
VIQTORYA – A Visual Query Tool for Syntactically Annotated Corpora

Ilona Steiner
�
, Laura Kallmeyer

�

�
Seminar für Sprachwissenschaft, Universität Tübingen

Wilhelmstr. 113, D–72074 Tübingen, Germany
steiner@sfs.uni-tuebingen.de

�
TALaNa-Lattice, Université Paris 7

2, place Jussieu, F–75251 Paris cedex 05, France
laura.kallmeyer@linguist.jussieu.fr

Abstract
This paper presents a query tool for syntactically annotated corpora. The query tool is developed to search the Tübingen Treebanks
annotated at the University of Tübingen. However, in principle it also can be adapted to other corpora. The tool uses a query language
that allows to search for tokens, syntactic categories, grammatical functions and binary relations of (immediate) dominance and linear
precedence between nodes. The overall idea is to extract in an initializing phase the relevant information from the corpus and store it in
a compact way in a relational database. An incoming query is then translated into a corresponding SQL query that is evaluated on the
database. A graphical user interface allows to specify queries in a user-friendly way.

1. Introduction
With the increasing availability of large amounts of

electronic texts, linguists have access to more and more ma-
terial for empirically based linguistic research. Currently
many corpora are tagged with morphosyntactic categories
(part-of-speech) and there are already several syntactically
annotated corpora. Examples are the Penn Treebank (Mar-
cus et al., 1994; Bies et al., 1995) annotated at the Univer-
sity of Pennsylvania, the Negra corpus (Brants et al., 1999)
developed in Saarbrücken, the French treebank annotated in
Paris (Abeillé and Clément, 1999) and the Tübingen Tree-
banks (Hinrichs et al., 2000) annotated in the project Verb-
mobil at the University of Tübingen. A sample entry taken
from the Tübingen German Treebank is shown in Fig. 1.
However, in order to have access to these rich linguistic an-
notations, adequate query tools are needed.

In this paper we present the prototype version of VIQ-
TORYA (A Visual Query Tool for Syntactically Annotated
Corpora) with a query language that allows to search for
complex syntactic structures in corpora. In contrast to an
earlier version of the tool presented in Kallmeyer (2000b),
the query component now can process all elements defined
by the query language (disjunction in a restricted version)
and the architecture is extended by a graphical user inter-
face. The tool is developed for the Tübingen Treebanks,
but it can be adapted to other corpora as well.

1.1. The Tübingen Treebanks

The Tübingen Treebanks, annotated at the University of
Tübingen, comprise a German, an English and a Japanese
treebank consisting of spoken texts restricted to the domain
of arrangement of business appointments. In this paper we
focus on the German Treebank (TüBa-D) (Stegmann et al.,
2000; Hinrichs et al., 2000) that contains approx. 38.000
trees (or rather tree-like annotation structures since the
structures are not always trees).

The corpus is part-of-speech tagged using the Stuttgart
Tübingen tagset (STTS) described in Schiller et al. (1995).

One of the design decisions was that for the purpose of
reusability of the treebank, the annotation scheme should
not reflect a commitment to a particular syntactic the-
ory. Therefore a surface-oriented annotation scheme was
adopted to structure German sentences that is inspired by
the notion of topological fields in the sense of Höhle (1985)
(see Fig. 1, 2): The verbal elements have the categories LK
(linke Klammer) and VC (verbal complex), and roughly ev-
erything preceding the LK forms the “vorfeld” VF, every-
thing between LK and VC forms the “mittelfeld” MF and the
“nachfeld” NF follows the verbal complex.

The corpus is annotated with syntactic categories as
node labels, with grammatical functions as edge labels and
with dependency relations. The syntactic categories are
based on traditional phrase structure and on the theory of
topological fields.

The data structures used for the Tübingen Treebanks are
not always trees in order to cope with the characteristics
of spontaneous speech. So, for example, an entry of the
treebank can consist of several tree structures (see Fig. 1).
Furthermore, an element of the corpus might contain com-
pletely disconnected nodes (see, e.g., the repetition of the
finite verb macht in Fig. 1 which is not bound to the rest of
the sentence). In contrast to Negra or Penn Treebank, there
are neither crossing branches nor empty categories.

1.2. An Example

In the following, an example of a linguistically relevant
construction is considered that illustrates how useful access
to structural information in a corpus might be.

