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Abstract 
This study aims to simulate conditions that reflect the needs of speech-controlled consumer devices. In particular, it must be 
ascertained whether training in one type of environmental condition can be effectively adapted to other acoustic conditions, 
without having to perform costly collection in each specific  type of environment. The adaptation tool performs two tasks: 
convolution of the clean speech signal with a given (room) Impulse Response (IR) and addition of noise to the convolved 
speech signal. Noise addition is done using recordings of typical environmental noise sources. Baseline, cross-tests and 
adaptation tests were performed. Results of the convolution and noise addition tests are presented for a speaker-dependent 
name recognition task. It is shown that adaptation reduces the recognition error rates when compared to the cross-tests. 
Ongoing tests within the SPEECON project are currently underway for evaluating the effectiveness of straight noise addition 
after convolution.  For the speaker-independent case, preliminary tests on a database specifically collected for testing purposes 
have been performed. 
  

1. Introduction  
SPEECON is a project for creating spoken databases 

for 20 languages that includes a research component. 
The project is developed by an industrial consortium for 
the purpose of training speech recognition systems and 
promotes voice-controlled consumer applications such 
as control of television sets, video recorders, audio 
equipment, toys, information kiosks, mobile phones, 
palmtop computers and car navigation kits. As part of 
SPEECON’s research program, this study aims to 
simulate conditions that reflect the needs of speech-
controlled consumer devices.  

It is well known that training in one environment 
and testing in another has the effect of decreasing 
speech recognition performance. At the same time, 
database collection is a costly endeavor. Thus, it is 
important to study whether adaptation techniques can be 
developed that would effectively reduce the number of 
database collections needed for various types of noise 
and acoustic environments, while maintaining 
reasonable speech recognition rates.   

This study represents an initial phase in the 
SPEECON research program, indicating the potential of 
using adaptation algorithms on databases in various 
environmental conditions. Three experiments were 
performed. First, a speaker-dependent recognition 
experiment tested the effects of microphone type and 
distance from speaker. Second, adaptation to different 
microphones and distances was tested with and without 
noise addition. Third, a baseline speaker-independent 
recognition test was performed that tested the 
adaptation algorithm on isolated and connected digit 
recognition tasks as well as on a command and control 
task.  

The following section examines the goals of the 
paper. In Section 3, the adaptation tool is described. The 
SDR experiments and results are presented in Section 4. 
SIR baseline tests are presented in Section 5. Overall 
discussion of the results and the direction for future 
research is given in Section 6.   

2. Goal of the paper 
The main objective of this study is to show the 

potential of using database transformation methods for 
adapting acoustic data to different environments. This is 
particularly crucial for real-life applications involving 
speech-controlled consumer devices. It needs to be seen 
whether a system trained in one environment can be 
adapted to other acoustic conditions without collecting 
speech data in each separate environment, a costly and 
laborious task. In particular, it would be advantageous 
to capitalize on close-talk recordings to enhance 
performance of ASR for target far-talk applications. 

Thus, it is an important objective to develop an 
effective adaptation tool to be used for maintaining 
cost-effectiveness. The overall goal is to show whether 
such methods are effective in typical consumer 
applications and environmental conditions.  

3. Adaptation Algorithm 

3.1. General Description 
The goal of the adaptation tool is to transform a 

database collected in a quiet environment (no noise) 
with a close talk microphone (no reverberation) into a 
noisy and reverberated “far-field” environment. Under 
the assumption that noise is additive and that the effect 
of room acoustics and microphone can be represented 



by linear convolution, a database adaptation tool has 
been developed.  

The effective adaptation tool performs two tasks: 
convolution of the clean speech signal with a given 
(room) IR and addition of noise to the clean speech 
signal (see Figure 1).  The impulse response used for 
linear convolution is estimated from measurements 
made in real rooms using optimal IR identification 
techniques.  Alternately, the tool also offers the 
possibility of generating synthetic impulse responses.  
The synthetic impulse responses are generated by a 
newly designed algorithm.  The idea behind this 
alternative approach is to synthesize impulse responses 
that match a high-level description of the acoustic 
properties of a specific room impulse response such as 
reverberation time, early-to-late ratio, and global 
frequency characteristics.  These properties can be 
either computed from real impulse responses (via the 
tool), or measured directly in a room using standard 
acoustical measurement equipment (e.g. a sound-level 
meter) and then used in the tool. 

