited by a set of 
coordinates that mark specific locations delimiting the 
interesting area. These markers are modeled (in ATLAS) 
by the $QFKRU construct, thus called because they are used 
to “anchor” annotations to 6LJQDOV. $QFKRUV are the only 
ties that annotations have to the physical structure of the 
signal and the only ATLAS concept that is signal-specific. 
5HJLRQV use as many $QFKRUV as needed to index into 
6LJQDOV. The 5HJLRQ construct encapsulates the 
complexity of multidimensionality by abstracting away 
the specificity of the underlying signal. This is a 
particularly important aspect of ATLAS since it allows the 
framework to evolve and scale gracefully, when 
confronted with new classes of signals, without requiring 
change to the basic ontology. 

For our RT example, the 6LJQDO is a speech waveform 
and time is the dimension along which $QFKRUV are 
specified. 5HJLRQV of interest are thus intervals in time 
and are modeled in ATLAS via the use of two $QFKRUV – 
one marking the beginning of the 5HJLRQ’s extent and the 
other marking the end of it. 
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Figure 1: Identifying regions in a signal 

Figure 1 shows two 5HJLRQV for our RT example. 
ATLAS constructs as described above are represented 
using boxes. The number in the $QFKRU boxes records the 
instant in time that the $QFKRU points to in the 6LJQDO. The 
first interval of interest in our 6LJQDO thus spans from the 
time recorded by the first $QFKRU it references to the time 
recorded by the second $QFKRU. Note that this information 
is signal specific: a different kind of signal (a video for 
example) would have required a different coordinate 
scheme. $QFKRUV encapsulate the specificity of signals 

(coordinate scheme, units, etc…) allowing signal-specific 
information to be strictly localized. 

3.2. Association of content with the regions to 
form annotations 

Once an interesting linguistic phenomenon has been 
located in the 6LJQDO via the use of a 5HJLRQ, an 
$QQRWDWLRQ is built by associating some content with it. 
&RQWHQW constructs represent (in ATLAS) any information 
that annotators would like to specify about the linguistic 
event occurring in the specified 5HJLRQ. The information 
can be a simple data type like a string or a complex data 
structure like those used in typical programming 
languages. 
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Figure 2: Example of a STT output 

Figure 2 shows an example of OUnit $QQRWDWLRQV as 
would be produced by a STT system. We have taken the 
5HJLRQV that we identified in the previous step and 
associated them with the text transcription associated to 
the interval identified in the audio signal. This association 
is recorded in the context of an ATLAS $QQRWDWLRQ. We 
have thus created two OUnit $QQRWDWLRQV recording the 
transcription associated with the intervals that we 
previously identified. 

Embedded boxes represent a composition (tight 
coupling) relationship. In a composition, parts cannot be 
decoupled from their parent, meaning that their existence 
is tied to their parent’s. For example, &RQWHQW is tightly 
coupled to its parent $QQRWDWLRQ: it cannot exist 
independently of its defining $QQRWDWLRQ. Arrows 
represent references, which are a weaker form of 
coupling: a reference associates concepts but the 
participating elements’ existences are not tied to one 
another. For example, an $QQRWDWLRQ has a reference to a 
5HJLRQ but the 5HJLRQ exists independently of the 
$QQRWDWLRQ (which can be destroyed without impacting 
the existence of the 5HJLRQ). 

References support another important feature of 
ATLAS: the reuse of annotation data. Some ATLAS 
entities (such as 5HJLRQV, $QFKRUV and $QQRWDWLRQV) are 
reusable via the use of references, thus allowing elements 
defined in a given context to be reused in different 
contexts. It is worth noting, though, that reusability is a 
capability that is judiciously bestowed only to certain 
ATLAS entities because it comes with added complexity. 
In particular, in order to be reusable, an ATLAS element 
must be identifiable by having a unique identifier (,G) 
explicitly assigned to it. The management of these 
elements’ identity incurs additional processing. However, 



the advantages in expressiveness and power far outweigh 
the inconvenience, especially considering that this 
complexity is totally handled by the framework (in the 
Java implementation). Furthermore, reusability of 
$QQRWDWLRQV, which will be discussed later, gives ATLAS 
most of its flexibility. 