(1) der Kaiser hat dem Fürst den Maler empfohlen
the emperor has to the prince the painter recommended
“the emperor recommended the painter to the prince”

Linguistic research is often concerned with word order
preferences in sentences and the factors that influence word
order. Studies have shown, for example, that dative noun
phrases (NPs) tend to precede accusative noun phrases in

0 1 2 3 4 5 6 7 8 9 10 11

500 501 502 503 504 505 506 507

508 509 510 511

512 513

ja

PTKANT

gut

ITJ

,

$,

das

PDS

macht

VVFIN

macht

VVFIN

mir

PPER

nichts

PIS

,

$,

sehr

ADV

sch"on

ADJD

.

$.

−

DM

−

DM

HD HD

VXFIN

HD HD HD HD

NX

ON

VXFIN

HD

NX

OD

NX

OA

ADVX

− HD

VF

−

LK

−

MF

−

SIMPX

ADJX

−

DM

Figure 1: Annotated sentence “yes okay, it doesn’t matter to me, very good.” (taken from the Tübingen German Treebank)

the German ‘mittelfeld’. An example is (1) where we have
a dative NP (dem Fürst) preceding the accusative NP (den
Maler). Both NPs are positioned between the two verbal el-
ements (i.e. in the ‘mittelfeld’). It seems, however, that the
preferred word order is reversed if the NPs are pronouns
(see, e.g., Featherston (2002)). The annotation of (1) ac-
cording to the annotation scheme of the Tübingen German
Treebank (TüBa-D) is shown in Fig. 2.

In these cases it is useful to search an adequate corpus
for more natural data showing the same construction (see
also Meurers (1999), for examples of the use of corpora for
linguistic research). In order to find structures as in Fig. 2
in the German treebank one needs to search for a dative NP
preceding an accusative NP in the ‘mittelfeld’, i.e., search
for trees containing a node ��� with label NX and grammat-
ical function OD (dative object) preceding a node ��� with
label NX and grammatical function OA (accusative object)
and a node ��� with label MF that dominates ��� and � � .

Evaluating this query on TüBa-D gives results such
as (2) showing a preference of dative NPs preceding ac-
cusative NPs even for two pronouns, at least if the pronoun
in the accusative case is the demonstrative das.

(2) na, dann notiere ich mir das so .
well, then write down I myself that like this .
“well, then I’ll write that down like this .”

This example illustrates the usefulness of syntactic an-
notations for linguistic research and the need of query lan-
guages and query tools that allow access to these annota-
tions.

The query tool we propose in this paper is implemented
at present for the Tübingen German Treebank and allows to
search for underspecified tree fragments including parent,

0 1 2 3 4 5 6 7

500 501 502 503 504

505 506 507 508

509

der

ART

Kaiser

NN

hat

VAFIN

dem

ART

Fürst

NN

den

ART

Maler

NN

empfohlen

VVPP

− HD HD − HD − HD HD

NX

ON

VXFIN

HD

NX NX

OAOD

VXINF

OV

VF LK MF VC

SIMPX

− − − −

Figure 2: Annotation of (1) according to TüBa-D

dominance and linear precedence relations even in corpora
annotated with structures different from trees.

2. The Query Language of VIQTORYA

2.1. Syntax

As query language, a first order logic without quantifi-
cation is chosen. Variables are interpreted as existentially
quantified. Negation is only allowed for atomic formula.
Even this very simple logic already gives a high degree of
expressive power with respect to the queries linguists are
interested in (see for example Kallmeyer (2000a) for theo-
retical investigations of query languages).

Let
�

(the node labels, i.e., syntactic categories and
part-of-speech categories), � (the edge labels, i.e., gram-
matical functions) and 	 (the terminals, i.e., tokens) be
pairwise disjoint finite sets. >, >>, .. are constants for
the binary relations immediate dominance (parent relation),
dominance (reflexive transitive closure of immediate dom-
inance) and linear precedence. The set IN of natural num-
bers is used as variables. Further, &, |, ! are logical
connectives (conjunction, disjunction, and negation).

Definition 1 (
 ��� � � 	� -queries)

 ��� � � 	� -queries are inductively defined:
(a) for all i � IN, t ��	 :

token(i)=t and token(i)!=t are queries,
(b) for all i � IN, c � � :

cat(i)=c and cat(i)!=c are queries,
(c) for all i � IN, e ��� :

fct(i)=e and fct(i)!=e are queries,
(d) for all i, j � IN:

i>j and i!>j are queries,
i>>j and i!>>j are queries,
i..j and i!..j are queries,

(e) for all queries ��� � � � :
� � & ��� and (� � | ���) are queries.

Note that different variables are considered to refer to
different nodes. The intended models for this logic are
defined as more general structures than finite trees, since,
as already mentioned, in the case of the Tübingen German
Treebank the data structures are not always trees. The struc-
ture in Fig. 1, for example, does not have a unique root, i.e.,
a node that dominates all other nodes, and two nodes do
not necessarily have a dominance or linear precedence re-
lation (e.g., the two nodes with labels VXFIN and SIMPX in

Fig. 1). The intended query models and the model-theoretic
semantics are defined in Kallmeyer (2000b).