Noise addition is performed with recordings of 
typical environmental noise sources. Such recordings 
are performed as part of the SPEECON project. Once a 
noise file is available, it is scaled and added to the clean 
speech signal (after convolution thereof with an impulse 
response, if necessary) to get the desired SNR.  The 
SNR or, alternately, the speech and noise level can be 
measured using standard procedures.    

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Operation of the adaptation tool  

3.1.1. Motivation for the “Synthetic IR” 
approach 

Using the optimal identification technique to 
identify the room impulse response should permit 
recovery as close as possible to the initial recognition 
rate with minimized mismatch between training and 
testing conditions, under the hypothesis that the IR used 
to adapt the training database matches exactly the IR 
used in the test environment. 
In some circumstances, this requirement can lead to 
problems.  First, with this approach, a new impulse 
response measurement is required for each new 
recording configuration (room, speaker and ASR 
system position). Since training a robust ASR system 
may require many IR’s to cover the full spectrum of 
possible room configurations that can be encountered, 
the resulting data collection effort can rapidly become 
overwhelming. 

 Second, the optimally identified IR may be “too 
specific”.  That is, due to very precise identification, it 
will model a specific room and microphone/speaker 
configuration. Very small deviations from this 

configuration (e.g. moving the mouth of the speaker by 
a few centimers!) will result in changes of the IR, and 
therefore in a performance loss for the adapted ASR 
system, as has been observed by Couvreur, et al (2000).  
Some form of “smoothing” of the data is needed.   

A possible solution to the first problem is to use an 
acoustic simulation package such as that in Rindel 
(2000). However, very high quality impulse response 
generators are often complex, expensive and match “too 
specific” configurations.  Because they require minute 
descriptions of the geometry and acoustical properties 
of the room, they are not much cheaper than real 
measurements.  

The approach we propose, namely to synthesize 
“random” IR’s that match high-level properties of the 
room under consideration, can solve both problems.  
Since only high-level characteristics are taken into 
account, it is very easy to generate many IR’s from 
inexpensive measurements.  Furthermore, the fact that 
only high-level characteristics are matched provides a 
natural form of “smoothing”.  Of course, this requires 
that the high-level characteristics that are used are 
representative of the room as far as the operation of the 
ASR system is concerned.  

3.2. Impulse Response Estimation, 
Analysis and Synthesis 

3.2.1. General Principle 
There are two main methods for obtaining an IR that 

can be used to convolve the clean speech signal (Figure 
1).  The first method is to use real measurements from 
microphones placed in various positions in the room.  
The second method is to generate synthetic IR’s from 
parameters that capture high-level characteristics of the 
room.  The latter parameters can be obtained in two 
ways: 1) from a real identified IR or 2) from a 
geometric and acoustic description of the room via a 
mapping.  

In the following sections, these methods are 
outlined.  

3.2.2. IR Estimation using Real 
Measurements 

 
IR estimation is a well-known classical problem of 

room acoustics (Gardner, 1998), but for adaptation of 
speech databases the estimation problem needs some 
special considerations.  

Typically in room acoustics for measuring the room 
IR one would measure between an electrical reference 
noise signal before sending this signal to a loudspeaker 
and the room microphone placed somewhere in the 
room. In this case, direct measurements between the 
close talk microphone of the speaker and the room 
microphone were taken in order to calculate the IR. This 
way we get the best acoustical match that also includes 
a small feedback from the room into the reference 
microphone. 

The IR of a room is estimated by inputting a pink 
noise sequence recorded with both close-talk and far-
talk microphones. IR identification is done using 
modules that include: 1) removing recording artifacts 
that would corrupt the IR estimation, 2) solving normal 
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equations for making the IR estimation optimal, 3) LMS 
filtering for offering tracking capabilities. 

 Figure 2 shows the block diagram for the IR 
identification software.  