Identified constructs are distinguished by their ,G 
regardless of the value they hold (if any) whereas, in the 
case of composition, two elements holding the same 
values are interchangeable. Note that different semantics 
can be expressed by distinguishing between value and 
identity. In the previous figure, note that two $QFKRUV 
share the same value but are still duplicated. This is 
because, for our annotation task, OUnits are not 
necessarily contiguous. For this reason, the fact that two 
$QFKRUV share the same offset is purely coincidental. If 
we wanted to enforce the contiguity of OUnits, we would 
have made 5HJLRQV share their $QFKRUV. In this situation, 
modifying the offset of a shared $QFKRU allows every 
5HJLRQ that references it to access the new value without 
having to modify them. 

3.3. Linking related annotations together 
Now that we have an ATLAS representation of a STT 

system output, RT metadata information can be encoded 
by extending the base transcript. We are interested, for our 
particular example, to associate a NE Annotation to the 
OUnit “Joe” and a verbal edit Annotation to the Ounit    
“f-“. In addition, we want to link together all speaker 
segments associated with a given speaker. 

To do so, we will use the &KLOGUHQ construct to model 
relations between $QQRWDWLRQV. The purpose of &KLOGUHQ 
is to maintain a list of $QQRWDWLRQV (via $QQRWDWLRQ 
references) that are descendants of a parent $QQRWDWLRQ. 
For example in TIMIT (Garofolo et al., 1986), words are 
composed of a set of phones, which would be modeled in 
ATLAS by the fact that word $QQRWDWLRQV maintain a list 
of phone $QQRWDWLRQ references via a &KLOGUHQ 
subordinate. For our RT example, we model the relations 
that a speaker has with its subordinate speaker segments 
by adding a &KLOGUHQ subordinate to the speaker. This 
&KLOGUHQ element will contain a list of the speaker 
segment $QQRWDWLRQ references related to the considered 
speaker. Each speaker segment is itself linked to a list of 
OUnit (part of this speaker segment) $QQRWDWLRQV via a 
&KLOGUHQ element. A speaker can also be linked to NEs or 
verbal edits since we want to be able to identify which 
speaker uttered a given NE or verbal edit. We would 
therefore model our speaker $QQRWDWLRQ as containing 
three &KLOGUHQ elements: one for NEs, one for verbal edits 
and one for speaker segments. 

Since &KLOGUHQ elements link to the descendant 
$QQRWDWLRQV via references, it is possible to build 
overlapping hierarchies reusing the same $QQRWDWLRQV 
without the kinds of problems that occur in other purely 
hierarchical annotation schemes. For example, our NE 
$QQRWDWLRQV reference the same OUnit as speaker 
segments. This means that reuse is optimal since already 
created $QQRWDWLRQV can be reused in lots of different 
contexts. 
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Figure 3: Example metadata annotation 

Figure 3 represents the organization of $QQRWDWLRQV 
(with 5HJLRQV, $QFKRUV and 6LJQDO left out). Each 
&KLOGUHQ element can contain a separate hierarchy, but 
still make use of the OUnits for that speaker. In reality, 
NEs could extend over speaker segment boundaries but 
since ATLAS uses the reference mechanism to associate 
OUnits, speaker segments and NEs independently, this is 
trivial to represent. It is important to note that annotation 
schemes that rely purely on inline SGML such as UTF 0 
to markup text are not able to handle this type of 
representation because SGML is strictly hierarchical. 

Another interesting aspect of &KLOGUHQ is the fact that 
parent $QQRWDWLRQV can use their linked subordinate 
elements to derive their &RQWHQW and/or 5HJLRQ. In our 
example, a speaker segment $QQRWDWLRQ derives its 
5HJLRQ from the union of the 5HJLRQV referenced by its 
subordinate OUnit $QQRWDWLRQV. This allows, for 
example, the modification of sets of words without having 
to modify every sentence that depend on them. 

4. ATLAS Object Type Definitions with 
MAIA 

The ability to generate complex annotations means 
that an application developer could be forced to devote a 
significant portion of the development efforts (as was the 
case in ATLAS’ previous implementation) to issues like 
structural integrity or consistency checking. In order to 
facilitate application development, ATLAS 2.0 introduced 
the Meta-Annotation concept to address these needs. 