Of course, when adapting this language to another cor-
pus, depending on the specific annotation scheme, other
unary or binary predicates might be added to the query lan-
guage. This does not change the complexity of the query
language in general. However, it is also possible that at a
later point negation needs to be allowed in a general way or
that quantification needs to be added to the query language
for linguistic reasons. Such modifications would affect the
complexity of the language and the performance of the tool.
Therefore the decision was taken to keep the language as
simple as possible in the beginning.

2.2. Underspecification in VIQTORYA

An important aspect of the query language defined
above is the possibility of underspecification. It is possible
to specify abstract tree fragments and, furthermore, to leave
underspecified particular aspects of these partial structures
as, e.g., the relation of dominance and the linear precedence
of nodes.

In the following, another example is considered that il-
lustrates the usefulness of underspecification. (3) shows a
complex prepositional phrase (PP) consisting of two parts:
a first PP beginning with the preposition von (“from”) and
a second PP beginning with the preposition bis (“to”).

(3) von der Stadt in der ich lebe bis nach Hannover
“from the town I live in to Hannover”

In order to find complex PPs as described above in the
corpus, one needs to search for a preposition von linearly
preceding a preposition bis and, moreover, a prepositional
phrase (with syntactic category PX) that dominates both
prepositions. Everything else remains underspecified. For
this query the relations of general dominance and general
linear precedence are needed since it is unknown how com-
plex both PPs are and how much material is positioned be-
tween the two prepositions. This leads to the query in (4).

(4) token(1)=von & token(2)=bis & 1..2
& cat(3)=PX & 3>>1 & 3>>2

3. The Architecture of VIQTORYA

The general idea of the tool is to store the informa-
tion one wants to search for in a relational database and
then to translate an expression in the query language pre-
sented above into an SQL expression that is evaluated on
the database. The tool consists of the following compo-
nents:�

an initializing component that extracts the relevant in-
formation (e.g., nodes/node pairs) from the trees in the
corpus and stores them in the database (see Sec. 3.2.).
This needs to be done only once for each corpus, usu-
ally by the corpus administrator.�
a graphical user interface for specifying in a user-
friendly way the queries that are then passed on to the
query component (see Sec. 3.4.),�
a query component that translates an incoming query
(expressed in the query language described above) into

node pair
�

tree id node1 node2 class id

pair class
class id node id1 node id2 p1 p2 d1 d2 l1 l2

node class node id cat fct

tokens
�

tree id node word

Figure 3: The relational database schema of VIQTORYA

an SQL expression and evaluates it on the database (see
Sec. 3.3.),�
query results (including their annotation) can be viewed
in the Annotate tool (Brants and Skut, 1998).

VIQTORYA is implemented in Java and uses Java
Database Connectivity (JDBC) as interface and MySQL as
database management system.

3.1. The Relational Database Schema

The Tübingen German Treebank consists of several
subcorpora. In the relational database there are two global
tables, node class and pair class. Besides these, for each of
the subcorpora identified by � there are tables tokens � and
node pair � . The database schema is shown in Fig. 3. The
arrows represent foreign keys. The column class id in the
table node pair � , for example, is a foreign key referring to
the column class id in the table pair class. This means that
each entry for class id in node pair � uniquely refers to one
entry for class id in pair class.

The content of the tables is as follows:�
node class contains node classes characterized by cate-
gory (node label) and grammatical function (edge label
between the node and its mother). Each node class has
a unique identifier, namely the column node id.�
pair class contains classes of node pairs characterized
by the two node classes and the parent, dominance and
linear precedence relation between the two node classes.
The columns p1, p2, d1, d2, l1 and l2 stand for binary
relations and have values � or � depending on whether
the relation holds or not. p1 signifies immediate dom-
inance of the first node over the second, p2 immediate
dominance of the second over the first, d1 dominance of
the first over the second, etc. Each node pair class has a
unique identifier, namely its class id.�
tokens � contains all leaves from subcorpus � with their
tokens (words).�
node pair � contains all node pairs from subcorpus �
with their pair class. Of course, only pairs of nodes be-
longing to one single annotation structure are stored.