 
 

 
 
 
 

 
 

Figure 2: Optimal identification 
 
 
 

Input correlation matrix:  Rxx 
Cross-correlation matrix:  Rxy 
Identified Impulse Response  Hopt 
Hopt = Rxz  Rxx-1 
 
Figure 3 shows the block diagrams for the N-
LMS (normalized least mean squared) algorithm. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: N-LMS identification 
 

In this algorithm, the identification is done step-by-
step. For every new sample, the transfer function is 
computed that converges to the optimal solution. To 
accelerate the convergence of the algorithm, it can be 
initialized with the optimal solution previously 
calculated. 

  
The N-LMS algorithm is described below:  
 

Input signal   xn 
Output signal   yn 
Estimated output signal  y_estn 
Error signal   en 

 
Impulse Response order  N 
Input signal vector  Xn =(xn, ….., xn-N+1) 
Identified impulse responses vector Hn =(hn, 0, …, hn,N -1) 

Adaptation step-size   ?  
Normalized step-size  ?_norm 

 
Inverse input correlation matrix Pn 

 
 
 
Equations: 
 
y_estn     = Hn-1* Xn 
en      =  yn – y_estn 
Pn       = Pn-1 + xn² - xn-N² 
?_norm = ?  / Pn 
Hn       = Hn-1 + ?_norm?en?Xn 
*      = convolution operator 

3.2.3. IR Synthesis Method using Modeling 
Software 

The synthesis method used in this work is a variant 
of the one introduced by Couvreur & Couvreur  (2000) 
and Couvreur, et al (2000).  The idea is to generate 
impulse responses by manipulating (weighting and 
filtering) a white noise sequence. The manner in which 
the IR’s are generated is summarized in Figure 4. The 
leftmost part of the figure summarizes the different 
steps in the algorithm.  The rightmost column gives an 
example of IR generated by this process at the different 
steps.   

The synthesis process starts with a white noise 
sequence (pseudo-random). A non-linear downsampling 
operation is then performed to ensure that the proper 
density of reflections is present in the room IR 
(Gardner, 1998). The downsampled sequence is then 
filtered by a LPC filter that represents main resonant 
modes of the room. Note that the resonance modes are 
characteristic of the room, not of a specific position in 
the room.  As an alternative, the software also allows 
the frequency spectrum of the original IR to be used 
instead of an LPC model (h2).  An exponentially 
decaying envelope is then used to modulate the 
amplitude of the noise sequence (h3). The decay time of 
this envelope is directly linked to the reverberation time 
of the room.  Some gain and early-late energy 
normalizations are performed to adjust for different 
reverberation vs. direct path situations (h4).  Finally, the 
IR is high-pass filtered to remove DC artifacts (h5).   

The IR synthesis software is driven by a set of 
parameters (for the LPC coefficients, the exponential 
decay, energy and gain normalizations). All the 
responses generated by this software are computed 
using only parameters stored in a file, which is the 
output of the analysis/extraction parameters software. 
The analysis software takes as input an IR identified by 
the identification software described in Section 3.2.2. 

This software outputs six IR models. Within these 
models, one subset of 3 responses uses only the noise 
sequence generator and the other subset applies the 
sparseness filter. This allows the user to experiment 
with the effects of the various modeling components. 
The following models are thus produced by the 
software: 

 
Model   0:  white noise sequence generator + 
envelope, 

 
Hopt 

Far-talk pink 
noise signal = 
output signal 

Close-talk pink 
noise signal = 
input signal 

True 
IR 

Far-talk pink 
noise signal = 
output signal yn 
 

Close-talk 
pink noise 
signal = input 
signal xn 
 

 
Hn 

 

en 

 
+ 

-  

Estimated 
output signal 
y_estn 



Model 1: white noise sequence generator + LPC 
information + envelope, 
Model   2: white noise sequence generator + 
filtering with the real IR + envelope, 
Model 3: white noise sequence generator + 
sparseness + envelope, 
Model 4: white noise sequence generator + 
sparseness + LPC information + envelope, 
Model 5: white noise sequence generator + 
sparseness + real IR + enve lope. 
 