A Meta-Annotation is an unambiguous way to 
constrain ATLAS’ generic constructs for specific 
applications. In essence, a Meta-Annotation corresponds 
to a class definition in an object-oriented language. MAIA 
(Meta-Annotation Infrastructure for ATLAS) implements 
the Meta-Annotation concept for ATLAS. It provides a 
scheme language that allows type definitions to be 
declared using a simple, XML-based syntax. The ATLAS 
framework can then dynamically and automatically 
interpret these type definitions. MAIA also provides 
services (such as the loading and saving of types) that can 
be utilized by ATLAS implementations. MAIA 
specifically addresses two issues that we examine next: 
structural integrity and relations between $QQRWDWLRQV. 

4.1. Structural integrity 
The RT-02 annotation task that we are working with is 

well defined and makes use of such concepts as speakers, 
speaker segments, OUnits, etc. More generally, for any 
given annotation task, users are not interested in working 



with generic $QQRWDWLRQV. They want to work with 
specific concepts such as OUnits or speaker segments. 
ATLAS defines a very generic data model that is designed 
to be able to model a wide range of annotation tasks. 
Because of this genericity, ATLAS’ constructs are 
minimally constrained (because under-specified by 
design) and thus not optimally useful: a generic 
$QQRWDWLRQ, for example, encompasses every possible 
annotation that fits in ATLAS’ paradigm. A means of 
constraining generic constructs is therefore needed in 
order for the framework and ATLAS applications to 
handle a particular $QQRWDWLRQ as an OUnit, for example. 

The realization of the generic $QQRWDWLRQ in an OUnit 
$QQRWDWLRQ is done via its type. Types are metadata that 
are associated with an ATLAS construct to indicate that 
this particular element models a concept specific to the 
considered annotation task. Any ATLAS element to which 
a given type is assigned will behave like any other 
element of the same type. Moreover, elements with the 
same type will share the same structure. ATLAS types are 
thus very similar to classes in object-oriented parlance. 
However, to be truly useful, ATLAS applications need to 
be able to automatically interpret the type information 
without requiring user intervention or developer effort. 

MAIA offers this kind of service to application 
developers by providing an unambiguous type definition 
for the annotation task at hand. These type definitions are 
then used by MAIA to automatically create type 
constructs that allow the ATLAS framework (and 
applications depending on it) to perform structural checks 
by ensuring that elements that are supposed to be of a 
given type have the correct structure and behave as 
expected. This is automatically handled by the framework, 
freeing developers of the burden of having to take care of 
this. Applications can thus be written in terms of the 
generic abstractions but still be automatically tailored to 
custom needs by leveraging type information. 

4.2. Relations between Annotations 
Another aspect of working with linguistic data, apart 

from concept modeling, is the difficulty of dealing with 
relations between these concepts. In our explanation of the 
&KLOGUHQ concept, we specified that speaker $QQRWDWLRQV 
are linked to NE, verbal edit and speaker segment 
$QQRWDWLRQV whereas speaker segment $QQRWDWLRQV are 
linked to OUnit $QQRWDWLRQV. To make a truly valuable 
product, an ATLAS implementation should be able to 
automatically enforce this kind of very specific constraint 
without hindering the generic data model or requiring 
code to be written. 

MAIA automatically takes care of these details by 
linking type constructs together and ensuring that, for 
example, when subordinates are added to an $QQRWDWLRQ, 
they are of the right type. MAIA will eventually support 
more elaborate typing including support for value and 
range constraints. 

5. Conclusion 
We have demonstrated that ATLAS can be used to 

model both simple and complex annotation tasks. Since its 
early incarnation, the ATLAS framework evolved to 
incorporate numerous enhancements allowing improved 
modeling of annotations with respect to hierarchical 
relationships. The Java instantiation of ATLAS (jATLAS, 

2000) has been re-implemented to take into account these 
changes and is now currently in Beta version, available for 
download on the ATLAS web site (ATLAS, 1999). 

The introduction of the MAIA concept now also 
provides a way to model the semantic dimension that was 
originally left (purposely) out of ATLAS, allowing 
ATLAS users to define rich associations and constraints 
between the different aspects of their annotation task. 
Specific annotation tasks can be modeled with MAIA in 
an unambiguous way thus allowing ATLAS applications 
to automatically interpret type information and perform 
the tedious task of integrity and consistency checking for 
the application. MAIA is still very much a work in 
progress and it will be detailed in a forthcoming paper. 

At this time, we would like to invite people interested 
in using ATLAS for their annotation needs to send us 
descriptions of their annotation tasks to help them get 
started with MAIA and ATLAS annotation modeling and 
helps us improve our work by examining how well these 
different requirements are comprehended by the current 
ATLAS framework. 
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