The global tables node class and pair class represent
abstract classes of nodes and of pairs of nodes. This ab-
straction allows a compact representation of the corpus: in-
stead of storing concrete pairs of nodes with all their prop-
erties (binary relations, categories, grammatical functions
etc.), one indicates just the class of pairs a concrete pair be-

#BOS 24 25 898511955 1
scheinbar ADV -- HD 500
nicht PTKNEG -- HD 501
beides PIS -- HD 502
zusammen ADV -- HD 503
. $. -- -- 0
#500 ADVX -- - 505
#501 ADVX -- - 505
#502 NX -- HD 504
#503 ADVX -- - 504
#504 NX -- HD 505
#505 NX -- -- 0
#EOS 24

Corresponding structure:

0 1 2 3 4

500 501 502 503

504

505

scheinbar

ADV

nicht

PTKNEG

beides

PIS

zusammen

ADV

.

$.

HD HD HD HD

NX ADVX

HD −

ADVX ADVX

NX

NX

− − HD

Figure 4: Export format of sentence 24 in cd20 and corre-
sponding structure

longs to. Each class of pairs is an equivalence class on the
sets of node pairs. In order to obtain a compact character-
ization of these classes, additional node classes are intro-
duced. This double abstraction allows an efficient storage
of large amounts of data and facilitates the search in the
corpus. The only feature that is not part of the characteris-
tics of node classes is the token of a node. The tokens of
the corpus are stored in an extra table.

3.2. Initializing the Database

The storage of the corpus in the database is done by an
initializing component. This component extracts informa-
tion from the structures in export format (the format used
for the Tübingen German Treebank) and stores them in
the database. Details about the initializing process can be
found in Kallmeyer (2000b).

As an example, consider the storage of sentence 24,
subcorpus cd20 (identifier 20) in the database. This sen-
tence was chosen for the simple reason that it is not too
long but contains enough nodes to provide a useful exam-
ple. Besides this, its construction and its tokens are not of
any interest here.

Fig. 4 shows the sentence in its export format, i.e., the
way it originally occurs in the corpus, together with a pic-
ture of the corresponding structure. Parts of the tables in
the database concerning sentence 24 are shown in Fig. 5.
Each line in the export format corresponds to one node. The
nodes are assigned numbers 0, 1, ����� . The nodes with to-
kens (i.e., the leaves) are inserted into the table tokens 20.

tokens 20
tree id node word

24 0 scheinbar
24 1 nicht
24 2 beides
24 3 zusammen
24 4 .

node pair 20
tree id node1 node2 class id

24 0 1 1459
24 0 2 2608
24 0 3 120

�����

24 9 10 1327
�����

pair class
class id node id1 node id2 p1 p2 d1 d2 l1 l2

�����

120 13 13 0 0 0 0 1 0
�����

1327 24 25 0 1 0 1 0 0
�����

node class
node id cat fct

�����

13 ADV HD
�����

24 NX HD
25 NX –

�����

Figure 5: Sentence 24 in the database

Each pair of nodes is inserted into the table node pair 20 to-
gether with its pair class. Both orders of a pair are stored.1

The pair classes and node classes belonging to a pair can be
found in the global tables. Consider for example the nodes
9 and 10 in sentence 24 (the node labelled NX that dom-
inates beides zusammen and the topmost node with label
NX). The class id of this pair is 1327. The corresponding
entry in pair class tells us that the second node is the mother
of the first, that the second dominates the first, and that there
is no linear precedence relation between the two nodes.
Furthermore, the node classes identified by node id1 and
node id2 are such that the first node has label NX and gram-
matical function HD whereas the second has label NX and no
grammatical function.

After having stored the data in the data base, several
indexes are created using the MySQL indexing function-
alities, e.g., indexes are put on the column class id in ta-
ble node pair � and on node id1 and node id2 in pair class.
This accelerates the search of the corpus considerably.

In order to test the tool approximately one quarter of
the Tübingen German Treebank is stored in the database,

1In a previous version just one order was stored but it turned
out that for some queries this causes an exponential time complex-
ity depending on the number of variables occurring in the query.
This problem is avoided by storing both orders of a node pair.

i.e., 5 subcorpora containing all together 10112 trees and
98253 tokens. The table pair class has 46048 entries and
node class has 213 entries. The current size of all data files
is 58 MB and the size of the index files 453 MB. We expect
the size of the global tables pair class and node class not to
increase substantially when storing additional subcorpora.

3.3. The Query Component

In order to search the corpus, one needs of course
to know the specific properties of the annotation scheme.
These are described in the STTS guidelines (Schiller et
al., 1995) and in the stylebook for the German Treebank
(Stegmann et al., 2000), that must be both available to any
user of the query tool.

The input of the query component is an expression in
the query language. This is translated into an SQL expres-
sion, which is then passed to the database. As an example,
consider again the construction in (1) which leads the query
in (5) (searching a dative NP preceding an accusative NP
and a node MF dominating the first two nodes).