The block diagram is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3.3. Convolution  
Convolved/reverberated speech is obtained by 

convolving speech recorded at the close-talk 
microphone with the IR’s calculated for the other 
microphone positions.   

In the tool, this convolution is performed efficiently 
in the frequency domain using an OverLap-Add (OLA) 

method (Oppenhiem and Schaffer, 1999). This approach 
is preferred over the plain linear convolution because of 
the length of typical room impulse responses.  

3.4. Noise Addition 
Noise addition is done by adding a recorded noise 

sequence to the clean speech utterance.  The recorded 
noise sequence must be representative of the target 
operating environment for the system. Such noise 
recordings are part of the SPEECON data collection 
effort.  

The noise addition algorithm is as follows: 
    
x(k)   initial clean speech utterance 
n(k)   interference noise recording 
y(k) = x(k) + g ?  n(k) noisy speech utterance 
 
The noise gain, g, is chosen in order to obtain the 

desired SNR statistics.   
Special attention is paid to the addition of the noise 

recording.  The tool is intended for use with very long 
noise recordings (up to 30 minutes) when compared to 
the typical clean speech utterance.  When batch-
processing a large series of speech utterances, the noise 
addition tool updates a pointer to ensure that the full 
noise recording is used and not always the same small 
initial segment.  

4. Speaker-Dependent Experiments 

4.1. General Overview 
This section describes database development for the 

purpose of testing the potential for the adaptation 
procedure. The recognition was performed using NSC's 
speech recognition engine, NSCEngine, removing all 
tools for robustness. In the first section, the databases 
themselves are described. The following sections 
describe speaker dependent tests done on these 
databases.  

 

4.2. Speaker Dependent Recognition 
Experiment  

4.2.1. Method 
As a pilot case, two Hebrew speakers were recorded 

with two microphone types (Cardioid and Omni) in 
several positions (close/middle/far). The speakers were 
required to read 40 Hebrew application words with ten 
repetitions. A loudspeaker playing pink noise was 
placed near the close cardioid microphone at the same 
position as the speaker. Pink noise recorded from the 
speaker’s mouth level was used for calculating the 
impulse response (IR).  

Three types of tests were done: baseline tests, cross 
tests and convolution tests, as described below.  

Baseline tests are done using a test set of speech 
files that were recorded with the same microphones 
used in training.  Thus, in the baseline tests, training and 
testing are done in the same environment. 

Cross-tests are done by training the speech 
recognizer with speech data recorded from the close 
cardioid microphone and testing with speech recorded 
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using the other microphones in the test setup. This 
represents the worst case scenario, where the difference 
between training and testing conditions are maximal.  

The effectiveness of adaptation is tested in 
convolution tests, which involve training with 
convolved speech while testing on files from another 
environment. In this case, the speech recorded with the 
close cardioid microphone is convolved with the IR 
calculated for the other distances, while testing is done 
using the original files. The difference between results 
obtained by the cross tests and the convolution tests 
represents the effectiveness of the adaptation tool.  

4.2.2. Results 
Results are shown in Table 1. As can be seen in the 

table, convolution improved the recognition results, 
particularly for the far microphone case.  

 

Baseline Tests Cross Tests Convolution 
Tests 

Close 95.9% --- --- --- --- 

Mid 92.5% Mid 96.6% Mid 97.5% 

Far 91.8% Far 94.1% Far 96.6% 

 
Table 1: Results for Speaker Dependent Experiment   
 
Further investigation shows that the higher 

recognition rates in the cross tests were due to the voice 
activity detection (VAD) function.  

4.3. Noise Addition Experiment 

4.3.1. Method 
The recording setup is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  Recording Setup 
 
Two native English speakers were recorded, one 

female and one male, using four microphones. These 
speech samples were adapted to the middle and far 
microphones and were then tested in various noisy 
environments. Noise was added to the convolved files, 
and the speech samples were then tested in the same 
noise environment that had been added.  

Two types of environmental noises were added: 
computer room noise and noise from a shopping mall. 

As in the other experiments, baseline, cross-tests and 
convolution tests were done.  