(5) cat(1)=NX & fct(1)=OD
& cat(2)=NX & fct(2)=OA & 1..2
& cat(3)=MF & 3>>1 & 3>>2

For query (5) as input performed on subcorpus cd24, the
query component produces the following SQL query:

SELECT DISTINCT np1.tree_id
FROM node_class AS nc1,
node_class AS nc2, node_class AS nc3,
node_pair_24 AS np1, pair_class AS pc1,
node_pair_24 AS np2, pair_class AS pc2,
node_pair_24 AS np3, pair_class AS pc3
WHERE nc1.cat=’NX’ AND nc1.fct=’OD’
AND nc2.cat=’NX’ AND nc2.fct=’OA’
AND nc3.cat=’MF’
AND pc1.node_id1=nc1.node_id
AND pc1.node_id2=nc2.node_id AND pc1.l1=1
AND pc2.node_id1=nc3.node_id
AND pc2.node_id2=nc1.node_id AND pc2.d1=1
AND pc3.node_id1=nc3.node_id
AND pc3.node_id2=nc2.node_id AND pc3.d1=1
AND np1.class_id=pc1.class_id
AND np1.node1=np2.node2
AND np1.node2=np3.node2
AND np1.tree_id=np2.tree_id
AND np2.class_id=pc2.class_id
AND np2.node1=np3.node1
AND np2.tree_id=np3.tree_id
AND np3.class_id=pc3.class_id;

As a second example, query (4) for complex preposi-
tional phrases, involving three pairs of nodes but just one
node class and two tokens, is repeated here as (6):

(6) token(1)=von & token(2)=bis & 1..2
& cat(3)=PX & 3>>1 & 3>>2

Performed on cd20, (6) as input leads to the following
SQL query:

SELECT DISTINCT np1.tree_id
FROM node_class AS nc1,

node_pair_20 AS np1, pair_class AS pc1,
node_pair_20 AS np2, pair_class AS pc2,
node_pair_20 AS np3, pair_class AS pc3,
tokens_20 AS t1, tokens_20 AS t2
WHERE nc1.cat=’PX’ AND pc1.l1=1
AND pc2.node_id1=nc1.node_id AND pc2.d1=1
AND pc3.node_id1=nc1.node_id AND pc3.d1=1
AND np1.class_id=pc1.class_id
AND np1.node1=np2.node2
AND np1.node2=np3.node2
AND np1.tree_id=np2.tree_id
AND np2.class_id=pc2.class_id
AND np2.node1=np3.node1
AND np2.tree_id=np3.tree_id
AND np3.class_id=pc3.class_id
AND t1.word=’von’
AND np1.tree_id=t1.tree_id
AND np1.node1=t1.node
AND t1.tree_id=t2.tree_id
AND t2.word=’bis’
AND np1.node2=t2.node;

As can be easily seen, there is no direct correspondence
between a conjunct in the query language of VIQTORYA

and a conjunct in the WHERE-clause of the corresponding
SQL statement. Instead, the translation process of a query
depends on the use of the different node variables involved.
Therefore, the first step of the computation is to determine
for each node variable in the query in which predicates or
relations the node variable appears and to collect the vari-
able pairs used in binary relations. In query (6), for exam-
ple, the variable pairs are � � ����� , ���

� � � and ���
�����

.
For each variable pair (e.g., � � �����), an SQL vari-

able for the tables node pair � (np1) and pair class (pc1)
is needed with the same class id (e.g., np1.class id=

pc1.class id) and the appropriate relation is chosen
(pc1.l1=1). If a node variable is involved in several
binary relations (e.g., var. �) the individual nodes in ta-
ble node pair, of course, must match (e.g., np1.node1=
np2.node2, since variable � is first element of the first
variable pair � � ����� and second element of the sec-
ond pair �	�

� � �). For each node variable involved
in the predicates cat or fct (var. �), an SQL vari-
able for the table node class (nc1) with the appropri-
ate value is created (nc1.cat=’PX’) that matches one
of the two node ids of the corresponding pair class vari-
able (e.g., pc2.node id1=nc1.node id), depending if
the node variable is first or second element of the relation.
For each node variable involved in the token predicate (e.g.,
var. �), an SQL variable for the table tokens � (e.g., t1) with
the appropriate value is created (e.g., t1.word=’von’)
that matches the tree id (e.g., np1.tree id=t1.tree id)
and one of the two nodes for the corresponding node pair �
variable (e.g., np1.node1=t1.node), depending if the
node variable is first or second element of the rela-
tion. Finally, several variables for tables node pair �
resp. tokens � must match with regard to the tree id (e.g.,
t1.tree id=t2.tree id). Note that the search for the
category or function of a node that is not involved in
a binary relation cannot be evaluated without the tables
pair class and node pair � , whereas this does not hold for
the search for tokens.

We implemented the composition of an SQL expression
in a modular way. Each conjunct in the WHERE-clause is
assigned a particular rank and an additional subrank for
each rank. The conjuncts are ordered according to this
ranking. For example, the same rank is assigned for all
conjuncts that are concerned with the same table (e.g., ta-
ble node class) and the subrank determines the ordering
of the different variables for this table (e.g., nc1, nc2, etc.).
If it turns out at a later point that a different ordering of the
SQL conjuncts is favoured, this can be easily modified with
the present implementation.

The performance depends crucially on the size of inter-
mediate results. In cases where more than one node pair
is searched for (as in the examples above) the order of the
pairs is important since the result set of the first pair re-
stricts the second pair etc. In (5) for example, two node
pairs that involve the search for a node NX with function
OD are searched for first. Afterwards, the search for node
NX with function OA dominated by MF is restricted to those
trees that were found when searching for the first two pairs.
Obviously, each of the first two pairs is much more restric-
tive than the third. If the order is reversed and the third
node pair is searched for first, the query takes much more
time to process. Currently the ordering of the pairs needs
to be done by the user, i.e., depends on the incoming query.
However, we plan to implement at least partly an ordering
of the binary conjuncts in the query depending on the fre-
quency of the syntactic categories and grammatical func-
tions involved in the pairs.

In contrast to the examples illustrated above, queries
containing disjunctions are not translated directly into an
SQL expression. Instead they are transformed first into
disjunctive normal form. The different disjuncts are then
translated separately into the corresponding SQL state-
ments and evaluated iteratively. Following, the union of
the search results is built. In most cases this procedure
leads to a much better performance than the evaluation of a
large and complex SQL statement, especially in those cases
where the disjunction contains binary relations. But we also
found that even disjunctions of category or function labels
can best be treated this way. An additional advantage of
transforming queries first into disjunctive normal form is
that the query language defined in Sec. 2. and the query
component can be extended easily in order to allow nega-
tion in a general way with just one more transformation
step prior to the proposed procedure, namely transforming
negation in general into atomic negation.

Currently, the query component can process almost
all possible expressions in the query language. However,
queries involving disjunctions are so far only allowed in
disjunctive normal form. The query component will be
completed very soon to process the full range of disjunc-
tion defined in Sec. 2.

The database and the tool are running at present on
a Pentium II PC 400MHz 256MB under Linux. On this
machine, example (5) takes 1.26 sec to be answered by
MySQL, and example (6) takes 0.28 sec to be answered.
This shows that although the queries are quite complex and
involve many intermediate results, the performance of the
system is quite efficient.

The obvious advantage of using a relational database to
store the corpus is that some parts of the work are taken over
by the database management system such as the search of
the corpus. Furthermore, and this is crucial, the indexing
functionalities of the database management system can be
used to increase the performance of the tool.

3.4. The Graphical User Interface of VIQTORYA

Since VIQTORYA will be used by linguists a user-
friendly handling of the tool is important. Therefore we
developed a graphical user interface for the specification
of the queries that are then passed on to the query compo-
nent. In a comfortable way the user can choose a corpus,
can specify nodes with their properties (including, e.g., the
topological field a node is situated in) and relations between
nodes. The user does not need to know the specific syntax
of the query language since the queries can be generated au-
tomatically on the basis of the chosen specifications, at least
for standard queries without complex disjunction. Disjunc-
tion in general will be supported by the user interface very
soon. Furthermore, specified queries can be stored for later
use and refinement.

Figure 6 shows the main window of the user interface
containing the specification of query (6). Specified nodes
together with their properties (PoS-tag or category, function
and, in the case of terminals, token) are shown in the left
window. For example, in Fig. 6 the first node (“Node 1”)
is specified only for token (von) and the third node (“Node
3”) is specified only for category (PX). The right window
displays the specified binary relations. On the basis of these
specifications the query can be generated automatically and
will show up in the query window on top. Then the query
together with the chosen corpus (here subcorpus cd20) can
be submitted to the query component.

Terminal nodes, nonterminal nodes and binary relations
are specified with the bottom part of the main window. In
Figure 7 the specification of “Node 3” (in Fig. 6) is shown,
i.e., the specification of its syntactic category PX. The dif-
ferent properties of a node can be chosen with the register
on top of the node window, i.e. category, function, topo-
logical field in case of nonterminal nodes. In case of ter-
minal nodes there is an additional option for “token” and
“category” is replaced by “PoS-tag”. For each property the
negation of the corresponding predicate can be chosen (see
in Fig. 7 “Category of Node is not...”) which leads to a
modified surface of the node window in order to have the
possibility to choose more than one value for a predicate.