4.3.2. Results  
Results are shown in Table 2. Results show that 

convolution generally improves recognition, especially 
in the highly noisy environment and using the far 
microphone. Word error rates (WER's) decreased 
between 27%-40% when convolution was performed.  

Convolution with noise addition does not improve 
recognition rate, while noise addition to the clean 
speech from the close cardioid microphone improves 
recognition rate.  
 

Mic’s Baseline 
Tests 

Cross 
Tests 

Conv 
Tests 

Conv & 
Noise 

addition 

Middle 90.84% 84.93% 87.20% 85.17% 

Far 78.92% 59.32% 69.01% 67.32% 

Table 2: Results for Noise Addition Experiment   
 
Figure 6 shows the results of the noise addition in 

different target SNR's. As can be seen, noise addition to 
the clean speech from the close cardioid microphone 
improves recognition rate. 
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Figure 6: Results for Noise Addition Experiment  

5. Speaker Independent Experiments 

5.1. General Overview 
This section describes database development for the 

purpose of testing the potential for the adaptation 
procedure in the speaker-independent (SI) case. The 
recognition was performed using a simplified version of 
one of ScanSoft’s recognition engines. In the first 
section, the SI database is described. The following 
sections describe the experiments conducted and present 
some preliminary results.  

 

5.2. Validation SI Database 
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The Validation SI Database was collected for the 
purpose of evaluating the adaptation tool described in 
Section 3 with a speaker-independent recognizer.  

A French database was collected in the area of Paris 
(Ile de France).  A total of 46 speakers were recorded in 
137 sessions in different recording conditions.  Two 
rooms were used: a small room (office) and a large 
room (meeting room).  Noise conditions were varied by 
opening or closing a window on a busy city street, 
considered as ‘noisy’ and ‘quiet’ environments, 
respectively. In some of the recording sessions, the 
speaker was moving ('dynamic') in order to show the 
impact of dynamic variation of the acoustic path 
between the speaker and the microphones (IR).    

The recording set-up is similar to the one shown in 
Figure 5.  It uses three microphones: a close-
talk/headset microphone, a far-talk cardioid microphone 
at a medium distance, and another far-talk 
omnidirectional microphone at the opposite end of the 
room.  Figure 7 illustrates the A-weighted segmental 
biased SNR in the various room and recording 
conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 7: A-weighted SNR in Various Room and 
Recording Conditions 

 
In each of the recording sessions, the speaker was 

asked to utter 10 isolated command & control words 
(out of a set of 141), 10 isolated digits, 10 free-form 
sequences of 10 connected digits, and 5 sequences of 4 
free-form digits. For IR identification, pink noise was 
also played by a loudspeaker at the speaker’s head 
location and recorded. Noise background recordings 
were also performed. The recording sessions also 
included 20 minutes of background noise. 

 
 
 

5.3. ASR System and Training Path 

The experiments are conducted with a SI phonetic 
recognizer trained on a French corpus of about 80 hours 
of clean speech (close talk microphone recorded in 
office conditions).   The recognizer is a simplified 
version of one of ScanSoft’s embedded recognition 
engines.   

The “robustification” of the engine is performed by 
training it on the same 80-hour corpora processed by the 
simulation tool described in Section 3.   This is done for 
the various reverberation and noise conditions covered 
by the Validation SI database described in the previous 
section.   The training path makes use of synthetic 
impulse responses starting with an identified IR from 
the pink noise recordings. The synthetic IR's are 
randomized.  That is, multiple synthetic IR's are 
generated for the target conditions, and randomly 
shuffled during the database convolution (see Couvreur, 
et al, 2000).  For noise addition, the level of the speech 
and noise signal is adjusted to align the mean SNR on 
the processed database and the SNR measured on the 
Validation SI database. The training path also allows for 
the combination of multiple reverberation and noise 
conditions in the training (multi-style training) in the 
hope of getting a recognizer that will be able to operate 
in different environments.  

 
 
 

5.4. Experimental Results 
 
Recognition experiments are performed on the 

Validation SI database.  An isolated digit grammar with 
the 10 French digits is used with the “digit” part of the 
database.  A free-length connected digit grammar is 
used with the connected-digit part of the database.   A 
command and control grammar with 141 commands 
(the 10 recorded ones "enriched" to reach 141) is used 
with the command and control part of the database.  