For the specification of binary relations all nodes that
are already specified are displayed in the relation window.
The nodes involved in the binary relation and the relation
itself can be chosen. Fig. 8 shows the specification of the
first relation in Fig. 6 (“Node 1 linearly precedes Node 2”).

For German corpora that are annotated with topological
fields (such as the Tübingen German Treebank) there is an
option for terminal and nonterminal nodes to determine the
topological field the node is situated in. As an example con-
sider again the construction in Fig. 2 with the corresponding
query in (5). E.g., for the node (node variable �) with syn-
tactic category NX and grammatical function OD, the topo-
logical field ‘mittelfeld’ (MF) can be specified as additional

Figure 6: Specification of the query in (6)

Figure 7: Specification of “Node 1” in Fig. 6

property. Since the theory of topological fields is specific
for German and, furthermore, not every German corpus is
annotated with topological fields, we implemented this op-
tion in a modular way, i.e., for corpora that are not anno-
tated with topological fields it can be faded out easily.

Having specified and submitted a query, the correspond-
ing search results can be viewed in the Annotate tool.

4. Related Work
Recently, some other query tools for syntactically an-

notated corpora have been proposed, e.g., TIGERSearch
(Lezius and König, 2000), ICECUP III (Wallis and Nelson,
2000), CorpusSearch (Randall, 2000) and tgrep2 (Rohde,
2001). We will briefly compare VIQTORYA to them.

The most interesting tool with respect to a comparison
to VIQTORYA is TIGERSearch since it was primarily de-
veloped for the data structures used in the Negra corpus
(allowing crossing branches) and therefore has to deal with
the specific problems of annotations that are not trees.

The query language of TIGERSearch allows the same

Figure 8: Specification of the first binary relation in Fig. 6

logical connections as VIQTORYA (conjunction, disjunc-
tion and atomic negation). TIGERSearch comprises some
binary relations that are not present in VIQTORYA but that
either can be defined using the existing relations or can be
easily integrated extending the pair class table in a corre-
sponding way.

There is a crucial difference between TIGERSearch and
VIQTORYA concerning the way linear precedence between
internal nodes is defined: in TIGERSearch a node ��� lin-
early precedes a node ��� if the leftmost leaf dominated
by ��� linearly precedes the leftmost leaf dominated by � � .
One problem of this definition is that it does not exclude a
dominance relation between � � and ��� : in Fig. 2, according
to this definition, the SIMPX node linearly precedes the MF
node which seems counter-intuitive. Furthermore, for cor-
pora without crossing branches but with subtrees ‘wrapped’
around other subtrees such as the Tübingen Treebanks this
definition is not adequate. It means that � � linearly pre-
cedes � � even if the subtree rooted by ��� is ‘wrapped’
around the subtree with root � � (e.g., in Fig. 1 the SIMPX

node would linearly precede the VXFIN that dominates the

first macht). Therefore, in VIQTORYA we chose the follow-
ing definition: ��� linearly precedes � � if all nodes domi-
nated by � � linearly precede all nodes dominated by � � .

ICECUP, developed for the ICE-GB corpus, uses a
query language with predicates that are slightly different
from VIQTORYA. ICECUP, however, does not allow nega-
tion for binary predicates and, moreover, is restricted to
trees and cannot handle the data structures used in the
Tübingen Treebanks.

Neither tgrep, developed for the Penn Treebank, nor
CorpusSearch, developed for the Penn Helsinki Corpus of
Middle English, provide a graphical user interface. Both
allow sets of unary and binary predicates slightly different
from VIQTORYA. CorpusSearch, however, does not allow
negation of these predicates and general disjunction.

Concerning the general architecture of the tools, a key
feature of VIQTORYA is that, in contrast to the tools men-
tioned above, it uses a relational database schema that al-
lows an efficient search in large amounts of data.

5. Conclusion and Future Work
In this paper, we have presented VIQTORYA, a visual

query tool for syntactically annotated corpora, that is im-
plemented for the Tübingen German Treebank annotated at
the University of Tübingen. The key idea is to extract in an
initializing phase the information one wants to search for
from the corpus and to store it in a compact way in a rela-
tional database. The search itself is done by translating an
input query, that is an expression in a simple quantifier free
first order logic, into an SQL query that is then passed to
the database system. A graphical user interface allows to
specify queries in a user-friendly way.

An obvious advantage of this architecture is that a con-
siderable amount of work is taken over by the database
management system and therefore needs not to be imple-
mented. Furthermore, the MySQL indexing functionalities
can be used to directly affect the performance of the search.

The query tool is work in progress, and we briefly want
to point out some of the things that still need to be done.
First, the set of queries the tool can process needs to be ex-
tended to the full range of disjunction allowed in the query
language. This will be done very soon. Another task for
the near future is, as mentioned above, to add an ordering
mechanism on binary conjuncts in order to ensure that the
more restrictive node pairs are searched for first.

Besides these tasks, a more general issue to persue in
the future is to adapt the tool to other corpora. In some
cases, this implies a modification of the way binary rela-
tions are precompiled in the initialization process, and in
some other cases this would even lead to a modification
of the query language and the database schema, namely in
those cases where other binary relations are needed, e.g.,
the coindexation relation in the case of the Penn Treebank.

6. Acknowledgments
The work presented here was done as part of the project

A1 in SFB 441 “Linguistic Data Structures” at the Univer-
sity of Tübingen. We would like to thank our research assis-
tant Thomas Schurtz for the implementation of the graphi-
cal user interface. For valuable discussions of the work pre-

sented here we would like to thank Detmar Meurers, Oliver
Plaehn and, in particular, Stephan Kepser. Furthermore, we
are grateful to the project A2 for support in the final phase
of this work.

7. References
A. Abeillé and L. Clément. 1999. A tagged reference Cor-

pus for French. In Proceedings of EACL-LINC, Bergen.
A. Bies, M. Ferguson, K. Katz, and R. MacIntyre. 1995.

Bracketing Guidelines for Treebank II Style Penn Tree-
bank Project. University of Pennsylvania.

T. Brants and W. Skut. 1998. Automation of treebank an-
notation. In Proceedings of NeMLaP-3/CoNLL98, Syd-
ney, Australia, pages 49 – 57.

T. Brants, W. Skut, and H. Uszkoreit. 1999. Syntactic An-
notation of a German Newspaper Corpus. In Journées
ATALA, 18–19 juin 1999, Corpus annotés pour la syn-
taxe, pages 69–76, Paris.

S. Featherston. 2002. Coreferential objects in german:
Experimental evidence on reflexivity. In Linguistische
Berichte. Buske Verlag. In press.

E. W. Hinrichs, J. Bartels, Y. Kawata, V. Kordoni, and
H. Telljohann. 2000. The VERBMOBIL Treebanks. In
Proceedings of KONVENS 2000, October.

T. Höhle. 1985. Der Begriff ‘Mittelfeld’. Anmerkungen
über die Theorie der topologischen Felder. In A. Schöne,
editor, Kontroversen alte und neue. Akten des 7. Int. Ger-
manistenkongresses Göttingen, pages 329–340.

L. Kallmeyer. 2000a. On the Complexity of Queries for
Structurally Annotated Linguistic Data. In Proceedings
of ACIDCA’2000, pages 105–110, March.

L. Kallmeyer. 2000b. A query tool for syntactically anno-
tated corpora. In Proceedings of Joint SIGDAT Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Very Large Corpora, Hong Kong, October.

W. Lezius and E. König. 2000. Towards a search engine
for syntactically annotated corpora. In Proceedings of
the KONVENS Conference.

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn Treebank: Annotating Predicate Argu-
ment Structure. In ARPA ’94.

D. Meurers. 1999. Von partiellen Konstituenten, er-
staunlichen Passiven und verwirrten Franken. Zur Ver-
wendung von Korpora für die theoretische Linguistik.
Handout at the DGfS Jahrestagung, February.

B. Randall, 2000. CORPUSSEARCH USER’S MANUAL.
University of Pennsylvania.

D. L. T. Rohde, 2001. Tgrep2 User Manual - version 1.2.
Carnegie Mellon University, Pittsburgh.

A. Schiller, S. Teufel, and C. Thielen. 1995. Guide-
lines für das Tagging deutscher Textcorpora mit STTS.
Manuscript Universitäten Stuttgart und Tübingen.

R. Stegmann, H. Telljohann, and E. W. Hinrichs. 2000.
Stylebook for the German Treebank in VERBMOBIL.
Technical Report 239, Verbmobil.

S. A. Wallis and G. Nelson. 2000. Exploiting fuzzy tree
fragments in the investigation of parsed corpora. Liter-
ary and Linguistic Computing, 15(3):339–361.

	1704: 1704
	1705: 1705
	1706: 1706
	1707: 1707
	1708: 1708
	1709: 1709
	1710: 1710
	1711: 1711