Baseline results are given in Tables 3, 4 and 5 for 
isolated digit, connected digit and C&C recognition 
tasks, respectively. (Note: In the following tables, MIR 
stands for “meeting room”, OFF for “office”, Q for 
“quiet room”, and OW for “open window”.)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Rec 
Condition SER(%) WER(%) #UTT #WRD #SPKRS 
  Channel 1 
MIR-OW 0.2 0.2 450 450 42 
MIR-Q 0.7 0.7 510 510 45 
OFF-OW 0.4 0.4 400 400 27 
OFF-Q 0.7 0.7 390 390 23 
  Channel 2 
MIR-OW 1.2 1.2 450 450 42 
MIR-Q 0.2 0.2 510 510 45 
OFF-OW 1.1 1.1 400 400 27 
OFF-Q 2.0 2.0 390 390 23 
  Channel 3 
MIR-OW 24.2 24.2 450 450 42 
MIR-Q 7.6 7.6 510 510 45 
OFF-OW 45.4 45.4 400 400 27 
OFF-Q 9.6 9.6 390 390 23 

 
Table 3: SI Baseline Recognition Rates, Isolated 

Digits 
 
 
 
 
 

Rec 
Condition SER(%) WER(%) #UTT #WRD #SPKRS 

  Channel 1 
MIR-OW 2.3 1.9 450 540 42 
MIR-Q 2.4 2.0 510 612 45 

OFF-OW 5.2 4.6 400 480 27 
OFF-Q 4.3 3.6 390 468 23 

  Channel 2 
MIR-OW 5.5 4.6 450 540 42 
MIR-Q 3.7 3.1 510 612 45 

OFF-OW 6.1 5.4 400 480 27 
OFF-Q 6.1 5.1 390 468 23 

  Channel 3 
MIR-OW 38.8 36.1 450 540 42 
MIR-Q 33.8 30.7 510 612 45 

OFF-OW 68.3 69.8 400 480 27 
OFF-Q 22.4 19.6 390 468 23 
 
Table 4: SI Baseline Recognition Rates, Connected 

Digits 
 
 
 
 
 
 
 
 
 
 
 

 
Rec 

Condition SER(%) WER(%) #UTT #WRD #SPKRS 
  Channel 1 

MIR-OW 12.7 1.7 90 720 5 
MIR-Q 10.0 1.7 90 720 4 

OFF-OW 12.4 1.5 330 2640 17 
OFF-Q 7.7 1.1 315 2520 13 

  Channel 2 
MIR-OW 16.0 2.2 90 720 5 
MIR-Q 6.7 0.8 90 720 4 

OFF-OW 21.4 3.1 330 2640 17 
OFF-Q 11.5 1.6 315 2520 13 

  Channel 3 
MIR-OW 95.3 52.6 90 720 5 
MIR-Q 56.7 11.4 90 720 4 

OFF-OW 97.8 65.0 330 2640 17 
OFF-Q 56.1 11.8 315 2520 13 

 
Table 5: SI Baseline Recognition Rates, Command 

and Control Words 
 

As can be seen, the reverberation and noise 
conditions for the far-talk microphone are particularly 
harsh, leading to very high error rates. The mid-distance 
microphone seems to be a more realistic target.  Based 
on the results obtained in the SDR experiments of 
Section 4, these preliminary results suggest that a 
performance gain of 20 to 40% relative is possible for 
this mid channel by using convolution and noise 
addition.  

 
 
 

6. Discussion 
 

The potential for adaptation is shown in this initial 
phase of the SPEECON research. It is shown that 
adaptation methods involving convolution improves 
recognition performance. In particular, convolution is 
highly recommended for the far microphone and for 
highly noisy environments in the speaker dependent 
case.   

Further testing of the potential of the adaptation 
toolbox needs to be done on the above speaker-
independent database before performing evaluation on 
the larger SPEECON databases. Future work includes 
evaluating the adaptation methods on the large-scale 
databases collected in various acoustic environments 
within the SPEECON project using several hundreds of 
speakers.  
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